Exercise 7.2

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

\(y = 10 sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 + N(0, \sigma^2)\)

where the \(x\) values are random variables uniformly distributed between \([0, 1]\) (there are also \(5\) other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(mlbench)
help("mlbench.friedman1")
## starting httpd help server ...
##  done
set.seed(200)
training.data <- mlbench.friedman1(200, sd=1)
training.data$x <- data.frame(training.data$x)
featurePlot(training.data$x, training.data$y)

Estimating the true error rate with good precision:

test.data <- mlbench.friedman1(5000, sd = 1)
test.data$x <- data.frame(test.data$x)

KNN Model

set.seed(200)
knnModel <- train(x = training.data$x,
                  y = training.data$y,
                  method = "knn",
                  preProc = c("center", "scale"),
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.654912  0.4779838  2.958475
##    7  3.529432  0.5118581  2.861742
##    9  3.446330  0.5425096  2.780756
##   11  3.378049  0.5723793  2.719410
##   13  3.332339  0.5953773  2.692863
##   15  3.309235  0.6111389  2.663046
##   17  3.317408  0.6201421  2.678898
##   19  3.311667  0.6333800  2.682098
##   21  3.316340  0.6407537  2.688887
##   23  3.326040  0.6491480  2.705915
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.
plot(knnModel)

knn.Predict <- predict(knnModel, newdata = test.data$x)
postResample(pred = knn.Predict, obs = test.data$y)
##      RMSE  Rsquared       MAE 
## 3.1750657 0.6785946 2.5443169

The result of KNN MRSE is 3.1947

MARS

library(earth)
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
set.seed(200)  
marsGrid <- expand.grid(degree =1:2, nprune=seq(2,14,by=2))
marsModel <- train(x = training.data$x, y = training.data$y, method='earth', tuneGrid = marsGrid, trControl = trainControl(method = "cv"))
marsModel
## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.188280  0.3042527  3.460689
##   1        4      2.653143  0.7167280  2.128222
##   1        6      2.295006  0.7754603  1.853199
##   1        8      1.647182  0.8774867  1.299564
##   1       10      1.635035  0.8798236  1.309436
##   1       12      1.571561  0.8898750  1.253077
##   1       14      1.571673  0.8909652  1.245508
##   2        2      4.188280  0.3042527  3.460689
##   2        4      2.615256  0.7216809  2.128763
##   2        6      2.275048  0.7762472  1.807779
##   2        8      1.641647  0.8839822  1.288520
##   2       10      1.473254  0.9101555  1.158761
##   2       12      1.285380  0.9283193  1.033426
##   2       14      1.261797  0.9327541  1.009821
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 14 and degree = 2.
plot(marsModel)

Feature Importance

varImp(marsModel)
## earth variable importance
## 
##    Overall
## X1  100.00
## X4   75.24
## X2   48.74
## X5   15.53
## X3    0.00
mars.Predict <- predict (marsModel, test.data$x)
postResample(pred = mars.Predict, obs = test.data$y)
##      RMSE  Rsquared       MAE 
## 1.1722635 0.9448890 0.9324923

MARS_RMSE = 1.1487 is definitely better than KNN_RMSE = 3.1947.

Let’s look at other models:

SVM

set.seed(200)
svmTuned <- train(x = training.data$x, 
                   y = training.data$y,
                   method = "svmRadial",
                   preProc = c("center", "scale"),
                   tuneLength = 14,
                   trControl = trainControl(method = "cv"))
svmTuned
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE     
##      0.25  2.525164  0.7810576  2.010680
##      0.50  2.270567  0.7944850  1.794902
##      1.00  2.099356  0.8155574  1.659376
##      2.00  2.005858  0.8302852  1.578799
##      4.00  1.934650  0.8435677  1.528373
##      8.00  1.915665  0.8475605  1.528648
##     16.00  1.923914  0.8463074  1.535991
##     32.00  1.923914  0.8463074  1.535991
##     64.00  1.923914  0.8463074  1.535991
##    128.00  1.923914  0.8463074  1.535991
##    256.00  1.923914  0.8463074  1.535991
##    512.00  1.923914  0.8463074  1.535991
##   1024.00  1.923914  0.8463074  1.535991
##   2048.00  1.923914  0.8463074  1.535991
## 
## Tuning parameter 'sigma' was held constant at a value of 0.06299324
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.06299324 and C = 8.
svmTuned$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: eps-svr  (regression) 
##  parameter : epsilon = 0.1  cost C = 8 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0629932410345396 
## 
## Number of Support Vectors : 152 
## 
## Objective Function Value : -72.63 
## Training error : 0.009177
svm.Predict <- predict(svmTuned, newdata = test.data$x)
postResample(pred = svm.Predict, obs = test.data$y)
##      RMSE  Rsquared       MAE 
## 2.0541197 0.8290353 1.5586411

SVM_RMSE = 2.0601, not performing well compared to MARS (=1.1487).

