This project aims to give a short tutorial on the stargazer package and to provide a basic understanding on how to create regression tables.
stargazer
package?.txt
, LaTex code
, and as .html
. Using the output table as text (.txt) gives a quick view of results. -Printing the output table as .html, produces tables in Word document.stargazer
package?The first step is to install the “stargazer” package in R, and load it.
#Installing the "stargazer" package
#install.packages( "stargazer")
#Load the package by calling the library
library(stargazer)
## Warning: package 'stargazer' was built under R version 4.0.3
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(mtcars, type = "html")
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
mpg | 32 | 20.091 | 6.027 | 10 | 15.4 | 22.8 | 34 |
cyl | 32 | 6.188 | 1.786 | 4 | 4 | 8 | 8 |
disp | 32 | 230.722 | 123.939 | 71 | 120.8 | 326 | 472 |
hp | 32 | 146.688 | 68.563 | 52 | 96.5 | 180 | 335 |
drat | 32 | 3.597 | 0.535 | 2.760 | 3.080 | 3.920 | 4.930 |
wt | 32 | 3.217 | 0.978 | 1.513 | 2.581 | 3.610 | 5.424 |
qsec | 32 | 17.849 | 1.787 | 14.500 | 16.892 | 18.900 | 22.900 |
vs | 32 | 0.438 | 0.504 | 0 | 0 | 1 | 1 |
am | 32 | 0.406 | 0.499 | 0 | 0 | 1 | 1 |
gear | 32 | 3.688 | 0.738 | 3 | 3 | 4 | 5 |
carb | 32 | 2.812 | 1.615 | 1 | 2 | 4 | 8 |
The mtcars
data set will be used for demonstration.
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
dat1 <- mtcars
The syntax for stargazer has four main arguments.
stargazer(dat1, type= "html", title= "Summary Statistics", out= "dat1.text")
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
mpg | 32 | 20.091 | 6.027 | 10 | 15.4 | 22.8 | 34 |
cyl | 32 | 6.188 | 1.786 | 4 | 4 | 8 | 8 |
disp | 32 | 230.722 | 123.939 | 71 | 120.8 | 326 | 472 |
hp | 32 | 146.688 | 68.563 | 52 | 96.5 | 180 | 335 |
drat | 32 | 3.597 | 0.535 | 2.760 | 3.080 | 3.920 | 4.930 |
wt | 32 | 3.217 | 0.978 | 1.513 | 2.581 | 3.610 | 5.424 |
qsec | 32 | 17.849 | 1.787 | 14.500 | 16.892 | 18.900 | 22.900 |
vs | 32 | 0.438 | 0.504 | 0 | 0 | 1 | 1 |
am | 32 | 0.406 | 0.499 | 0 | 0 | 1 | 1 |
gear | 32 | 3.688 | 0.738 | 3 | 3 | 4 | 5 |
carb | 32 | 2.812 | 1.615 | 1 | 2 | 4 | 8 |
If you only want to select certain variables, then use subset()
to select. Lets choose cars with manual transmission
.
stargazer(dat1[c("mpg","hp","drat")],
title="Cars with Manual Transmission",
type= "html", digits =1, out="dat2.text")
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
mpg | 32 | 20.1 | 6.0 | 10 | 15.4 | 22.8 | 34 |
hp | 32 | 146.7 | 68.6 | 52 | 96.5 | 180 | 335 |
drat | 32 | 3.6 | 0.5 | 2.8 | 3.1 | 3.9 | 4.9 |
The stargazer package has options to customize the appearance of the output which creates neat looking tables. By creating a vector with the covariate.labels
argument will display an output with relabeled variables.
stargazer(dat1[c("mpg", "hp", "drat")], type = "html",
title = "Summary Statistic for Cars with Manual Transmission", out = "dat3.text", digits = 1, covariate.labels = c("Miles per Gallon", "Horsepower", "Rear axle ratio"))
Statistic | N | Mean | St. Dev. | Min | Pctl(25) | Pctl(75) | Max |
Miles per Gallon | 32 | 20.1 | 6.0 | 10 | 15.4 | 22.8 | 34 |
Horsepower | 32 | 146.7 | 68.6 | 52 | 96.5 | 180 | 335 |
Rear axle ratio | 32 | 3.6 | 0.5 | 2.8 | 3.1 | 3.9 | 4.9 |
So far, we have seen that by passing a data frame to stargazer package creates a summary statistic table. This package is also extremely practical when it comes to creating regression models by simply passing a regression object.
m1 <- lm(mpg ~ hp, mtcars)
m2 <- lm(mpg~ drat, mtcars)
m3 <- lm(mpg ~ hp + drat, mtcars)
stargazer(m1, m2, m3,
type = "html",
digits = 1,
header = FALSE,
title= "Regression Results",
covariate.labels = c("Miles per Gallon", "Horsepower", "Rear axle ratio"))
Dependent variable: | |||
mpg | |||
(1) | (2) | (3) | |
Miles per Gallon | -0.1*** | -0.1*** | |
(0.01) | (0.01) | ||
Horsepower | 7.7*** | 4.7*** | |
(1.5) | (1.2) | ||
Rear axle ratio | 30.1*** | -7.5 | 10.8** |
(1.6) | (5.5) | (5.1) | |
Observations | 32 | 32 | 32 |
R2 | 0.6 | 0.5 | 0.7 |
Adjusted R2 | 0.6 | 0.4 | 0.7 |
Residual Std. Error | 3.9 (df = 30) | 4.5 (df = 30) | 3.2 (df = 29) |
F Statistic | 45.5*** (df = 1; 30) | 26.0*** (df = 1; 30) | 41.5*** (df = 2; 29) |
Note: | p<0.1; p<0.05; p<0.01 |
References: