This survey analysis will review a previous dataset that looked at belief in conspiracy theories. In a study done in 2013 by Brotherton, French, and Pickering which helped determine validity and reliability of the Generic Conspiracist Belief Scale, found that there are stable, individual differences in the tendency to engage with conspiracist explanations for events and those who have a belief in conspiracy theory tend to have low interpersonal trust and paranoia issues (Brother, French, Pickering, 2013).

Over the course of the last five years, we have seen a rise of conspiracy related stories be revealed to us daily in the news and social media. The most notable conspiracy has been about aliens and UFO contact. For the past century, people have been made to feel as if they were crazy because they believed or saw or had contact with aliens and UFOs.

When President Donald J. Trump took office in 2016, it did not take him long to establish the Space Force as our fifth arm of military defense. Whether he believed before he became president, we will probably never know, but he found it imperative that the information be released to the United States citizens. So much so that he approved of declassifying alien and UFO contact information on December 27, 2020 as part of the COVID relief package, which in and of itself has been considered a conspiracy.

First we will look at what states are using google search from January 1, 2015 to January 1, 2019 to look for conspiracy, aliens, extraterrestrials, and UFOs. The graphs below shows that Colorado has googled ‘conspiracy’ more than other states and Montana came back with 72 hits for ‘conspiracy’ searches. North Dakota had the most hits for ‘aliens,’ and New Mexico the most for ‘UFOs.’ Florida shows the most hits for ‘extraterrestrials.’

library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
-- Attaching packages ----------------------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.3     v purrr   0.3.4
v tibble  3.1.0     v dplyr   1.0.4
v tidyr   1.1.3     v stringr 1.4.0
v readr   1.4.0     v forcats 0.5.1
package 㤼㸱tidyr㤼㸲 was built under R version 4.0.4-- Conflicts -------------------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(broom)
library(plotly)
Registered S3 method overwritten by 'data.table':
  method           from
  print.data.table     

Attaching package: 㤼㸱plotly㤼㸲

The following object is masked from 㤼㸱package:ggplot2㤼㸲:

    last_plot

The following object is masked from 㤼㸱package:stats㤼㸲:

    filter

The following object is masked from 㤼㸱package:graphics㤼㸲:

    layout
library(tidycensus)      # gets census data that we can use to create maps
package 㤼㸱tidycensus㤼㸲 was built under R version 4.0.4
library(sf)              # helper package for mapping
package 㤼㸱sf㤼㸲 was built under R version 4.0.4Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(leaflet)         # interactive mapping package
package 㤼㸱leaflet㤼㸲 was built under R version 4.0.4
library(trendyy)
library(usdata)          # this package has a conversion utility for state abbreviations to full names
package 㤼㸱usdata㤼㸲 was built under R version 4.0.4
conspiracy <- trendy("conspiracy", 
                   geo = "US", 
                   from = "2015-01-01", to = "2019-01-01")


conspiracy_states <- conspiracy %>%
  get_interest_region()

conspiracy_states
NA
aliens <- trendy("aliens", 
                   geo = "US", 
                   from = "2015-01-01", to = "2019-01-01")


alien_states <- aliens %>%
  get_interest_region()

alien_states
NA
ufos <- trendy("ufos", 
                   geo = "US", 
                   from = "2015-01-01", to = "2019-01-01")


ufo_states <- ufos %>%
  get_interest_region()

ufo_states
NA
extraterrestrials <- trendy("extraterrestrials", 
                   geo = "US", 
                   from = "2015-01-01", to = "2019-01-01")


extraterrestrials_states <- extraterrestrials %>%
  get_interest_region()

extraterrestrials_states
NA

states <- get_acs(geography = "state",               # gets state by state data
                  variables = "B01003_001",          # this is state population
                  geometry = TRUE,                   # gets geometry (the maps)
                  shift_geo = T)                     # shifts Hawaii and Alaska
Getting data from the 2015-2019 5-year ACS
Using feature geometry obtained from the albersusa package
Please note: Alaska and Hawaii are being shifted and are not to scale.
states_leaflet <- get_acs(geography = "state",       # gets state by state data
                  variables = "B19013_001",          # this is state income
                  geometry = TRUE)                   # gets geometry (the maps)
Getting data from the 2015-2019 5-year ACS
Downloading feature geometry from the Census website.  To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.

