library(openintro)
download.file("http://www.openintro.org/stat/data/evals.RData", destfile = "evals.RData")
load("evals.RData")

Exercise 1

Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

This is an observational study so the research question cannot be answered as it requires direct links between beauty and course evaluations. A different question could be: Are teachers who scored higher on course evaluations more likely to be more beautiful?

Exercise 2

Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?

hist(evals$score)

This distribution is left scored so students tended to give higher scores. This would make sense for a professor that students tended to like more, but it is not what the average expectation would be.

Exercise 3

Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).

plot(evals$bty_avg ~ evals$age)

Doesn’t appear to be a correlation.

plot(evals$score ~ evals$bty_avg)

Exercise 4

Replot the scatterplot, but this time use the function jitter() on the y- or the x-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?

plot(jitter(evals$score) ~ jitter(evals$bty_avg))

Exercise 5

Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

m_bty = lm(evals$score ~ evals$bty_avg)
plot(jitter(evals$score) ~ jitter(evals$bty_avg))
abline(m_bty)

Beauty does appear to be a pretty significant indicator as there is a positive linear relationship.

Exercise 6

Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

plot(x=m_bty$residuals, y=evals$bty_avg)
abline(h = 0, lty = 3)

plot(evals$bty_avg ~ evals$bty_f1lower)

cor(evals$bty_avg, evals$bty_f1lower)
## [1] 0.8439112
plot(evals[,13:19])

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Exercise 7

P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

The conditions are reasonable.

Exercise 8

Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Our R-squared value is low (0.05912) so there it is possible that beauty average is still a predictor.

multiLines(m_bty_gen)

Exercise 9

What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?

score-hat = b0-hat+ b1-hat(bty_avg)+ b2-hat(1) = b0-hat+ b1-hat(bty_avg)+ b2-hat

Male professors have a higher beauty rating.

Exercise 10

Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

m_bty_rank = lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

We get another line of data to account for the additional variable.

Exercise 11

Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

Number of credits in the class, professors likely teach multiple classes to the number of credits in one class doesn’t indicate much about their beauty.

m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

Exercise 12

Check your suspicions from the previous exercise. Include the model output in your response.

My value was actually very small which is surprising. The largest p-value was 0.77806 with the number of sections being taught by teachers. This does make sense since this doesn’t have an impact on the professor itself.

Exercise 13

Interpret the coefficient associated with the ethnicity variable.

The coefficient we get is 0.1234929, so the professor being a non-minority increases beauty by 0.1234929 when everything else remains the same.

Exercise 14

Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

minus_credits = lm(score ~ rank + gender + language + age + cls_perc_eval + 
               cls_students + cls_level + cls_profs + ethnicity + bty_avg + pic_outfit + 
               pic_color, data = evals)
summary(minus_credits)
## 
## Call:
## lm(formula = score ~ rank + gender + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_profs + ethnicity + bty_avg + 
##     pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7498 -0.3200  0.1056  0.3679  0.9200 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.3098194  0.2918733  14.766  < 2e-16 ***
## ranktenure track      -0.1957586  0.0829015  -2.361 0.018635 *  
## ranktenured           -0.1809000  0.0647027  -2.796 0.005398 ** 
## gendermale             0.2366593  0.0524895   4.509 8.33e-06 ***
## languagenon-english   -0.2589399  0.1133484  -2.284 0.022810 *  
## age                   -0.0090463  0.0031973  -2.829 0.004873 ** 
## cls_perc_eval          0.0059006  0.0015636   3.774 0.000182 ***
## cls_students           0.0002954  0.0003829   0.771 0.440863    
## cls_levelupper        -0.0065495  0.0565243  -0.116 0.907807    
## cls_profssingle       -0.0427280  0.0525927  -0.812 0.416974    
## ethnicitynot minority  0.0429967  0.0778938   0.552 0.581229    
## bty_avg                0.0315543  0.0177371   1.779 0.075917 .  
## pic_outfitnot formal  -0.1362125  0.0751223  -1.813 0.070467 .  
## pic_colorcolor        -0.2091633  0.0728769  -2.870 0.004297 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5077 on 449 degrees of freedom
## Multiple R-squared:  0.1531, Adjusted R-squared:  0.1286 
## F-statistic: 6.243 on 13 and 449 DF,  p-value: 7.671e-11

