Visualizando los dos grupos

T test
t <- t.test(y~x)
t
[1] -4.128157
Prueba de una cola (Izquierda)
P Value (Una cola, izquierda, Ha:mu1 > mu2 )
[1] 0.9993527

Prueba de una cola (Derecha)
P Value (Una cola, derecha, Ha:mu1 < mu2 )
[1] 0.0006472603

Prueba de dos colas (P=0.05)
[1] 0.001294521

LS0tDQp0aXRsZTogIlRfVGVzdCBIYSB2aXN1YWxpemVkIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyMjIEltcG9ydGFuZG8gZGF0b3MNCmBgYHtyIGVjaG89RkFMU0V9DQphIDwtIHJlYWQudGFibGUoImNsaXBib2FyZCIsIGhlYWRlcj1UKQ0KYQ0KYGBgICANCiMjIyBWaXN1YWxpemFuZG8gbG9zIGRvcyBncnVwb3MNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmxpYnJhcnkoZ2dwbG90MikNCmRhdCA8LSBhDQp5PSBkYXQkZXN0YXQNCng9IGRhdCRzZXhvDQpuMT0gKGRhdCRlc3RhdFtkYXQkc2V4bz09ImYiXSkNCm4yPSAoZGF0JGVzdGF0W2RhdCRzZXhvPT0ibSJdKQ0KDQpzaXplPSAxLjINCmdncGxvdChkYXRhPWRhdCwgYWVzKHg9IHgsIHk9eSwgY29sPXgpKSArIA0KICBnZW9tX2JveHBsb3QobWlkZGxlPUZBTFNFLCBhbHBoYT0wLjUpICsNCiAgZ2VvbV9wb2ludChwb3NpdGlvbiA9IHBvc2l0aW9uX2ppdHRlcih3aWR0aD0gMC4xKSkNCmBgYCAgDQoNCg0KYGBge3IsIGVjaG89RkFMU0V9DQphJHNleG8gPC0gYXMuZmFjdG9yKGEkc2V4bykNCg0KYGBgICANCg0KIyMjIFQgdGVzdA0KYGBge3IgZWNobz1GQUxTRX0NCnk9IGEkZXN0YXQNCng9IGEkc2V4bw0KIw0KbjE9IGxlbmd0aChhJGVzdGF0W2Ekc2V4bz09ImYiXSkNCm4yPSBsZW5ndGgoYSRlc3RhdFthJHNleG89PSJtIl0pDQpgYGAgIA0KDQoNCmBgYHtyfQ0KdCA8LSB0LnRlc3QoeX54KQ0KYGBgICANCg0KYGBge3IsIGVjaG89RkFMU0V9DQp0IDwtIGFzLm51bWVyaWModCRzdGF0aXN0aWMpDQpgYGAgIA0KDQpgYGB7cn0NCnQNCmBgYCAgDQojIyMjIFBydWViYSBkZSB1bmEgY29sYSAoSXpxdWllcmRhKQ0KIyMjIyMgIFAgVmFsdWUgKFVuYSBjb2xhLCBgaXpxdWllcmRhYCwgX0h+YX5fOmBtdTEgPiBtdTJgICkNCmBgYHtyIGVjaG89RkFMU0V9DQp0LnRlc3QoeX54LCBhbHRlcm5hdGl2ZT0iZ3JlYXRlciIpJHAudmFsdWUNCmBgYCAgDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpnbD0gKG4xLTEpICsgKG4yLTEpDQptZWFuPTA7IHNkPTENCnAxPSAwDQpwMj0gMC45NQ0KDQoNCiMjIw0KbGI9IHF0KHA9cDEsIGRmPWdsICk7IHViPSBxdChwPSBwMiwgZGY9Z2wgKSANCiMjIw0KDQp4IDwtIHNlcSgtNSw1LGxlbmd0aD0xMDApDQpoeCA8LSBkdCh4LCBkZj1nbCkNCg0KcGxvdCh4LCBoeCwgdHlwZT0gImwiLCB4bGFiPSJ0IHZhbHVlcyIsIHlsYWI9ImRlbnNpdHkiLA0KICBtYWluPSwgYXhlcz0gVFJVRSkNCg0KaSA8LSB4ID49IGxiICYgeCA8PSB1Yg0KYWJsaW5lKGg9MCkNCmxpbmVzKHgsIGh4KQ0KDQpwb2x5Z29uKGMobGIseFtpXSx1YiksIGMoMCxoeFtpXSwwKSwgY29sPSJncmF5IikNCg0KDQphcmVhIDwtIHB0KHViLCBkZj1nbCkgLSBwdChsYiwgZGY9Z2wpDQpyZXN1bHQgPC0gcGFzdGUoIlAoIixyb3VuZChsYiwzKSwiPCBJUSA8Iixyb3VuZCh1YiwzKSwiKSA9IiwNCiAgIHNpZ25pZihhcmVhLCBkaWdpdHM9MykpDQptdGV4dChyZXN1bHQsMykNCmF4aXMoMSwgYXQ9c2VxKDQwLCAxNjAsIDIwKSwgcG9zPTApDQoNCmFibGluZSh2PXQsIGNvbD0gInJlZCIgKQ0KYGBgICANCg0KDQoNCiMjIyMgUHJ1ZWJhIGRlIHVuYSBjb2xhICAoRGVyZWNoYSkgDQojIyMjIyBQIFZhbHVlIChVbmEgY29sYSwgYGRlcmVjaGFgLCBfSH5hfl86YG11MSA8IG11MmAgKSAgDQoNCmBgYHtyIGVjaG89RkFMU0V9DQp5PSBhJGVzdGF0DQp4PSBhJHNleG8NCiMNCm4xPSBsZW5ndGgoYSRlc3RhdFthJHNleG89PSJmIl0pDQpuMj0gbGVuZ3RoKGEkZXN0YXRbYSRzZXhvPT0ibSJdKQ0KYGBgICANCg0KYGBge3IgZWNobz1GQUxTRX0NCnQudGVzdCh5fngsIGFsdGVybmF0aXZlPSJsZXNzIikkcC52YWx1ZQ0KYGBgDQoNCmBgYHtyIGVjaG89RkFMU0V9DQpnbD0gKG4xLTEpICsgKG4yLTEpDQptZWFuPTA7IHNkPTENCnAxPSAwLjA1DQpwMj0gMQ0KDQoNCiMjIw0KbGI9IHF0KHA9cDEsIGRmPWdsICk7IHViPSBxdChwPSBwMiwgZGY9Z2wgKSANCiMjIw0KDQp4IDwtIHNlcSgtNSw1LGxlbmd0aD0xMDApDQpoeCA8LSBkdCh4LCBkZj1nbCkNCg0KcGxvdCh4LCBoeCwgdHlwZT0gImwiLCB4bGFiPSJ0IHZhbHVlcyIsIHlsYWI9ImRlbnNpdHkiLA0KICBtYWluPSwgYXhlcz0gVFJVRSkNCg0KaSA8LSB4ID49IGxiICYgeCA8PSB1Yg0KYWJsaW5lKGg9MCkNCmxpbmVzKHgsIGh4KQ0KDQpwb2x5Z29uKGMobGIseFtpXSx1YiksIGMoMCxoeFtpXSwwKSwgY29sPSJncmF5IikNCg0KDQphcmVhIDwtIHB0KHViLCBkZj1nbCkgLSBwdChsYiwgZGY9Z2wpDQpyZXN1bHQgPC0gcGFzdGUoIlAoIixyb3VuZChsYiwzKSwiPCBJUSA8Iixyb3VuZCh1YiwzKSwiKSA9IiwNCiAgIHNpZ25pZihhcmVhLCBkaWdpdHM9MykpDQptdGV4dChyZXN1bHQsMykNCmF4aXMoMSwgYXQ9c2VxKDQwLCAxNjAsIDIwKSwgcG9zPTApDQoNCmFibGluZSh2PXQsIGNvbD0gInJlZCIgKQ0KYGBgICANCg0KDQojIyMjIFBydWViYSBkZSBkb3MgY29sYXMgIChgUGA9MC4wNSkNCg0KYGBge3IgZWNobz1GQUxTRX0NCnk9IGEkZXN0YXQNCng9IGEkc2V4bw0KIw0KbjE9IGxlbmd0aChhJGVzdGF0W2Ekc2V4bz09ImYiXSkNCm4yPSBsZW5ndGgoYSRlc3RhdFthJHNleG89PSJtIl0pDQpgYGAgIA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0KdC50ZXN0KHl+eCwgYWx0ZXJuYXRpdmU9InR3by5zaWRlZCIpJHAudmFsdWUNCmBgYCAgDQoNCg0KYGBge3IgZWNobz1GQUxTRX0NCmdsPSAobjEtMSkgKyAobjItMSkNCm1lYW49MDsgc2Q9MQ0KcDE9IDAuMDI1DQpwMj0gMC45NzUNCiMjIw0KbGI9IHF0KHA9cDEsIGRmPWdsICk7IHViPSBxdChwPSBwMiwgZGY9Z2wgKSANCiMjIw0KDQp4IDwtIHNlcSgtNSw1LGxlbmd0aD0xMDApDQpoeCA8LSBkdCh4LCBkZj1nbCkNCg0KcGxvdCh4LCBoeCwgdHlwZT0gImwiLCB4bGFiPSJ0IHZhbHVlcyIsIHlsYWI9ImRlbnNpdHkiLA0KICBtYWluPSwgYXhlcz0gVFJVRSkNCg0KaSA8LSB4ID49IGxiICYgeCA8PSB1Yg0KYWJsaW5lKGg9MCkNCmxpbmVzKHgsIGh4KQ0KDQpwb2x5Z29uKGMobGIseFtpXSx1YiksIGMoMCxoeFtpXSwwKSwgY29sPSJncmF5IikNCg0KYXJlYSA8LSBwdCh1YiwgZGY9Z2wpIC0gcHQobGIsIGRmPWdsKQ0KcmVzdWx0IDwtIHBhc3RlKCJQKCIscm91bmQobGIsMyksIjwgSVEgPCIscm91bmQodWIsMyksIikgPSIsDQogICBzaWduaWYoYXJlYSwgZGlnaXRzPTMpKQ0KbXRleHQocmVzdWx0LDMpDQpheGlzKDEsIGF0PXNlcSg0MCwgMTYwLCAyMCksIHBvcz0wKQ0KDQphYmxpbmUodj10LCBjb2w9ICJyZWQiICkNCmFibGluZSh2PXQqLTEsIGNvbD0gInJlZCIgKQ0KYGBgICANCg==