Neural Networks

library(nnet)
set.seed(200)
nnetFit <- nnet(training.data$x,
                training.data$y,
                size = 5,
                decay = 0.01,
                linout = TRUE,
                trace = FALSE,
                maxit = 500,
                MaxNWts = 5 * (ncol(training.data$x) + 1) + 5 + 1)
nnetFit
## a 10-5-1 network with 61 weights
## options were - linear output units  decay=0.01
nnet.Predict <- predict(nnetFit, newdata = test.data$x)
postResample(pred = nnet.Predict, obs = test.data$y)
##      RMSE  Rsquared       MAE 
## 2.8134222 0.7083039 2.1815463
varImp(nnetFit)
##       Overall
## X1  10.152501
## X2   7.395536
## X3  23.690690
## X4  14.521013
## X5  11.405236
## X6   4.833571
## X7  10.246607
## X8   6.754084
## X9   6.013435
## X10  4.987327

Neural Networks has an RMSE = 2.8435. It’s also not performing well against MARS (=1.1487). Therefore MARS ids the the best model with a lower MRSE.

Exercise 7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

A. Which nonlinear regression model gives the optimal resampling and test set performance?

library(AppliedPredictiveModeling)
data("ChemicalManufacturingProcess")
library(DMwR)
## Loading required package: grid
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
knn.df <- knnImputation(ChemicalManufacturingProcess[, 1:57], k = 3, meth = "weighAvg")
anyNA(knn.df)
## [1] FALSE

Let’s take out the missing values:

near_zero <- nearZeroVar(knn.df)
knn.df <- knn.df[,-near_zero]
knn.df[,2:(ncol(knn.df))] <- scale(knn.df[,2:(ncol(knn.df))])
set.seed(200)

inTraining <- createDataPartition(knn.df$Yield, p = 0.80, list=FALSE)
training <- knn.df[ inTraining,]
testing <- knn.df[-inTraining,]

X_train <- training[,2:(length(training))]
Y_train <- training$Yield

X_test <- testing[,2:(length(testing))]
Y_test <- testing$Yield

KNN

set.seed(200)
knnModel <- train(x = X_train,
                  y = Y_train,
                  method = "knn",
                  tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 144 samples
##  55 predictor
## 
## No pre-processing
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 144, 144, 144, 144, 144, 144, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.358724  0.4629696  1.072222
##    7  1.371312  0.4458838  1.083336
##    9  1.376625  0.4401890  1.094604
##   11  1.383306  0.4312044  1.096783
##   13  1.390086  0.4264260  1.103710
##   15  1.390433  0.4275496  1.102569
##   17  1.395259  0.4266876  1.109112
##   19  1.400306  0.4244713  1.116016
##   21  1.403813  0.4240472  1.122619
##   23  1.414156  0.4155829  1.133073
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 5.
plot(knnModel)

KNN RMSE value is 1.358724. Let’s see what other models have to say.