The R-squared is lower and the other variables changed (not neccessarily in any direction)

Exercise 15

Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

backwards = lm(score ~ ethnicity + gender + language + age + cls_perc_eval + cls_credits + bty_avg + pic_color, data = evals)
summary(backwards)
## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.85320 -0.32394  0.09984  0.37930  0.93610 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.771922   0.232053  16.255  < 2e-16 ***
## ethnicitynot minority  0.167872   0.075275   2.230  0.02623 *  
## gendermale             0.207112   0.050135   4.131 4.30e-05 ***
## languagenon-english   -0.206178   0.103639  -1.989  0.04726 *  
## age                   -0.006046   0.002612  -2.315  0.02108 *  
## cls_perc_eval          0.004656   0.001435   3.244  0.00127 ** 
## cls_creditsone credit  0.505306   0.104119   4.853 1.67e-06 ***
## bty_avg                0.051069   0.016934   3.016  0.00271 ** 
## pic_colorcolor        -0.190579   0.067351  -2.830  0.00487 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared:  0.1722, Adjusted R-squared:  0.1576 
## F-statistic:  11.8 on 8 and 454 DF,  p-value: 2.58e-15

score-hat = b0-hat+ b1-hat(ethnicty)+ b2-hat(gender)+ b3-hat(language)+ b4-hat(age)+ b5-hat(cls_perc_eval)+ b6-hat(cls_credits)+ b7-hat(bty_avg)+ b8-hat(pic_color)

Exercise 16

Verify that the conditions for this model are reasonable using diagnostic plots.

qqnorm(backwards$residuals)
qqline(backwards$residuals)

plot(backwards$residuals)
abline(h = 0, lty = 3)

Exercise 17

The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

It could have an impact on the conditions since there are more students who could have possibly taken multiple classes with the same professor and scored them multiple times.

Exercise 18

Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

The highest evaluation score will be received by a professor that is male, not a minority, received an education from an english school, teaches a one-credit course, uses a photo that has color, with a relatively young age, a high average beauty score and a high percentage of students within the course that complete the evaluations.

Exercise 19

Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

While there is no reason to not generalize these findings, since it is only one university I would not say I feel comfortable applying these findings to every university. If at least 5 or so universities were included then we may be able to make a generalization. …

LS0tCnRpdGxlOiAiTXVsdGlwbGUgTGluZWFyIFJlZ3Jlc3Npb24iCmF1dGhvcjogIktpcnN0ZW4gR29sZG5lciIKb3V0cHV0OiBvcGVuaW50cm86OmxhYl9yZXBvcnQKLS0tCgpgYGB7ciBsb2FkLXBhY2thZ2VzLCBtZXNzYWdlPUZBTFNFfQpsaWJyYXJ5KG9wZW5pbnRybykKZG93bmxvYWQuZmlsZSgiaHR0cDovL3d3dy5vcGVuaW50cm8ub3JnL3N0YXQvZGF0YS9ldmFscy5SRGF0YSIsIGRlc3RmaWxlID0gImV2YWxzLlJEYXRhIikKbG9hZCgiZXZhbHMuUkRhdGEiKQpgYGAKCiMjIyBFeGVyY2lzZSAxCgpJcyB0aGlzIGFuIG9ic2VydmF0aW9uYWwgc3R1ZHkgb3IgYW4gZXhwZXJpbWVudD8gVGhlIG9yaWdpbmFsIHJlc2VhcmNoIHF1ZXN0aW9uIHBvc2VkIGluIHRoZSBwYXBlciBpcyB3aGV0aGVyIGJlYXV0eSBsZWFkcyBkaXJlY3RseSB0byB0aGUgZGlmZmVyZW5jZXMgaW4gY291cnNlIGV2YWx1YXRpb25zLiBHaXZlbiB0aGUgc3R1ZHkgZGVzaWduLCBpcyBpdCBwb3NzaWJsZSB0byBhbnN3ZXIgdGhpcyBxdWVzdGlvbiBhcyBpdCBpcyBwaHJhc2VkPyBJZiBub3QsIHJlcGhyYXNlIHRoZSBxdWVzdGlvbi4KClRoaXMgaXMgYW4gb2JzZXJ2YXRpb25hbCBzdHVkeSBzbyB0aGUgcmVzZWFyY2ggcXVlc3Rpb24gY2Fubm90IGJlIGFuc3dlcmVkIGFzIGl0IHJlcXVpcmVzIGRpcmVjdCBsaW5rcyBiZXR3ZWVuIGJlYXV0eSBhbmQgY291cnNlIGV2YWx1YXRpb25zLiBBIGRpZmZlcmVudCBxdWVzdGlvbiBjb3VsZCBiZTogQXJlIHRlYWNoZXJzIHdobyBzY29yZWQgaGlnaGVyIG9uIGNvdXJzZSBldmFsdWF0aW9ucyBtb3JlIGxpa2VseSB0byBiZSBtb3JlIGJlYXV0aWZ1bD8gCgojIyMgRXhlcmNpc2UgMgoKRGVzY3JpYmUgdGhlIGRpc3RyaWJ1dGlvbiBvZiBzY29yZS4gSXMgdGhlIGRpc3RyaWJ1dGlvbiBza2V3ZWQ/IFdoYXQgZG9lcyB0aGF0IHRlbGwgeW91IGFib3V0IGhvdyBzdHVkZW50cyByYXRlIGNvdXJzZXM/IElzIHRoaXMgd2hhdCB5b3UgZXhwZWN0ZWQgdG8gc2VlPyBXaHksIG9yIHdoeSBub3Q/CgpgYGB7cn0KaGlzdChldmFscyRzY29yZSkKYGBgCgpUaGlzIGRpc3RyaWJ1dGlvbiBpcyBsZWZ0IHNjb3JlZCBzbyBzdHVkZW50cyB0ZW5kZWQgdG8gZ2l2ZSBoaWdoZXIgc2NvcmVzLiBUaGlzIHdvdWxkIG1ha2Ugc2Vuc2UgZm9yIGEgcHJvZmVzc29yIHRoYXQgc3R1ZGVudHMgdGVuZGVkIHRvIGxpa2UgbW9yZSwgYnV0IGl0IGlzIG5vdCB3aGF0IHRoZSBhdmVyYWdlIGV4cGVjdGF0aW9uIHdvdWxkIGJlLiAKCgojIyMgRXhlcmNpc2UgMwoKRXhjbHVkaW5nIHNjb3JlLCBzZWxlY3QgdHdvIG90aGVyIHZhcmlhYmxlcyBhbmQgZGVzY3JpYmUgdGhlaXIgcmVsYXRpb25zaGlwIHVzaW5nIGFuIGFwcHJvcHJpYXRlIHZpc3VhbGl6YXRpb24gKHNjYXR0ZXJwbG90LCBzaWRlLWJ5LXNpZGUgYm94cGxvdHMsIG9yIG1vc2FpYyBwbG90KS4KCgpgYGB7cn0KcGxvdChldmFscyRidHlfYXZnIH4gZXZhbHMkYWdlKQpgYGAKRG9lc24ndCBhcHBlYXIgdG8gYmUgYSBjb3JyZWxhdGlvbi4gCgpgYGB7cn0KcGxvdChldmFscyRzY29yZSB+IGV2YWxzJGJ0eV9hdmcpCmBgYAoKIyMjIEV4ZXJjaXNlIDQKClJlcGxvdCB0aGUgc2NhdHRlcnBsb3QsIGJ1dCB0aGlzIHRpbWUgdXNlIHRoZSBmdW5jdGlvbiBqaXR0ZXIoKSBvbiB0aGUgeS0gb3IgdGhlIHgtY29vcmRpbmF0ZS4gKFVzZSA/aml0dGVyIHRvIGxlYXJuIG1vcmUuKSBXaGF0IHdhcyBtaXNsZWFkaW5nIGFib3V0IHRoZSBpbml0aWFsIHNjYXR0ZXJwbG90PwoKYGBge3J9CnBsb3Qoaml0dGVyKGV2YWxzJHNjb3JlKSB+IGppdHRlcihldmFscyRidHlfYXZnKSkKYGBgCgojIyMgRXhlcmNpc2UgNQoKTGV04oCZcyBzZWUgaWYgdGhlIGFwcGFyZW50IHRyZW5kIGluIHRoZSBwbG90IGlzIHNvbWV0aGluZyBtb3JlIHRoYW4gbmF0dXJhbCB2YXJpYXRpb24uIEZpdCBhIGxpbmVhciBtb2RlbCBjYWxsZWQgbV9idHkgdG8gcHJlZGljdCBhdmVyYWdlIHByb2Zlc3NvciBzY29yZSBieSBhdmVyYWdlIGJlYXV0eSByYXRpbmcgYW5kIGFkZCB0aGUgbGluZSB0byB5b3VyIHBsb3QgdXNpbmcgYWJsaW5lKG1fYnR5KS4gV3JpdGUgb3V0IHRoZSBlcXVhdGlvbiBmb3IgdGhlIGxpbmVhciBtb2RlbCBhbmQgaW50ZXJwcmV0IHRoZSBzbG9wZS4gSXMgYXZlcmFnZSBiZWF1dHkgc2NvcmUgYSBzdGF0aXN0aWNhbGx5IHNpZ25pZmljYW50IHByZWRpY3Rvcj8gRG9lcyBpdCBhcHBlYXIgdG8gYmUgYSBwcmFjdGljYWxseSBzaWduaWZpY2FudCBwcmVkaWN0b3I/CgpgYGB7cn0KbV9idHkgPSBsbShldmFscyRzY29yZSB+IGV2YWxzJGJ0eV9hdmcpCnBsb3Qoaml0dGVyKGV2YWxzJHNjb3JlKSB+IGppdHRlcihldmFscyRidHlfYXZnKSkKYWJsaW5lKG1fYnR5KQpgYGAKCkJlYXV0eSBkb2VzIGFwcGVhciB0byBiZSBhIHByZXR0eSBzaWduaWZpY2FudCBpbmRpY2F0b3IgYXMgdGhlcmUgaXMgYSBwb3NpdGl2ZSBsaW5lYXIgcmVsYXRpb25zaGlwLiAKCiMjIyBFeGVyY2lzZSA2CgpVc2UgcmVzaWR1YWwgcGxvdHMgdG8gZXZhbHVhdGUgd2hldGhlciB0aGUgY29uZGl0aW9ucyBvZiBsZWFzdCBzcXVhcmVzIHJlZ3Jlc3Npb24gYXJlIHJlYXNvbmFibGUuIFByb3ZpZGUgcGxvdHMgYW5kIGNvbW1lbnRzIGZvciBlYWNoIG9uZSAoc2VlIHRoZSBTaW1wbGUgUmVncmVzc2lvbiBMYWIgZm9yIGEgcmVtaW5kZXIgb2YgaG93IHRvIG1ha2UgdGhlc2UpLgoKYGBge3J9CnBsb3QoeD1tX2J0eSRyZXNpZHVhbHMsIHk9ZXZhbHMkYnR5X2F2ZykKYWJsaW5lKGggPSAwLCBsdHkgPSAzKQpgYGAKCmBgYHtyfQpwbG90KGV2YWxzJGJ0eV9hdmcgfiBldmFscyRidHlfZjFsb3dlcikKY29yKGV2YWxzJGJ0eV9hdmcsIGV