library(ggplot2)
library(knitr)
library(rmdformats)
library(lme4)
## Loading required package: Matrix
ggplot(sleepstudy, aes(x = Days, y = Reaction)) +
  geom_point()+
  geom_smooth(method = "lm")
## `geom_smooth()` using formula 'y ~ x'

ggplot(aes(Days, Reaction), data = sleepstudy) + geom_point() +
  geom_smooth(method = "lm")+
  facet_wrap(~ Subject) +
  xlab("length") + ylab("test score")
## `geom_smooth()` using formula 'y ~ x'

lm1<-lm (Reaction ~ Days * Subject, sleepstudy)
summary(lm1)
## 
## Call:
## lm(formula = Reaction ~ Days * Subject, data = sleepstudy)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -106.397  -10.692   -0.177   11.417  132.510 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      244.193     15.042  16.234  < 2e-16 ***
## Days              21.765      2.818   7.725 1.74e-12 ***
## Subject309       -39.138     21.272  -1.840 0.067848 .  
## Subject310       -40.708     21.272  -1.914 0.057643 .  
## Subject330        45.492     21.272   2.139 0.034156 *  
## Subject331        41.546     21.272   1.953 0.052749 .  
## Subject332        20.059     21.272   0.943 0.347277    
## Subject333        30.826     21.272   1.449 0.149471    
## Subject334        -4.030     21.272  -0.189 0.850016    
## Subject335        18.842     21.272   0.886 0.377224    
## Subject337        45.911     21.272   2.158 0.032563 *  
## Subject349       -29.081     21.272  -1.367 0.173728    
## Subject350       -18.358     21.272  -0.863 0.389568    
## Subject351        16.954     21.272   0.797 0.426751    
## Subject352        32.179     21.272   1.513 0.132535    
## Subject369        10.775     21.272   0.507 0.613243    
## Subject370       -33.744     21.272  -1.586 0.114870    
## Subject371         9.443     21.272   0.444 0.657759    
## Subject372        22.852     21.272   1.074 0.284497    
## Days:Subject309  -19.503      3.985  -4.895 2.61e-06 ***
## Days:Subject310  -15.650      3.985  -3.928 0.000133 ***
## Days:Subject330  -18.757      3.985  -4.707 5.84e-06 ***
## Days:Subject331  -16.499      3.985  -4.141 5.88e-05 ***
## Days:Subject332  -12.198      3.985  -3.061 0.002630 ** 
## Days:Subject333  -12.623      3.985  -3.168 0.001876 ** 
## Days:Subject334   -9.512      3.985  -2.387 0.018282 *  
## Days:Subject335  -24.646      3.985  -6.185 6.07e-09 ***
## Days:Subject337   -2.739      3.985  -0.687 0.492986    
## Days:Subject349   -8.271      3.985  -2.076 0.039704 *  
## Days:Subject350   -2.261      3.985  -0.567 0.571360    
## Days:Subject351  -15.331      3.985  -3.848 0.000179 ***
## Days:Subject352   -8.198      3.985  -2.057 0.041448 *  
## Days:Subject369  -10.417      3.985  -2.614 0.009895 ** 
## Days:Subject370   -3.709      3.985  -0.931 0.353560    
## Days:Subject371  -12.576      3.985  -3.156 0.001947 ** 
## Days:Subject372  -10.467      3.985  -2.627 0.009554 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 25.59 on 144 degrees of freedom
## Multiple R-squared:  0.8339, Adjusted R-squared:  0.7936 
## F-statistic: 20.66 on 35 and 144 DF,  p-value: < 2.2e-16
library(car)
## Loading required package: carData
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
Anova(lm1)
## Anova Table (Type II tests)
## 
## Response: Reaction
##              Sum Sq  Df  F value    Pr(>F)    
## Days         162703   1 248.4234 < 2.2e-16 ***
## Subject      250618  17  22.5093 < 2.2e-16 ***
## Days:Subject  60322  17   5.4178 3.272e-09 ***
## Residuals     94312 144                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
summary(fm1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (Days | Subject)
##    Data: sleepstudy
## 
## REML criterion at convergence: 1743.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9536 -0.4634  0.0231  0.4634  5.1793 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  Subject  (Intercept) 612.10   24.741       
##           Days         35.07    5.922   0.07
##  Residual             654.94   25.592       
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  251.405      6.825  36.838
## Days          10.467      1.546   6.771
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.138
fitF <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
summary(fitF)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ Days + (1 | Subject)
##    Data: sleepstudy
## 
## REML criterion at convergence: 1786.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2257 -0.5529  0.0109  0.5188  4.2506 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Subject  (Intercept) 1378.2   37.12   
##  Residual              960.5   30.99   
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 251.4051     9.7467   25.79
## Days         10.4673     0.8042   13.02
## 
## Correlation of Fixed Effects:
##      (Intr)
## Days -0.371
anova(fm1,fitF)
## refitting model(s) with ML (instead of REML)
## Data: sleepstudy
## Models:
## fitF: Reaction ~ Days + (1 | Subject)
## fm1: Reaction ~ Days + (Days | Subject)
##      npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## fitF    4 1802.1 1814.8 -897.04   1794.1                         
## fm1     6 1763.9 1783.1 -875.97   1751.9 42.139  2  7.072e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(fm1)

qqnorm(resid(fm1))
qqline(resid(fm1))

fm2 <- lmer(Reaction ~ 1 + (Days | Subject), sleepstudy)
summary(fm2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Reaction ~ 1 + (Days | Subject)
##    Data: sleepstudy
## 
## REML criterion at convergence: 1769.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0449 -0.4486  0.0089  0.4819  5.2186 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  Subject  (Intercept) 651.6    25.53         
##           Days        142.2    11.93    -0.18
##  Residual             654.9    25.59         
## Number of obs: 180, groups:  Subject, 18
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   257.76       6.76   38.13
anova(fm1,fm2)
## refitting model(s) with ML (instead of REML)
## Data: sleepstudy
## Models:
## fm2: Reaction ~ 1 + (Days | Subject)
## fm1: Reaction ~ Days + (Days | Subject)
##     npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## fm2    5 1785.5 1801.4 -887.74   1775.5                         
## fm1    6 1763.9 1783.1 -875.97   1751.9 23.537  1  1.226e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RShowDoc("lmerperf", package = "lme4")