MARS

set.seed(200)
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:38)
marsModel <- train(x = X_train,
                   y = Y_train,
                   method = "earth",
                   tuneGrid = marsGrid,
                   trControl = trainControl(method = "cv"))
marsModel
## Multivariate Adaptive Regression Spline 
## 
## 144 samples
##  55 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 130, 129, 129, 130, 131, 131, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE      
##   1        2      1.358846  0.4736659  1.0773044
##   1        3      1.296657  0.5106767  1.0478494
##   1        4      1.273441  0.5201153  1.0263780
##   1        5      1.288455  0.5178118  1.0606103
##   1        6      1.308078  0.5076130  1.0565894
##   1        7      1.255087  0.5425926  1.0041199
##   1        8      1.271841  0.5331827  1.0000354
##   1        9      1.279745  0.5250474  1.0154927
##   1       10      1.292175  0.5223808  1.0323971
##   1       11      1.283229  0.5325098  1.0418353
##   1       12      1.269256  0.5402115  1.0194497
##   1       13      1.272423  0.5369788  1.0090722
##   1       14      1.269055  0.5410239  0.9984376
##   1       15      1.281957  0.5327002  1.0105145
##   1       16      1.276377  0.5367464  1.0037746
##   1       17      1.276377  0.5367464  1.0037746
##   1       18      1.276377  0.5367464  1.0037746
##   1       19      1.276377  0.5367464  1.0037746
##   1       20      1.276377  0.5367464  1.0037746
##   1       21      1.276377  0.5367464  1.0037746
##   1       22      1.276377  0.5367464  1.0037746
##   1       23      1.276377  0.5367464  1.0037746
##   1       24      1.276377  0.5367464  1.0037746
##   1       25      1.276377  0.5367464  1.0037746
##   1       26      1.276377  0.5367464  1.0037746
##   1       27      1.276377  0.5367464  1.0037746
##   1       28      1.276377  0.5367464  1.0037746
##   1       29      1.276377  0.5367464  1.0037746
##   1       30      1.276377  0.5367464  1.0037746
##   1       31      1.276377  0.5367464  1.0037746
##   1       32      1.276377  0.5367464  1.0037746
##   1       33      1.276377  0.5367464  1.0037746
##   1       34      1.276377  0.5367464  1.0037746
##   1       35      1.276377  0.5367464  1.0037746
##   1       36      1.276377  0.5367464  1.0037746
##   1       37      1.276377  0.5367464  1.0037746
##   1       38      1.276377  0.5367464  1.0037746
##   2        2      1.358846  0.4736659  1.0773044
##   2        3      1.229696  0.5642792  0.9983440
##   2        4      1.207160  0.5806614  0.9594554
##   2        5      1.235032  0.5545250  0.9899618
##   2        6      1.256267  0.5494292  1.0110015
##   2        7      1.235968  0.5612134  0.9864113
##   2        8      1.217343  0.5692671  0.9789297
##   2        9      1.201919  0.5765427  0.9640088
##   2       10      1.282515  0.5236294  1.0327008
##   2       11      1.227825  0.5647696  0.9841350
##   2       12      1.258767  0.5411971  1.0000580
##   2       13      1.343413  0.4965445  1.0695792
##   2       14      1.362048  0.4986443  1.0872110
##   2       15      1.344378  0.5036945  1.0506216
##   2       16      1.398320  0.4888881  1.0848642
##   2       17      1.473546  0.4854781  1.1120501
##   2       18      1.478332  0.4919094  1.1127982
##   2       19      1.467072  0.5005203  1.1060668
##   2       20      1.470965  0.4987451  1.1024792
##   2       21      1.462591  0.5027102  1.1016735
##   2       22      1.428628  0.5120665  1.0834251
##   2       23      1.443942  0.5094336  1.0865845
##   2       24      1.443942  0.5094336  1.0865845
##   2       25      1.443942  0.5094336  1.0865845
##   2       26      1.443942  0.5094336  1.0865845
##   2       27      1.484623  0.5002102  1.1223371
##   2       28      1.484623  0.5002102  1.1223371
##   2       29      1.458591  0.5056408  1.1186604
##   2       30      1.451215  0.5086060  1.1113881
##   2       31      1.451215  0.5086060  1.1113881
##   2       32      1.451215  0.5086060  1.1113881
##   2       33      1.451215  0.5086060  1.1113881
##   2       34      1.451215  0.5086060  1.1113881
##   2       35      1.451215  0.5086060  1.1113881
##   2       36      1.451215  0.5086060  1.1113881
##   2       37      1.451215  0.5086060  1.1113881
##   2       38      1.451215  0.5086060  1.1113881
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 9 and degree = 2.
plot(marsModel)

marsPredict <- predict(marsModel, newdata = X_test)
postResample(pred = marsPredict, obs = Y_test)
##       RMSE   Rsquared        MAE 
## 5.36423843 0.08214788 1.91091003

MARS_RMSE = 5.36423843

Neural Networks

set.seed(200)
nnetFit <- nnet(X_train,
                Y_train,
                size = 5,
                decay = 0.01,
                linout = TRUE,
                trace = FALSE,
                maxit = 500,
                MaxNWts = 5 * (ncol(X_train) + 1) + 5 + 1)
nnetFit
## a 55-5-1 network with 286 weights
## options were - linear output units  decay=0.01
nnetFit.Predict <- predict(nnetFit, newdata = X_test)
postResample(pred = nnetFit.Predict, obs = Y_test)
##      RMSE  Rsquared       MAE 
## 3.2274418 0.1310242 2.1838495