  |                                                                                         
  |                                                                                   |   0%
  |                                                                                         
  |=                                                                                  |   1%
  |                                                                                         
  |=                                                                                  |   2%
  |                                                                                         
  |==                                                                                 |   2%
  |                                                                                         
  |==                                                                                 |   3%
  |                                                                                         
  |===                                                                                |   3%
  |                                                                                         
  |===                                                                                |   4%
  |                                                                                         
  |====                                                                               |   4%
  |                                                                                         
  |====                                                                               |   5%
  |                                                                                         
  |=====                                                                              |   6%
  |                                                                                         
  |======                                                                             |   7%
  |                                                                                         
  |======                                                                             |   8%
  |                                                                                         
  |=======                                                                            |   8%
  |                                                                                         
  |=======                                                                            |   9%
  |                                                                                         
  |========                                                                           |   9%
  |                                                                                         
  |========                                                                           |  10%
  |                                                                                         
  |=========                                                                          |  10%
  |                                                                                         
  |=========                                                                          |  11%
  |                                                                                         
  |==========                                                                         |  12%
  |                                                                                         
  |===========                                                                        |  13%
  |                                                                                         
  |===========                                                                        |  14%
  |                                                                                         
  |============                                                                       |  14%
  |                                                                                         
  |============                                                                       |  15%
  |                                                                                         
  |=============                                                                      |  16%
  |                                                                                         
  |==============                                                                     |  17%
  |                                                                                         
  |===============                                                                    |  18%
  |                                                                                         
  |================                                                                   |  19%
  |                                                                                         
  |================                                                                   |  20%
  |                                                                                         
  |=================                                                                  |  20%
  |                                                                                         
  |=================                                                                  |  21%
  |                                                                                         
  |==================                                                                 |  21%
  |                                                                                         
  |==================                                                                 |  22%
  |                                                                                         
  |===================                                                                |  23%
  |                                                                                         
  |====================                                                               |  24%
  |                                                                                         
  |=====================                                                              |  25%
  |                                                                                         
  |=====================                                                              |  26%
  |                                                                                         
  |======================                                                             |  27%
  |                                                                                         
  |=======================                                                            |  28%
  |                                                                                         
  |========================                                                           |  29%
  |                                                                                         
  |=========================                                                          |  30%
  |                                                                                         
  |=========================                                                          |  31%
  |                                                                                         
  |==========================                                                         |  31%
  |                                                                                         
  |==========================                                                         |  32%
  |                                                                                         
  |===========================                                                        |  32%
  |                                                                                         
  |===========================                                                        |  33%
  |                                                                                         
  |============================                                                       |  33%
  |                                                                                         
  |============================                                                       |  34%
  |                                                                                         
  |=============================                                                      |  35%
  |                                                                                         
  |==============================                                                     |  36%
  |                                                                                         
  |==============================                                                     |  37%
  |                                                                                         
  |===============================                                                    |  37%
  |                                                                                         
  |===============================                                                    |  38%
  |                                                                                         
  |================================                                                   |  38%
  |                                                                                         
  |================================                                                   |  39%
  |                                                                                         
  |=================================                                                  |  39%
  |                                                                                         
  |=================================                                                  |  40%
  |                                                                                         
  |==================================                                                 |  41%
  |                                                                                         
  |===================================                                                |  42%
  |                                                                                         
  |===================================                                                |  43%
  |                                                                                         
  |====================================                                               |  43%
  |                                                                                         
  |====================================                                               |  44%
  |                                                                                         
  |=====================================                                              |  44%
  |                                                                                         
  |=====================================                                              |  45%
  |                                                                                         
  |======================================                                             |  45%
  |                                                                                         
  |======================================                                             |  46%
  |                                                                                         
  |=======================================                                            |  46%
  |                                                                                         
  |=======================================                                            |  47%
  |                                                                                         
  |========================================                                           |  48%
  |                                                                                         
  |========================================                                           |  49%
  |                                                                                         
  |=========================================                                          |  49%
  |                                                                                         
  |=========================================                                          |  50%
  |                                                                                         
  |==========================================                                         |  50%
  |                                                                                         
  |==========================================                                         |  51%
  |                                                                                         
  |===========================================                                        |  51%
  |                                                                                         
  |===========================================                                        |  52%
  |                                                                                         
  |============================================                                       |  53%
  |                                                                                         
  |=============================================                                      |  54%
  |                                                                                         
  |=============================================                                      |  55%
  |                                                                                         
  |==============================================                                     |  55%
  |                                                                                         
  |==============================================                                     |  56%
  |                                                                                         
  |===============================================                                    |  56%
  |                                                                                         
  |===============================================                                    |  57%
  |                                                                                         
  |================================================                                   |  57%
  |                                                                                         
  |=================================================                                  |  59%
  |                                                                                         
  |==================================================                                 |  61%
  |                                                                                         
  |===================================================                                |  61%
  |                                                                                         
  |====================================================                               |  63%
  |                                                                                         
  |=====================================================                              |  63%
  |                                                                                         
  |=====================================================                              |  64%
  |                                                                                         
  |======================================================                             |  65%
  |                                                                                         
  |=======================================================                            |  66%
  |                                                                                         
  |========================================================                           |  67%
  |                                                                                         
  |========================================================                           |  68%
  |                                                                                         
  |=========================================================                          |  68%
  |                                                                                         
  |=========================================================                          |  69%
  |                                                                                         
  |==========================================================                         |  70%
  |                                                                                         
  |===========================================================                        |  71%
  |                                                                                         
  |===========================================================                        |  72%
  |                                                                                         
  |============================================================                       |  72%
  |                                                                                         
  |=============================================================                      |  73%
  |                                                                                         
  |=============================================================                      |  74%
  |                                                                                         
  |==============================================================                     |  74%
  |                                                                                         
  |==============================================================                     |  75%
  |                                                                                         
  |===============================================================                    |  76%
  |                                                                                         
  |================================================================                   |  77%
  |                                                                                         
  |================================================================                   |  78%
  |                                                                                         
  |=================================================================                  |  78%
  |                                                                                         
  |=================================================================                  |  79%
  |                                                                                         
  |==================================================================                 |  79%
  |                                                                                         
  |==================================================================                 |  80%
  |                                                                                         
  |===================================================================                |  80%
  |                                                                                         
  |===================================================================                |  81%
  |                                                                                         
  |====================================================================               |  82%
  |                                                                                         
  |=====================================================================              |  83%
  |                                                                                         
  |=====================================================================              |  84%
  |                                                                                         
  |======================================================================             |  84%
  |                                                                                         
  |=======================================================================            |  85%
  |                                                                                         
  |=======================================================================            |  86%
  |                                                                                         
  |========================================================================           |  86%
  |                                                                                         
  |========================================================================           |  87%
  |                                                                                         
  |=========================================================================          |  88%
  |                                                                                         
  |==========================================================================         |  89%
  |                                                                                         
  |===========================================================================        |  90%
  |                                                                                         
  |============================================================================       |  91%
  |                                                                                         
  |============================================================================       |  92%
  |                                                                                         
  |=============================================================================      |  92%
  |                                                                                         
  |=============================================================================      |  93%
  |                                                                                         
  |==============================================================================     |  93%
  |                                                                                         
  |==============================================================================     |  94%
  |                                                                                         
  |===============================================================================    |  95%
  |                                                                                         
  |================================================================================   |  96%
  |                                                                                         
  |================================================================================   |  97%
  |                                                                                         
  |=================================================================================  |  97%
  |                                                                                         
  |=================================================================================  |  98%
  |                                                                                         
  |================================================================================== |  99%
  |                                                                                         
  |===================================================================================| 100%
                  # shift_geo = T                    # shifts Hawaii and Alaska

conspiracy_colors <- colorNumeric(palette = "viridis", domain = conspiracy_states$hits)

states_leaflet %>% 
  rename(location = NAME) %>% 
  inner_join(conspiracy_states) %>% 
  leaflet() %>% 
  addTiles() %>%
  addPolygons(weight = 1,
              fillColor = ~conspiracy_colors(hits), 
              label = ~paste0(location, ", Search volume = ", hits),
              highlight = highlightOptions(weight = 2)) %>% 
  setView(-95, 40, zoom = 4) %>% 
  addLegend(pal = conspiracy_colors, values = ~hits)
Joining, by = "location"
sf layer has inconsistent datum (+proj=longlat +datum=NAD83 +no_defs).
Need '+proj=longlat +datum=WGS84'

alien_colors <- colorNumeric(palette = "viridis", domain = alien_states$hits)

states_leaflet %>% 
  rename(location = NAME) %>% 
  inner_join(alien_states) %>% 
  leaflet() %>% 
  addTiles() %>%
  addPolygons(weight = 1,
              fillColor = ~alien_colors(hits), 
              label = ~paste0(location, ", Search volume = ", hits),
              highlight = highlightOptions(weight = 2)) %>% 
  setView(-95, 40, zoom = 4) %>% 
  addLegend(pal = alien_colors, values = ~hits)
Joining, by = "location"
sf layer has inconsistent datum (+proj=longlat +datum=NAD83 +no_defs).
Need '+proj=longlat +datum=WGS84'

ufo_colors <- colorNumeric(palette = "viridis", domain = ufo_states$hits)