2YWxzJGJ0eV9mMWxvd2VyKQpwbG90KGV2YWxzWywxMzoxOV0pCm1fYnR5X2dlbiA8LSBsbShzY29yZSB+IGJ0eV9hdmcgKyBnZW5kZXIsIGRhdGEgPSBldmFscykKc3VtbWFyeShtX2J0eV9nZW4pCmBgYAoKIyMjIEV4ZXJjaXNlIDcKClAtdmFsdWVzIGFuZCBwYXJhbWV0ZXIgZXN0aW1hdGVzIHNob3VsZCBvbmx5IGJlIHRydXN0ZWQgaWYgdGhlIGNvbmRpdGlvbnMgZm9yIHRoZSByZWdyZXNzaW9uIGFyZSByZWFzb25hYmxlLiBWZXJpZnkgdGhhdCB0aGUgY29uZGl0aW9ucyBmb3IgdGhpcyBtb2RlbCBhcmUgcmVhc29uYWJsZSB1c2luZyBkaWFnbm9zdGljIHBsb3RzLgoKVGhlIGNvbmRpdGlvbnMgYXJlIHJlYXNvbmFibGUuIAoKIyMjIEV4ZXJjaXNlIDgKCklzIGJ0eV9hdmcgc3RpbGwgYSBzaWduaWZpY2FudCBwcmVkaWN0b3Igb2Ygc2NvcmU/IEhhcyB0aGUgYWRkaXRpb24gb2YgZ2VuZGVyIHRvIHRoZSBtb2RlbCBjaGFuZ2VkIHRoZSBwYXJhbWV0ZXIgZXN0aW1hdGUgZm9yIGJ0eV9hdmc/CgpgYGB7cn0Kc3VtbWFyeShtX2J0eV9nZW4pCmBgYAoKT3VyIFItc3F1YXJlZCB2YWx1ZSBpcyBsb3cgKDAuMDU5MTIpIHNvIHRoZXJlIGl0IGlzIHBvc3NpYmxlIHRoYXQgYmVhdXR5IGF2ZXJhZ2UgaXMgc3RpbGwgYSBwcmVkaWN0b3IuIAoKCmBgYHtyfQptdWx0aUxpbmVzKG1fYnR5X2dlbikKYGBgCgojIyMgRXhlcmNpc2UgOSAKCldoYXQgaXMgdGhlIGVxdWF0aW9uIG9mIHRoZSBsaW5lIGNvcnJlc3BvbmRpbmcgdG8gbWFsZXM/IChIaW50OiBGb3IgbWFsZXMsIHRoZSBwYXJhbWV0ZXIgZXN0aW1hdGUgaXMgbXVsdGlwbGllZCBieSAxLikgRm9yIHR3byBwcm9mZXNzb3JzIHdobyByZWNlaXZlZCB0aGUgc2FtZSBiZWF1dHkgcmF0aW5nLCB3aGljaCBnZW5kZXIgdGVuZHMgdG8gaGF2ZSB0aGUgaGlnaGVyIGNvdXJzZSBldmFsdWF0aW9uIHNjb3JlPwoKc2NvcmUtaGF0ID0gYjAtaGF0KyBiMS1oYXQoYnR5X2F2ZykrIGIyLWhhdCgxKSA9IGIwLWhhdCsgYjEtaGF0KGJ0eV9hdmcpKyBiMi1oYXQKCk1hbGUgcHJvZmVzc29ycyBoYXZlIGEgaGlnaGVyIGJlYXV0eSByYXRpbmcuIAoKIyMjIEV4ZXJjaXNlIDEwCgpDcmVhdGUgYSBuZXcgbW9kZWwgY2FsbGVkIG1fYnR5X3Jhbmsgd2l0aCBnZW5kZXIgcmVtb3ZlZCBhbmQgcmFuayBhZGRlZCBpbi4gSG93IGRvZXMgUiBhcHBlYXIgdG8gaGFuZGxlIGNhdGVnb3JpY2FsIHZhcmlhYmxlcyB0aGF0IGhhdmUgbW9yZSB0aGFuIHR3byBsZXZlbHM/IE5vdGUgdGhhdCB0aGUgcmFuayB2YXJpYWJsZSBoYXMgdGhyZWUgbGV2ZWxzOiB0ZWFjaGluZywgdGVudXJlIHRyYWNrLCB0ZW51cmVkLgoKYGBge3J9Cm1fYnR5X3JhbmsgPSBsbShzY29yZSB+IGJ0eV9hdmcgKyByYW5rLCBkYXRhID0gZXZhbHMpCnN1bW1hcnkobV9idHlfcmFuaykKYGBgCgpXZSBnZXQgYW5vdGhlciBsaW5lIG9mIGRhdGEgdG8gYWNjb3VudCBmb3IgdGhlIGFkZGl0aW9uYWwgdmFyaWFibGUuIAoKCiMjIyBFeGVyY2lzZSAxMQoKV2hpY2ggdmFyaWFibGUgd291bGQgeW91IGV4cGVjdCB0byBoYXZlIHRoZSBoaWdoZXN0IHAtdmFsdWUgaW4gdGhpcyBtb2RlbD8gV2h5PyBIaW50OiBUaGluayBhYm91dCB3aGljaCB2YXJpYWJsZSB3b3VsZCB5b3UgZXhwZWN0IHRvIG5vdCBoYXZlIGFueSBhc3NvY2lhdGlvbiB3aXRoIHRoZSBwcm9mZXNzb3Igc2NvcmUuCgpOdW1iZXIgb2YgY3JlZGl0cyBpbiB0aGUgY2xhc3MsIHByb2Zlc3NvcnMgbGlrZWx5IHRlYWNoIG11bHRpcGxlIGNsYXNzZXMgdG8gdGhlIG51bWJlciBvZiBjcmVkaXRzIGluIG9uZSBjbGFzcyBkb2Vzbid0IGluZGljYXRlIG11Y2ggYWJvdXQgdGhlaXIgYmVhdXR5LiAKCmBgYHtyfQptX2Z1bGwgPC0gbG0oc2NvcmUgfiByYW5rICsgZXRobmljaXR5ICsgZ2VuZGVyICsgbGFuZ3VhZ2UgKyBhZ2UgKyBjbHNfcGVyY19ldmFsIAogICAgICAgICAgICAgKyBjbHNfc3R1ZGVudHMgKyBjbHNfbGV2ZWwgKyBjbHNfcHJvZnMgKyBjbHNfY3JlZGl0cyArIGJ0eV9hdmcgCiAgICAgICAgICAgICArIHBpY19vdXRmaXQgKyBwaWNfY29sb3IsIGRhdGEgPSBldmFscykKc3VtbWFyeShtX2Z1bGwpCmBgYAoKCiMjIyBFeGVyY2lzZSAxMgoKQ2hlY2sgeW91ciBzdXNwaWNpb25zIGZyb20gdGhlIHByZXZpb3VzIGV4ZXJjaXNlLiBJbmNsdWRlIHRoZSBtb2RlbCBvdXRwdXQgaW4geW91ciByZXNwb25zZS4KCk15IHZhbHVlIHdhcyBhY3R1YWxseSB2ZXJ5IHNtYWxsIHdoaWNoIGlzIHN1cnByaXNpbmcuIFRoZSBsYXJnZXN0IHAtdmFsdWUgd2FzIDAuNzc4MDYgd2l0aCB0aGUgbnVtYmVyIG9mIHNlY3Rpb25zIGJlaW5nIHRhdWdodCBieSB0ZWFjaGVycy4gVGhpcyBkb2VzIG1ha2Ugc2Vuc2Ugc2luY2UgdGhpcyBkb2Vzbid0IGhhdmUgYW4gaW1wYWN0IG9uIHRoZSBwcm9mZXNzb3IgaXRzZWxmLiAKCgojIyMgRXhlcmNpc2UgMTMKCkludGVycHJldCB0aGUgY29lZmZpY2llbnQgYXNzb2NpYXRlZCB3aXRoIHRoZSBldGhuaWNpdHkgdmFyaWFibGUuCgpUaGUgY29lZmZpY2llbnQgd2UgZ2V0IGlzIDAuMTIzNDkyOSwgc28gdGhlIHByb2Zlc3NvciBiZWluZyBhIG5vbi1taW5vcml0eSBpbmNyZWFzZXMgYmVhdXR5IGJ5IDAuMTIzNDkyOSB3aGVuIGV2ZXJ5dGhpbmcgZWxzZSByZW1haW5zIHRoZSBzYW1lLiAKCiMjIyBFeGVyY2lzZSAxNAoKRHJvcCB0aGUgdmFyaWFibGUgd2l0aCB0aGUgaGlnaGVzdCBwLXZhbHVlIGFuZCByZS1maXQgdGhlIG1vZGVsLiBEaWQgdGhlIGNvZWZmaWNpZW50cyBhbmQgc2lnbmlmaWNhbmNlIG9mIHRoZSBvdGhlciBleHBsYW5hdG9yeSB2YXJpYWJsZXMgY2hhbmdlPyAoT25lIG9mIHRoZSB0aGluZ3MgdGhhdCBtYWtlcyBtdWx0aXBsZSByZWdyZXNzaW9uIGludGVyZXN0aW5nIGlzIHRoYXQgY29lZmZpY2llbnQgZXN0aW1hdGVzIGRlcGVuZCBvbiB0aGUgb3RoZXIgdmFyaWFibGVzIHRoYXQgYXJlIGluY2x1ZGVkIGluIHRoZSBtb2RlbC4pIElmIG5vdCwgd2hhdCBkb2VzIHRoaXMgc2F5IGFib3V0IHdoZXRoZXIgb3Igbm90IHRoZSBkcm9wcGVkIHZhcmlhYmxlIHdhcyBjb2xsaW5lYXIgd2l0aCB0aGUgb3RoZXIgZXhwbGFuYXRvcnkgdmFyaWFibGVzPwoKYGBge3J9Cm1pbnVzX2NyZWRpdHMgPSBsbShzY29yZSB+IHJhbmsgKyBnZW5kZXIgKyBsYW5ndWFnZSArIGFnZSArIGNsc19wZXJjX2V2YWwgKyAKICAgICAgICAgICAgICAgY2xzX3N0dWRlbnRzICsgY2xzX2xldmVsICsgY2xzX3Byb2ZzICsgZXRobmljaXR5ICsgYnR5X2F2ZyArIHBpY19vdXRmaXQgKyAKICAgICAgICAgICAgICAgcGljX2NvbG9yLCBkYXRhID0gZXZhbHMpCnN1bW1hcnkobWludXNfY3JlZGl0cykKYGBgCgpUaGUgUi1zcXVhcmVkIGlzIGxvd2VyIGFuZCB0aGUgb3RoZXIgdmFyaWFibGVzIGNoYW5nZWQgKG5vdCBuZWNjZXNzYXJpbHkgaW4gYW55IGRpcmVjdGlvbikKCiMjIyBFeGVyY2lzZSAxNQoKVXNpbmcgYmFja3dhcmQtc2VsZWN0aW9uIGFuZCBwLXZhbHVlIGFzIHRoZSBzZWxlY3Rpb24gY3JpdGVyaW9uLCBkZXRlcm1pbmUgdGhlIGJlc3QgbW9kZWwuIFlvdSBkbyBub3QgbmVlZCB0byBzaG93IGFsbCBzdGVwcyBpbiB5b3VyIGFuc3dlciwganVzdCB0aGUgb3V0cHV0IGZvciB0aGUgZmluYWwgbW9kZWwuIEFsc28sIHdyaXRlIG91dCB0aGUgbGluZWFyIG1vZGVsIGZvciBwcmVkaWN0aW5nIHNjb3JlIGJhc2VkIG9uIHRoZSBmaW5hbCBtb2RlbCB5b3Ugc2V0dGxlIG9uLgoKYGBge3J9CmJhY2t3YXJkcyA9IGxtKHNjb3JlIH4gZXRobmljaXR5ICsgZ2VuZGVyICsgbGFuZ3VhZ2UgKyBhZ2UgKyBjbHNfcGVyY19ldmFsICsgY2xzX2NyZWRpdHMgKyBidHlfYXZnICsgcGljX2NvbG9yLCBkYXRhID0gZXZhbHMpCnN1bW1hcnkoYmFja3dhcmRzKQpgYGAKCnNjb3JlLWhhdCA9IGIwLWhhdCsgYjEtaGF0KGV0aG5pY3R5KSsgYjItaGF0KGdlbmRlcikrIGIzLWhhdChsYW5ndWFnZSkrIGI0LWhhdChhZ2UpKyBiNS1oYXQoY2xzX3BlcmNfZXZhbCkrIGI2LWhhdChjbHNfY3JlZGl0cykrIGI3LWhhdChidHlfYXZnKSsgYjgtaGF0KHBpY19jb2xvcikKCgojIyMgRXhlcmNpc2UgMTYKClZlcmlmeSB0aGF0IHRoZSBjb25kaXRpb25zIGZvciB0aGlzIG1vZGVsIGFyZSByZWFzb25hYmxlIHVzaW5nIGRpYWdub3N0aWMgcGxvdHMuCgpgYGB7cn0KcXFub3JtKGJhY2t3YXJkcyRyZXNpZHVhbHMpCnFxbGluZShiYWNrd2FyZHMkcmVzaWR1YWxzKQpwbG90KGJhY2t3YXJkcyRyZXNpZHVhbHMpCmFibGluZShoID0gMCwgbHR5ID0gMykKYGBgCgojIyMgRXhlcmNpc2UgMTcgCgpUaGUgb3JpZ2luYWwgcGFwZXIgZGVzY3JpYmVzIGhvdyB0aGVzZSBkYXRhIHdlcmUgZ2F0aGVyZWQgYnkgdGFraW5nIGEgc2FtcGxlIG9mIHByb2Zlc3NvcnMgZnJvbSB0aGUgVW5pdmVyc2l0eSBvZiBUZXhhcyBhdCBBdXN0aW4gYW5kIGluY2x1ZGluZyBhbGwgY291cnNlcyB0aGF0IHRoZXkgaGF2ZSB0YXVnaHQuIENvbnNpZGVyaW5nIHRoYXQgZWFjaCByb3cgcmVwcmVzZW50cyBhIGNvdXJzZSwgY291bGQgdGhpcyBuZXcgaW5mb3JtYXRpb24gaGF2ZSBhbiBpbXBhY3Qgb24gYW55IG9mIHRoZSBjb25kaXRpb25zIG9mIGxpbmVhciByZWdyZXNzaW9uPwoKSXQgY291bGQgaGF2ZSBhbiBpbXBhY3Qgb24gdGhlIGNvbmRpdGlvbnMgc2luY2UgdGhlcmUgYXJlIG1vcmUgc3R1ZGVudHMgd2hvIGNvdWxkIGhhdmUgcG9zc2libHkgdGFrZW4gbXVsdGlwbGUgY2xhc3NlcyB3aXRoIHRoZSBzYW1lIHByb2Zlc3NvciBhbmQgc2NvcmVkIHRoZW0gbXVsdGlwbGUgdGltZXMuIAoKIyMjIEV4ZXJjaXNlIDE4CgpCYXNlZCBvbiB5b3VyIGZpbmFsIG1vZGVsLCBkZXNjcmliZSB0aGUgY2hhcmFjdGVyaXN0aWNzIG9mIGEgcHJvZmVzc29yIGFuZCBjb3Vyc2UgYXQgVW5pdmVyc2l0eSBvZiBUZXhhcyBhdCBBdXN0aW4gdGhhdCB3b3VsZCBiZSBhc3NvY2lhdGVkIHdpdGggYSBoaWdoIGV2YWx1YXRpb24gc2NvcmUuCgpUaGUgaGlnaGVzdCBldmFsdWF0aW9uIHNjb3JlIHdpbGwgYmUgcmVjZWl2ZWQgYnkgYSBwcm9mZXNzb3IgdGhhdCBpcyBtYWxlLCBub3QgYSBtaW5vcml0eSwgcmVjZWl2ZWQgYW4gZWR1Y2F0aW9uIGZyb20gYW4gZW5nbGlzaCBzY2hvb2wsIHRlYWNoZXMgYSBvbmUtY3JlZGl0IGNvdXJzZSwgdXNlcyBhIHBob3RvIHRoYXQgaGFzIGNvbG9yLCB3aXRoIGEgcmVsYXRpdmVseSB5b3VuZyBhZ2UsIGEgaGlnaCBhdmVyYWdlIGJlYXV0eSBzY29yZSBhbmQgYSBoaWdoIHBlcmNlbnRhZ2Ugb2Ygc3R1ZGVudHMgd2l0aGluIHRoZSBjb3Vyc2UgdGhhdCBjb21wbGV0ZSB0aGUgZXZhbHVhdGlvbnMuCgojIyMgRXhlcmNpc2UgMTkKCldvdWxkIHlvdSBiZSBjb21mb3J0YWJsZSBnZW5lcmFsaXppbmcgeW91ciBjb25jbHVzaW9ucyB0byBhcHBseSB0byBwcm9mZXNzb3JzIGdlbmVyYWxseSAoYXQgYW55IHVuaXZlcnNpdHkpPyBXaHkgb3Igd2h5IG5vdD8KCldoaWxlIHRoZXJlIGlzIG5vIHJlYXNvbiB0byBub3QgZ2VuZXJhbGl6ZSB0aGVzZSBmaW5kaW5ncywgc2luY2UgaXQgaXMgb25seSBvbmUgdW5pdmVyc2l0eSBJIHdvdWxkIG5vdCBzYXkgSSBmZWVsIGNvbWZvcnRhYmxlIGFwcGx5aW5nIHRoZXNlIGZpbmRpbmdzIHRvIGV2ZXJ5IHVuaXZlcnNpdHkuIElmIGF0IGxlYXN0IDUgb3Igc28gdW5pdmVyc2l0aWVzIHdlcmUgaW5jbHVkZWQgdGhlbiB3ZSBtYXkgYmUgYWJsZSB0byBtYWtlIGEgZ2VuZXJhbGl6YXRpb24uIAouLi4KCg==