NN_RMSE = 3.2274418

SVM

set.seed(200)
svmModel <- train(x = X_train, 
                   y = Y_train,
                   method = "svmRadial",
                   tuneLength = 14,
                   trControl = trainControl(method = "cv"))
svmModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 144 samples
##  55 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 130, 129, 129, 130, 131, 131, ... 
## Resampling results across tuning parameters:
## 
##   C        RMSE      Rsquared   MAE      
##      0.25  1.364309  0.4898533  1.1098152
##      0.50  1.264003  0.5399353  1.0212339
##      1.00  1.167489  0.6082610  0.9280668
##      2.00  1.128452  0.6416772  0.8950842
##      4.00  1.128531  0.6427525  0.8999622
##      8.00  1.130919  0.6396080  0.8970457
##     16.00  1.125978  0.6427766  0.8930774
##     32.00  1.125978  0.6427766  0.8930774
##     64.00  1.125978  0.6427766  0.8930774
##    128.00  1.125978  0.6427766  0.8930774
##    256.00  1.125978  0.6427766  0.8930774
##    512.00  1.125978  0.6427766  0.8930774
##   1024.00  1.125978  0.6427766  0.8930774
##   2048.00  1.125978  0.6427766  0.8930774
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01389398
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.01389398 and C = 16.
svm.Predict <- predict(svmModel, newdata = X_test)
postResample(pred = svm.Predict, obs = Y_test)
##      RMSE  Rsquared       MAE 
## 1.3404715 0.6124804 1.0007174

SVM_RMSE = 1.3404715

Looks like SVM is the winner as it has the lowest RMSE of all of those NN and MARS models.

B. Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

Feature Importance

varImp(marsModel)
## earth variable importance
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess09   52.54
## ManufacturingProcess29   27.09
## ManufacturingProcess39   22.39
## ManufacturingProcess28   22.39
## ManufacturingProcess17   16.62
## ManufacturingProcess30    0.00
## BiologicalMaterial09      0.00

ManufacturingProcess32 is nthe highest important variable. Looks like the ManufactingProcess seem to be leading the feature importance.

varImp(svmModel)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 55)
## 
##                        Overall
## ManufacturingProcess32  100.00
## BiologicalMaterial06     87.81
## ManufacturingProcess13   78.23
## BiologicalMaterial03     76.45
## BiologicalMaterial12     69.16
## ManufacturingProcess17   68.44
## ManufacturingProcess31   67.67
## ManufacturingProcess36   67.63
## ManufacturingProcess09   64.12
## ManufacturingProcess06   60.89
## BiologicalMaterial02     53.50
## ManufacturingProcess29   52.89
## BiologicalMaterial11     48.66
## ManufacturingProcess33   47.00
## ManufacturingProcess11   46.92
## ManufacturingProcess30   44.62
## BiologicalMaterial09     38.34
## BiologicalMaterial04     37.89
## BiologicalMaterial08     36.89
## ManufacturingProcess12   36.65

Looks like for SVM, both Manufacturing process and Biological Material are on the top feature importance list. ManufacturingProcess32 is also the highest in this model.

C. Explore the relationship between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

Let’s look at SVM:

svmModel$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: eps-svr  (regression) 
##  parameter : epsilon = 0.1  cost C = 16 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.0138939782317795 
## 
## Number of Support Vectors : 125 
## 
## Objective Function Value : -85.2452 
## Training error : 0.008962
xyplot(Y_test ~ predict(svmModel, X_test),
type = c("p", "r"),
xlab = "Predicted", ylab = "Observed")

predicted <- predict(svmModel, X_test)
actual <-Y_test
xyplot((predicted-actual) ~ predicted,
type = c("p", "g"),
xlab = "Predicted radial svm", ylab = "Residuals")

No significant pattern has been indicated by the residual plots.But the actual vs predict graph shows there is a close correlation.

dotPlot(varImp(svmModel), top=20)

top 20 features rank for SVM Model is shown in the above plot.ManufacturingProcess32 is always at the top.

Plotting top 6 features and revealing correlation:

predictors.val <- c("ManufacturingProcess32", "BiologicalMaterial06", "ManufacturingProcess36", "BiologicalMaterial03", "ManufacturingProcess13", "BiologicalMaterial02")
featurePlot(X_train[,predictors.val], Y_train)

cor(X_train[, predictors.val], Y_train)
##                              [,1]
## ManufacturingProcess32  0.6217081
## BiologicalMaterial06    0.4480502
## ManufacturingProcess36 -0.5112720
## BiologicalMaterial03    0.4235631
## ManufacturingProcess13 -0.4901456
## BiologicalMaterial02    0.4511409

We can clearly see that the predictors and the yield indeed have some correlation, with ManufacturingProcess32 being the most positively correlated. Some of the Manufacturing Process have negative impact (negative correlation) on Yield, while most of the Biological Maeterial maintain a positive and balanced correlation.