states_leaflet %>% 
  rename(location = NAME) %>% 
  inner_join(ufo_states) %>% 
  leaflet() %>% 
  addTiles() %>%
  addPolygons(weight = 1,
              fillColor = ~ufo_colors(hits), 
              label = ~paste0(location, ", Search volume = ", hits),
              highlight = highlightOptions(weight = 2)) %>% 
  setView(-95, 40, zoom = 4) %>% 
  addLegend(pal = ufo_colors, values = ~hits)
Joining, by = "location"
sf layer has inconsistent datum (+proj=longlat +datum=NAD83 +no_defs).
Need '+proj=longlat +datum=WGS84'

extraterrestrials_colors <- colorNumeric(palette = "viridis", domain = extraterrestrials_states$hits)

states_leaflet %>% 
  rename(location = NAME) %>% 
  inner_join(extraterrestrials_states) %>% 
  leaflet() %>% 
  addTiles() %>%
  addPolygons(weight = 1,
              fillColor = ~extraterrestrials_colors(hits), 
              label = ~paste0(location, ", Search volume = ", hits),
              highlight = highlightOptions(weight = 2)) %>% 
  setView(-95, 40, zoom = 4) %>% 
  addLegend(pal = extraterrestrials_colors, values = ~hits)
Joining, by = "location"
sf layer has inconsistent datum (+proj=longlat +datum=NAD83 +no_defs).
Need '+proj=longlat +datum=WGS84'

Now that we know what states are googling such things as conspiracy, aliens, extraterrestrials, and UFOs we will look at the data from the 2013 study to see who participated in the survey and what education level they obtained. The data received indicated 2,495 people participated. Of those participating 1,222 were male, 1,137 were female, and 136 chose other.

glimpse(data)
Rows: 2,495
Columns: 72
$ Q1           <dbl> 5, 5, 2, 5, 5, 1, 4, 5, 1, 1, 4, 5, 5, 5, 5, 4, 4, 2, 4, 5, 3, 3, 4, 5~
$ Q2           <dbl> 5, 5, 4, 4, 4, 1, 3, 4, 1, 2, 4, 5, 4, 4, 4, 4, 4, 1, 2, 2, 1, 2, 5, 5~
$ Q3           <fct> Neutral, Disagree, Agree, Agree, Agree, Agree, Neutral, Neutral, Agree~
$ Q4           <dbl> 5, 5, 2, 2, 4, 1, 3, 3, 1, 1, 5, 5, 4, 5, 5, 5, 3, 1, 1, 3, 1, 3, 3, 5~
$ Q5           <dbl> 5, 5, 2, 4, 4, 1, 4, 4, 1, 1, 5, 5, 5, 4, 5, 5, 4, 1, 1, 4, 1, 4, 4, 5~
$ Q6           <dbl> 5, 3, 2, 5, 5, 1, 3, 5, 1, 5, 5, 5, 5, 5, 5, 4, 2, 1, 1, 3, 2, 3, 4, 5~
$ Q7           <dbl> 5, 5, 4, 4, 4, 1, 3, 5, 1, 1, 4, 3, 3, 5, 5, 5, 4, 1, 1, 2, 1, 3, 4, 5~
$ Q8           <fct> Neutral, Disagree, Somewhat Agree, Agree, Neutral, Agree, Somewhat Dis~
$ Q9           <dbl> 4, 1, 2, 4, 1, 1, 2, 5, 1, 1, 2, 1, 5, 5, 5, 3, 1, 1, 1, 4, 1, 2, 1, 5~
$ Q10          <dbl> 5, 4, 4, 5, 5, 1, 3, 5, 1, 4, 5, 5, 3, 5, 5, 5, 4, 2, 3, 4, 1, 3, 4, 5~
$ Q11          <dbl> 5, 4, 2, 5, 5, 1, 3, 5, 1, 1, 4, 5, 4, 5, 4, 4, 4, 2, 2, 4, 1, 3, 3, 5~
$ Q12          <dbl> 5, 5, 4, 5, 5, 1, 2, 5, 1, 1, 2, 5, 3, 5, 3, 5, 1, 1, 2, 2, 1, 2, 4, 5~
$ Q13          <fct> Neutral, Somewhat Disagree, 0, Agree, Neutral, Agree, Somewhat Agree, ~
$ Q14          <dbl> 5, 4, 2, 4, 5, 1, 3, 4, 1, 1, 1, 5, 3, 4, 5, 5, 4, 1, 2, 4, 2, 2, 3, 5~
$ Q15          <dbl> 5, 5, 4, 5, 5, 1, 4, 5, 1, 5, 5, 5, 5, 5, 5, 5, 4, 2, 3, 4, 2, 3, 5, 5~
$ E1           <dbl> 7070, 4086, 27535, 4561, 8841, 15267, 7249, 8024, 4654, 23787, 7029, 6~
$ E2           <dbl> 7469, 13107, 7814, 5589, 7575, 7112, 4651, 7343, 6076, 12375, 8102, 97~
$ E3           <dbl> 7383, 2807, 7762, 3506, 3832, 4798, 5496, 6808, 3032, 2006, 4129, 4561~
$ E4           <dbl> 6540, 5030, 10290, 3784, 7775, 5214, 3936, 6794, 3984, 3650, 2594, 515~
$ E5           <dbl> 9098, 7405, 8558, 5093, 4160, 3683, 7831, 8743, 4328, 3188, 3200, 1811~
$ E6           <dbl> 4998, 7864, 10538, 3555, 5216, 4130, 6816, 6196, 4070, 48851, 2135, 52~
$ E7           <dbl> 6971, 16234, 4740, 3158, 7559, 4487, 6167, 7762, 4012, 9013, 5292, 145~
$ E8           <dbl> 4713, 2603, 4162, 1887, 5792, 2376, 2032, 4797, 2430, 2128, 2713, 3153~
$ E9           <dbl> 6032, 14174, 6492, 7678, 10296, 3273, 4000, 8015, 4191, 2898, 3219, 78~
$ E10          <dbl> 5878, 9423, 11512, 2304, 5455, 5501, 3583, 5764, 8444, 10420, 6409, 64~
$ E11          <dbl> 4031, 11683, 6874, 3604, 3864, 3790, 4481, 5717, 4224, 5820, 6722, 474~
$ E12          <dbl> 4386, 12718, 11440, 2724, 11799, 7777, 5071, 5352, 4404, 2049, 4452, 9~
$ E13          <dbl> 9077, 4816, 0, 2689, 7872, 4553, 2368, 6387, 1065, 9901, 5425, 7025, 7~
$ E14          <dbl> 5113, 6806, 11418, 2657, 10543, 5944, 4408, 9671, 5533, 3838, 5516, 77~
$ E15          <dbl> 4204, 4823, 9872, 3824, 4224, 4028, 6103, 5622, 4964, 7208, 6739, 4977~
$ introelapse  <dbl> 11, 6, 7, 5, 4, 35, 12, 27, 2, 26, 8, 9, 29, 114, 308, 2, 3, 469, 876,~
$ testelapse   <dbl> 95, 125, 141, 58, 105, 87, 75, 104, 67, 148, 75, 116, 135, 66, 92, 49,~
$ surveyelapse <dbl> 142, 144, 90, 135, 210, 154, 67, 186, 121, 118, 145, 133, 224, 313, 19~
$ TIPI1        <dbl> 5, 6, 6, 6, 1, 4, 2, 4, 4, 1, 3, 7, 6, 2, 1, 1, 5, 5, 2, 3, 3, 5, 7, 4~
$ TIPI2        <dbl> 3, 7, 6, 7, 3, 2, 5, 5, 5, 6, 7, 4, 2, 2, 1, 7, 5, 5, 5, 5, 5, 5, 5, 4~
$ TIPI3        <dbl> 6, 6, 6, 7, 7, 6, 4, 6, 6, 3, 1, 4, 6, 6, 1, 5, 3, 5, 5, 3, 2, 7, 6, 5~
$ TIPI4        <dbl> 2, 7, 1, 5, 2, 2, 2, 2, 2, 1, 7, 1, 1, 5, 6, 4, 2, 6, 3, 6, 2, 6, 2, 6~
$ TIPI5        <dbl> 6, 6, 7, 7, 6, 6, 5, 7, 4, 5, 7, 7, 6, 7, 5, 6, 5, 4, 6, 6, 7, 5, 6, 6~
$ TIPI6        <dbl> 6, 3, 5, 6, 4, 5, 6, 4, 5, 7, 3, 4, 5, 6, 7, 7, 6, 5, 6, 3, 6, 3, 2, 4~
$ TIPI7        <dbl> 7, 7, 6, 5, 5, 6, 2, 5, 6, 6, 1, 7, 7, 7, 7, 1, 5, 5, 6, 6, 4, 7, 4, 6~
$ TIPI8        <dbl> 2, 5, 5, 1, 5, 3, 3, 5, 2, 5, 2, 5, 4, 5, 7, 6, 6, 6, 5, 6, 5, 4, 2, 2~
$ TIPI9        <dbl> 7, 1, 7, 5, 5, 6, 5, 3, 7, 7, 1, 7, 5, 6, 1, 7, 7, 3, 6, 2, 5, 2, 4, 2~
$ TIPI10       <dbl> 1, 1, 7, 1, 3, 2, 5, 1, 2, 4, 1, 2, 2, 2, 1, 5, 3, 2, 6, 1, 2, 1, 5, 1~
$ VCL1         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1~
$ VCL2         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ VCL3         <dbl> 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0~
$ VCL4         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ VCL5         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ VCL6         <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ VCL7         <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0~
$ VCL8         <dbl> 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0~
$ VCL9         <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ VCL10        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1~
$ VCL11        <dbl> 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0~
$ VCL12        <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ VCL13        <dbl> 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0~
$ VCL14        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1~
$ VCL15        <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ VCL16        <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ education    <fct> Some College and College Grad, High School or Below, Masters and Above~
$ urban        <dbl> 0, 2, 2, 1, 2, 1, 2, 1, 3, 3, 2, 1, 2, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 1~
$ gender       <fct> Male, Female, Female, Male, Male, Male, Male, Male, Male, Male, Other,~
$ engnat       <dbl> 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1~
$ age          <dbl> 28, 14, 26, 25, 37, 34, 17, 23, 17, 28, 20, 40, 32, 41, 14, 16, 35, 18~
$ hand         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1~
$ religion     <dbl> 2, 1, 1, 12, 2, 7, 1, 2, 4, 2, 12, 1, 7, 1, 1, 12, 4, 2, 6, 5, 1, 6, 2~
$ orientation  <dbl> 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 4, 1, 3, 1, 1, 2, 1, 1, 3~
$ race         <dbl> 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4~
$ voted        <dbl> 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2~
$ married      <dbl> 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1~
$ familysize   <dbl> 1, 1, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 2, 3, 3, 2, 5, 6, 3, 3, 2~
$ major        <chr> "ACTING", NA, "philosophy", "history", "Psychology", "nursing", NA, NA~
data <- data %>% 
  mutate(gender = fct_recode(gender, 
                             "No Response" = "0",
                              "Male" = "1",
                             "Female" = "2",
                             "Other" = "3"))
Unknown levels in `f`: 0, 1, 2, 3
data %>% 
  count(gender)
data <- data %>% 
  mutate(education = fct_collapse(education, 
                             "High School or Below" = c("0",
                                         "1"),
                             "Some College and College Grad" = c("2", "3"),
                             "Masters and Above" = "4"))
Unknown levels in `f`: 0, 1, 2, 3, 4
data %>% 
  count(education)

The education level of those that took the survey were broken up into three levels. As you can see in the graph below, this data indicates that the majority of the people surveyed had a some college education or higher.

data %>% 
  drop_na(education) %>% 
  ggplot(aes(x = education, fill = gender)) +
  geom_bar(position = "dodge") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of people", 
       x = "Levels of Education", 
       title = "Education Levels")

Next we will take a look at specific questions posed to survey recipients surrounding aliens and UFO contact. Beginning with statement three from the Generic Conspiracist Belief Survey, “Secret organizations communicate with extraterrestrials but keep this fact from the public.”

data <- data %>% 
  mutate(Q3 = as.factor(Q3))


data %>% 
  count(Q3)

Out of 2,495 respondents, 1,367 or 0.55 percent of them answered “Agree” to “Secret organizations communicate with extraterrestrials but keep this fact from the public.”

data %>% 
  drop_na(Q3) %>% 
  ggplot(aes(x = Q3, fill = gender)) +
  geom_bar(position = "dodge") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of people", 
       x = "Secret organizations communicate with extraterrestrials
       but keep this fact from the public.", 
       title = "Communication with Extraterrestrials")

data <- data %>% 
  mutate(Q8 = as.factor(Q8))


data %>% 
  count(Q8)

The next statement we will look at is “Evidence of alien contact is being concealed from the public.”

data <- data %>% 
  mutate(Q8 = fct_recode(Q8,
                         "Agree" = "1",
                         "Somewhat Agree" = "2",
                         "Neutral" = "3",
                         "Somewhat Disagree" = "4",
                         "Disagree" = "5"))
Unknown levels in `f`: 1, 2, 3, 4, 5
data %>% 
  count(Q8)

Forty-four percent or 1,108 respondents agreed with that evidence of alien contact being kept from the general public.

data %>% 
  drop_na(Q8) %>% 
  ggplot(aes(x = Q8, fill = gender)) +
  geom_bar(position = "dodge") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of people", 
       x = "Evidence of alien contact is being concealed from the public.", 
       title = "Evidence of Alien Contact")

data <- data %>% 
  mutate(Q13 = as.factor(Q13))


data %>% 
  count(Q13)
data <- data %>% 
  mutate(Q13 = fct_recode(Q13,
                         "Agree" = "1",
                         "Somewhat Agree" = "2",
                         "Neutral" = "3",
                         "Somewhat Disagree" = "4",
                         "Disagree" = "5"))
Unknown levels in `f`: 1, 2, 3, 4, 5
data %>% 
  count(Q13)

Lastly, fifty-one percent or 1,276 of those surveyed agreed with the last statement of “Some UFO sightings and rumors are planned or staged in order to distract the public from real alien contact.”

data %>% 
  drop_na(Q13) %>% 
  ggplot(aes(x = Q13, fill = gender)) +
  geom_bar(position = "dodge") +
  scale_fill_viridis_d() +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of people", 
       x = "Some UFO sightings and rumors are planned or staged 
       in order to distract the public from real alien contact.", 
       title = "Staged UFO Sightings")

This dataset tells us there is a strong belief in conspiracies, aliens, and UFOs. The next steps would be to conduct an anonymous survey to see if percentages of beliefs towards conspiracy theories have risen, or have they remained the same? My hypothesis is, belief in conspiracies will increase as the government releases more and more information regarding aliens and UFO contact. As this seems to be true and has been hidden from us for years, what else could they be hiding?

References Brotherto, R., French, C., Pickering, A., (2013). Measuring Belief in Conspiracy Theories: The Generic Conspiracist Beliefs Scale. Frontiers in Psychology. VOL . 2013. https://www.frontiersin.org/article/10.3389/fpsyg.2013.00279
DOI=10.3389/fpsyg.2013.00279
ISSN=1664-1078

LS0tDQp0aXRsZTogIk1JTk5JRSBCRUxMIC0gQ09OU1BJUkFDWSBUSEVPUlkgU1VSVkVZIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpUaGlzIHN1cnZleSBhbmFseXNpcyB3aWxsIHJldmlldyBhIHByZXZpb3VzIGRhdGFzZXQgdGhhdCBsb29rZWQgYXQgYmVsaWVmIGluIGNvbnNwaXJhY3kgdGhlb3JpZXMuIEluIGEgc3R1ZHkgZG9uZSBpbiAyMDEzIGJ5IEJyb3RoZXJ0b24sIEZyZW5jaCwgYW5kIFBpY2tlcmluZyB3aGljaCBoZWxwZWQgZGV0ZXJtaW5lIHZhbGlkaXR5IGFuZCByZWxpYWJpbGl0eSBvZiB0aGUgKkdlbmVyaWMgQ29uc3BpcmFjaXN0IEJlbGllZiBTY2FsZSosIGZvdW5kIHRoYXQgdGhlcmUgYXJlIHN0YWJsZSwgaW5kaXZpZHVhbCBkaWZmZXJlbmNlcyBpbiB0aGUgdGVuZGVuY3kgdG8gZW5nYWdlIHdpdGggY29uc3BpcmFjaXN0IGV4cGxhbmF0aW9ucyBmb3IgZXZlbnRzIGFuZCB0aG9zZSB3aG8gaGF2ZSBhIGJlbGllZiBpbiBjb25zcGlyYWN5IHRoZW9yeSB0ZW5kIHRvIGhhdmUgbG93IGludGVycGVyc29uYWwgdHJ1c3QgYW5kIHBhcmFub2lhIGlzc3VlcyAoQnJvdGhlciwgRnJlbmNoLCBQaWNrZXJpbmcsIDIwMTMpLg0KDQpPdmVyIHRoZSBjb3Vyc2Ugb2YgdGhlIGxhc3QgZml2ZSB5ZWFycywgd2UgaGF2ZSBzZWVuIGEgcmlzZSBvZiBjb25zcGlyYWN5IHJlbGF0ZWQgc3RvcmllcyBiZSByZXZlYWxlZCB0byB1cyBkYWlseSBpbiB0aGUgbmV3cyBhbmQgc29jaWFsIG1lZGlhLiBUaGUgbW9zdCBub3RhYmxlIGNvbnNwaXJhY3kgaGFzIGJlZW4gYWJvdXQgYWxpZW5zIGFuZCBVRk8gY29udGFjdC4gRm9yIHRoZSBwYXN0IGNlbnR1cnksIHBlb3BsZSBoYXZlIGJlZW4gbWFkZSB0byBmZWVsIGFzIGlmIHRoZXkgd2VyZSBjcmF6eSBiZWNhdXNlIHRoZXkgYmVsaWV2ZWQgb3Igc2F3IG9yIGhhZCBjb250YWN0IHdpdGggYWxpZW5zIGFuZCBVRk9zLiANCg0KV2hlbiBQcmVzaWRlbnQgRG9uYWxkIEouIFRydW1wIHRvb2sgb2ZmaWNlIGluIDIwMTYsIGl0IGRpZCBub3QgdGFrZSBoaW0gbG9uZyB0byBlc3RhYmxpc2ggdGhlIFNwYWNlIEZvcmNlIGFzIG91ciBmaWZ0aCBhcm0gb2YgbWlsaXRhcnkgZGVmZW5zZS4gV2hldGhlciBoZSBiZWxpZXZlZCBiZWZvcmUgaGUgYmVjYW1lIHByZXNpZGVudCwgd2Ugd2lsbCBwcm9iYWJseSBuZXZlciBrbm93LCBidXQgaGUgZm91bmQgaXQgaW1wZXJhdGl2ZSB0aGF0IHRoZSBpbmZvcm1hdGlvbiBiZSByZWxlYXNlZCB0byB0aGUgVW5pdGVkIFN0YXRlcyBjaXRpemVucy4gU28gbXVjaCBzbyB0aGF0IGhlIGFwcHJvdmVkIG9mIGRlY2xhc3NpZnlpbmcgYWxpZW4gYW5kIFVGTyBjb250YWN0IGluZm9ybWF0aW9uIG9uIERlY2VtYmVyIDI3LCAyMDIwIGFzIHBhcnQgb2YgdGhlIENPVklEIHJlbGllZiBwYWNrYWdlLCB3aGljaCBpbiBhbmQgb2YgaXRzZWxmIGhhcyBiZWVuIGNvbnNpZGVyZWQgYSBjb25zcGlyYWN5Lg0KDQpGaXJzdCB3ZSB3aWxsIGxvb2sgYXQgd2hhdCBzdGF0ZXMgYXJlIHVzaW5nIGdvb2dsZSBzZWFyY2ggZnJvbSBKYW51YXJ5IDEsIDIwMTUgdG8gSmFudWFyeSAxLCAyMDE5IHRvIGxvb2sgZm9yIGNvbnNwaXJhY3ksIGFsaWVucywgZXh0cmF0ZXJyZXN0cmlhbHMsIGFuZCBVRk9zLiBUaGUgZ3JhcGhzIGJlbG93IHNob3dzIHRoYXQgQ29sb3JhZG8gaGFzIGdvb2dsZWQgJ2NvbnNwaXJhY3knIG1vcmUgdGhhbiBvdGhlciBzdGF0ZXMgYW5kIE1vbnRhbmEgY2FtZSBiYWNrIHdpdGggNzIgaGl0cyBmb3IgJ2NvbnNwaXJhY3knIHNlYXJjaGVzLiBOb3J0aCBEYWtvdGEgaGFkIHRoZSBtb3N0IGhpdHMgZm9yICdhbGllbnMsJyBhbmQgTmV3IE1leGljbyB0aGUgbW9zdCBmb3IgJ1VGT3MuJyBGbG9yaWRhIHNob3dzIHRoZSBtb3N0IGhpdHMgZm9yICdleHRyYXRlcnJlc3RyaWFscy4nDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShicm9vbSkNCmxpYnJhcnkocGxvdGx5KQ0KbGlicmFyeSh0aWR5Y2Vuc3VzKSAgICAgICMgZ2V0cyBjZW5zdXMgZGF0YSB0aGF0IHdlIGNhbiB1c2UgdG8gY3JlYXRlIG1hcHMNCmxpYnJhcnkoc2YpICAgICAgICAgICAgICAjIGhlbHBlciBwYWNrYWdlIGZvciBtYXBwaW5nDQpsaWJyYXJ5KGxlYWZsZXQpICAgICAgICAgIyBpbnRlcmFjdGl2ZSBtYXBwaW5nIHBhY2thZ2UNCmxpYnJhcnkodHJlbmR5eSkNCmxpYnJhcnkodXNkYXRhKSAgICAgICAgICAjIHRoaXMgcGFja2FnZSBoYXMgYSBjb252ZXJzaW9uIHV0aWxpdHkgZm9yIHN0YXRlIGFiYnJldmlhdGlvbnMgdG8gZnVsbCBuYW1lcw0KYGBgDQoNCg0KYGBge3J9DQpjb25zcGlyYWN5IDwtIHRyZW5keSgiY29uc3BpcmFjeSIsIA0KICAgICAgICAgICAgICAgICAgIGdlbyA9ICJVUyIsIA0KICAgICAgICAgICAgICAgICAgIGZyb20gPSAiMjAxNS0wMS0wMSIsIHRvID0gIjIwMTktMDEtMDEiKQ0KDQoNCmNvbnNwaXJhY3lfc3RhdGVzIDwtIGNvbnNwaXJhY3kgJT4lDQogIGdldF9pbnRlcmVzdF9yZWdpb24oKQ0KDQpjb25zcGlyYWN5X3N0YXRlcw0KDQpgYGANCg0KDQpgYGB7cn0NCmFsaWVucyA8LSB0cmVuZHkoImFsaWVucyIsIA0KICAgICAgICAgICAgICAgICAgIGdlbyA9ICJVUyIsIA0KICAgICAgICAgICAgICAgICAgIGZyb20gPSAiMjAxNS0wMS0wMSIsIHRvID0gIjIwMTktMDEtMDEiKQ0KDQoNCmFsaWVuX3N0YXRlcyA8LSBhbGllbnMgJT4lDQogIGdldF9pbnRlcmVzdF9yZWdpb24oKQ0KDQphbGllbl9zdGF0ZXMNCg0KYGBgDQoNCg0KDQpgYGB7cn0NCnVmb3MgPC0gdHJlbmR5KCJ1Zm9zIiwgDQogICAgICAgICAgICAgICAgICAgZ2VvID0gIlVTIiwgDQogICAgICAgICAgICAgICAgICAgZnJvbSA9ICIyMDE1LTAxLTAxIiwgdG8gPSAiMjAxOS0wMS0wMSIpDQoNCg0KdWZvX3N0YXRlcyA8LSB1Zm9zICU+JQ0KICBnZXRfaW50ZXJlc3RfcmVnaW9uKCkNCg0KdWZvX3N0YXRlcw0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpleHRyYXRlcnJlc3RyaWFscyA8LSB0cmVuZHkoImV4dHJhdGVycmVzdHJpYWxzIiwgDQogICAgICAgICAgICAgICAgICAgZ2VvID0gIlVTIiwgDQogICAgICAgICAgICAgICAgICAgZnJvbSA9ICIyMDE1LTAxLTAxIiwgdG8gPSAiMjAxOS0wMS0wMSIpDQoNCg0KZXh0cmF0ZXJyZXN0cmlhbHNfc3RhdGVzIDwtIGV4dHJhdGVycmVzdHJpYWxzICU+JQ0KICBnZXRfaW50ZXJlc3RfcmVnaW9uKCkNCg0KZXh0cmF0ZXJyZXN0cmlhbHNfc3RhdGVzDQoNCmBgYA0KDQoNCg0KDQpgYGB7cn0NCg0Kc3RhdGVzIDwtIGdldF9hY3MoZ2VvZ3JhcGh5ID0gInN0YXRlIiwgICAgICAgICAgICAgICAjIGdldHMgc3RhdGUgYnkgc3RhdGUgZGF0YQ0KICAgICAgICAgICAgICAgICAgdmFyaWFibGVzID0gIkIwMTAwM18wMDEiLCAgICAgICAgICAjIHRoaXMgaXMgc3RhdGUgcG9wdWxhdGlvbg0KICAgICAgICAgICAgICAgICAgZ2VvbWV0cnkgPSBUUlVFLCAgICAgICAgICAgICAgICAgICAjIGdldHMgZ2VvbWV0cnkgKHRoZSBtYXBzKQ0KICAgICAgICAgICAgICAgICAgc2hpZnRfZ2VvID0gVCkgICAgICAgICAgICAgICAgICAgICAjIHNoaWZ0cyBIYXdhaWkgYW5kIEFsYXNrYQ0KDQpgYGANCg0KDQoNCmBgYHtyfQ0Kc3RhdGVzX2xlYWZsZXQgPC0gZ2V0X2FjcyhnZW9ncmFwaHkgPSAic3RhdGUiLCAgICAgICAjIGdldHMgc3RhdGUgYnkgc3RhdGUgZGF0YQ0KICAgICAgICAgICAgICAgICAgdmFyaWFibGVzID0gIkIxOTAxM18wMDEiLCAgICAgICAgICAjIHRoaXMgaXMgc3RhdGUgaW5jb21lDQogICAgICAgICAgICAgICAgICBnZW9tZXRyeSA9IFRSVUUpICAgICAgICAgICAgICAgICAgICMgZ2V0cyBnZW9tZXRyeSAodGhlIG1hcHMpDQogICAgICAgICAgICAgICAgICAjIHNoaWZ0X2dlbyA9IFQgICAgICAgICAgICAgICAgICAgICMgc2hpZnRzIEhhd2FpaSBhbmQgQWxhc2thDQoNCmBgYA0KDQoNCg0KYGBge3J9DQoNCmNvbnNwaXJhY3lfY29sb3JzIDwtIGNvbG9yTnVtZXJpYyhwYWxldHRlID0gInZpcmlkaXMiLCBkb21haW4gPSBjb25zcGlyYWN5X3N0YXRlcyRoaXRzKQ0KDQpzdGF0ZXNfbGVhZmxldCAlPiUgDQogIHJlbmFtZShsb2NhdGlvbiA9IE5BTUUpICU+JSANCiAgaW5uZXJfam9pbihjb25zcGlyYWN5X3N0YXRlcykgJT4lIA0KICBsZWFmbGV0KCkgJT4lIA0KICBhZGRUaWxlcygpICU+JQ0KICBhZGRQb2x5Z29ucyh3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+Y29uc3BpcmFjeV9jb2xvcnMoaGl0cyksIA0KICAgICAgICAgICAgICBsYWJlbCA9IH5wYXN0ZTAobG9jYXRpb24sICIsIFNlYXJjaCB2b2x1bWUgPSAiLCBoaXRzKSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0ID0gaGlnaGxpZ2h0T3B0aW9ucyh3ZWlnaHQgPSAyKSkgJT4lIA0KICBzZXRWaWV3KC05NSwgNDAsIHpvb20gPSA0KSAlPiUgDQogIGFkZExlZ2VuZChwYWwgPSBjb25zcGlyYWN5X2NvbG9ycywgdmFsdWVzID0gfmhpdHMpDQpgYGANCg0KDQpgYGB7cn0NCg0KYWxpZW5fY29sb3JzIDwtIGNvbG9yTnVtZXJpYyhwYWxldHRlID0gInZpcmlkaXMiLCBkb21haW4gPSBhbGllbl9zdGF0ZXMkaGl0cykNCg0Kc3RhdGVzX2xlYWZsZXQgJT4lIA0KICByZW5hbWUobG9jYXRpb24gPSBOQU1FKSAlPiUgDQogIGlubmVyX2pvaW4oYWxpZW5fc3RhdGVzKSAlPiUgDQogIGxlYWZsZXQoKSAlPiUgDQogIGFkZFRpbGVzKCkgJT4lDQogIGFkZFBvbHlnb25zKHdlaWdodCA9IDEsDQogICAgICAgICAgICAgIGZpbGxDb2xvciA9IH5hbGllbl9jb2xvcnMoaGl0cyksIA0KICAgICAgICAgICAgICBsYWJlbCA9IH5wYXN0ZTAobG9jYXRpb24sICIsIFNlYXJjaCB2b2x1bWUgPSAiLCBoaXRzKSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0ID0gaGlnaGxpZ2h0T3B0aW9ucyh3ZWlnaHQgPSAyKSkgJT4lIA0KICBzZXRWaWV3KC05NSwgNDAsIHpvb20gPSA0KSAlPiUgDQogIGFkZExlZ2VuZChwYWwgPSBhbGllbl9jb2xvcnMsIHZhbHVlcyA9IH5oaXRzKQ0KYGBgDQoNCg0KYGBge3J9DQoNCnVmb19jb2xvcnMgPC0gY29sb3JOdW1lcmljKHBhbGV0dGUgPSAidmlyaWRpcyIsIGRvbWFpbiA9IHVmb19zdGF0ZXMkaGl0cykNCg0Kc3RhdGVzX2xlYWZsZXQgJT4lIA0KICByZW5hbWUobG9jYXRpb24gPSBOQU1FKSAlPiUgDQogIGlubmVyX2pvaW4odWZvX3N0YXRlcykgJT4lIA0KICBsZWFmbGV0KCkgJT4lIA0KICBhZGRUaWxlcygpICU+JQ0KICBhZGRQb2x5Z29ucyh3ZWlnaHQgPSAxLA0KICAgICAgICAgICAgICBmaWxsQ29sb3IgPSB+dWZvX2NvbG9ycyhoaXRzKSwgDQogICAgICAgICAgICAgIGxhYmVsID0gfnBhc3RlMChsb2NhdGlvbiwgIiwgU2VhcmNoIHZvbHVtZSA9ICIsIGhpdHMpLA0KICAgICAgICAgICAgICBoaWdobGlnaHQgPSBoaWdobGlnaHRPcHRpb25zKHdlaWdodCA9IDIpKSAlPiUgDQogIHNldFZpZXcoLTk1LCA0MCwgem9vbSA9IDQpICU+JSANCiAgYWRkTGVnZW5kKHBhbCA9IHVmb19jb2xvcnMsIHZhbHVlcyA9IH5oaXRzKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCg0KZXh0cmF0ZXJyZXN0cmlhbHNfY29sb3JzIDwtIGNvbG9yTnVtZXJpYyhwYWxldHRlID0gInZpcmlkaXMiLCBkb21haW4gPSBleHRyYXRlcnJlc3RyaWFsc19zdGF0ZXMkaGl0cykNCg0Kc3RhdGVzX2xlYWZsZXQgJT4lIA0KICByZW5hbWUobG9jYXRpb24gPSBOQU1FKSAlPiUgDQogIGlubmVyX2pvaW4oZXh0cmF0ZXJyZXN0cmlhbHNfc3RhdGVzKSAlPiUgDQogIGxlYWZsZXQoKSAlPiUgDQogIGFkZFRpbGVzKCkgJT4lDQogIGFkZFBvbHlnb25zKHdlaWdodCA9IDEsDQogICAgICAgICAgICAgIGZpbGxDb2xvciA9IH5leHRyYXRlcnJlc3RyaWFsc19jb2xvcnMoaGl0cyksIA0KICAgICAgICAgICAgICBsYWJlbCA9IH5wYXN0ZTAobG9jYXRpb24sICIsIFNlYXJjaCB2b2x1bWUgPSAiLCBoaXRzKSwNCiAgICAgICAgICAgICAgaGlnaGxpZ2h0ID0gaGlnaGxpZ2h0T3B0aW9ucyh3ZWlnaHQgPSAyKSkgJT4lIA0KICBzZXRWaWV3KC05NSwgNDAsIHpvb20gPSA0KSAlPiUgDQogIGFkZExlZ2VuZChwYWwgPSBleHRyYXRlcnJlc3RyaWFsc19jb2xvcnMsIHZhbHVlcyA9IH5oaXRzKQ0KYGBgDQoNCk5vdyB0aGF0IHdlIGtub3cgd2hhdCBzdGF0ZXMgYXJlIGdvb2dsaW5nIHN1Y2ggdGhpbmdzIGFzIGNvbnNwaXJhY3ksIGFsaWVucywgZXh0cmF0ZXJyZXN0cmlhbHMsIGFuZCBVRk9zIHdlIHdpbGwgbG9vayBhdCB0aGUgZGF0YSBmcm9tIHRoZSAyMDEzIHN0dWR5IHRvIHNlZSB3aG8gcGFydGljaXBhdGVkIGluIHRoZSBzdXJ2ZXkgYW5kIHdoYXQgZWR1Y2F0aW9uIGxldmVsIHRoZXkgb2J0YWluZWQuIFRoZSBkYXRhIHJlY2VpdmVkIGluZGljYXRlZCAyLDQ5NSBwZW9wbGUgcGFydGljaXBhdGVkLiBPZiB0aG9zZSBwYXJ0aWNpcGF0aW5nIDEsMjIyIHdlcmUgbWFsZSwgMSwxMzcgd2VyZSBmZW1hbGUsIGFuZCAxMzYgY2hvc2Ugb3RoZXIuDQoNCmBgYHtyfQ0KZ2xpbXBzZShkYXRhKQ0KDQpgYGANCg0KYGBge3J9DQpkYXRhIDwtIGRhdGEgJT4lIA0KICBtdXRhdGUoZ2VuZGVyID0gZmN0X3JlY29kZShnZW5kZXIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTm8gUmVzcG9uc2UiID0gIjAiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk1hbGUiID0gIjEiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiRmVtYWxlIiA9ICIyIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk90aGVyIiA9ICIzIikpDQpkYXRhICU+JSANCiAgY291bnQoZ2VuZGVyKQ0KYGBgDQoNCg0KYGBge3J9DQpkYXRhIDwtIGRhdGEgJT4lIA0KICBtdXRhdGUoZWR1Y2F0aW9uID0gZmN0X2NvbGxhcHNlKGVkdWNhdGlvbiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJIaWdoIFNjaG9vbCBvciBCZWxvdyIgPSBjKCIwIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIjEiKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWUgQ29sbGVnZSBhbmQgQ29sbGVnZSBHcmFkIiA9IGMoIjIiLCAiMyIpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTWFzdGVycyBhbmQgQWJvdmUiID0gIjQiKSkNCg0KZGF0YSAlPiUgDQogIGNvdW50KGVkdWNhdGlvbikNCmBgYA0KDQoNClRoZSBlZHVjYXRpb24gbGV2ZWwgb2YgdGhvc2UgdGhhdCB0b29rIHRoZSBzdXJ2ZXkgd2VyZSBicm9rZW4gdXAgaW50byB0aHJlZSBsZXZlbHMuIEFzIHlvdSBjYW4gc2VlIGluIHRoZSBncmFwaCBiZWxvdywgdGhpcyBkYXRhIGluZGljYXRlcyB0aGF0IHRoZSBtYWpvcml0eSBvZiB0aGUgcGVvcGxlIHN1cnZleWVkIGhhZCBhIHNvbWUgY29sbGVnZSBlZHVjYXRpb24gb3IgaGlnaGVyLg0KDQoNCmBgYHtyfQ0KZGF0YSAlPiUgDQogIGRyb3BfbmEoZWR1Y2F0aW9uKSAlPiUgDQogIGdncGxvdChhZXMoeCA9IGVkdWNhdGlvbiwgZmlsbCA9IGdlbmRlcikpICsNCiAgZ2VvbV9iYXIocG9zaXRpb24gPSAiZG9kZ2UiKSArDQogIHNjYWxlX2ZpbGxfdmlyaWRpc19kKCkgKw0KICBjb29yZF9mbGlwKCkgKw0KICB0aGVtZV9taW5pbWFsKCkgKw0KICBsYWJzKHkgPSAiTnVtYmVyIG9mIHBlb3BsZSIsIA0KICAgICAgIHggPSAiTGV2ZWxzIG9mIEVkdWNhdGlvbiIsIA0KICAgICAgIHRpdGxlID0gIkVkdWNhdGlvbiBMZXZlbHMiKQ0KYGBgDQoNCk5leHQgd2Ugd2lsbCB0YWtlIGEgbG9vayBhdCBzcGVjaWZpYyBxdWVzdGlvbnMgcG9zZWQgdG8gc3VydmV5IHJlY2lwaWVudHMgc3Vycm91bmRpbmcgYWxpZW5zIGFuZCBVRk8gY29udGFjdC4gQmVnaW5uaW5nIHdpdGggc3RhdGVtZW50IHRocmVlIGZyb20gdGhlIEdlbmVyaWMgQ29uc3BpcmFjaXN0IEJlbGllZiBTdXJ2ZXksICJTZWNyZXQgb3JnYW5pemF0aW9ucyBjb21tdW5pY2F0ZSB3aXRoIGV4dHJhdGVycmVzdHJpYWxzIGJ1dCBrZWVwIHRoaXMgZmFjdCBmcm9tIHRoZSBwdWJsaWMuIg0KDQoNCmBgYHtyfQ0KZGF0YSA8LSBkYXRhICU+JSANCiAgbXV0YXRlKFEzID0gYXMuZmFjdG9yKFEzKSkNCg0KDQpkYXRhICU+JSANCiAgY291bnQoUTMpDQpgYGANCg0KT3V0IG9mIDIsNDk1IHJlc3BvbmRlbnRzLCAxLDM2NyBvciAwLjU1IHBlcmNlbnQgb2YgdGhlbSBhbnN3ZXJlZCAiQWdyZWUiIHRvICJTZWNyZXQgb3JnYW5pemF0aW9ucyBjb21tdW5pY2F0ZSB3aXRoIGV4dHJhdGVycmVzdHJpYWxzIGJ1dCBrZWVwIHRoaXMgZmFjdCBmcm9tIHRoZSBwdWJsaWMuIiANCg0KDQpgYGB7cn0NCmRhdGEgJT4lIA0KICBkcm9wX25hKFEzKSAlPiUgDQogIGdncGxvdChhZXMoeCA9IFEzLCBmaWxsID0gZ2VuZGVyKSkgKw0KICBnZW9tX2Jhcihwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoKSArDQogIGNvb3JkX2ZsaXAoKSArDQogIHRoZW1lX21pbmltYWwoKSArDQogIGxhYnMoeSA9ICJOdW1iZXIgb2YgcGVvcGxlIiwgDQogICAgICAgeCA9ICJTZWNyZXQgb3JnYW5pemF0aW9ucyBjb21tdW5pY2F0ZSB3aXRoIGV4dHJhdGVycmVzdHJpYWxzDQogICAgICAgYnV0IGtlZXAgdGhpcyBmYWN0IGZyb20gdGhlIHB1YmxpYy4iLCANCiAgICAgICB0aXRsZSA9ICJDb21tdW5pY2F0aW9uIHdpdGggRXh0cmF0ZXJyZXN0cmlhbHMiKQ0KYGBgDQoNCmBgYHtyfQ0KZGF0YSA8LSBkYXRhICU+JSANCiAgbXV0YXRlKFE4ID0gYXMuZmFjdG9yKFE4KSkNCg0KDQpkYXRhICU+JSANCiAgY291bnQoUTgpDQpgYGANCg0KVGhlIG5leHQgc3RhdGVtZW50IHdlIHdpbGwgbG9vayBhdCBpcyAiRXZpZGVuY2Ugb2YgYWxpZW4gY29udGFjdCBpcyBiZWluZyBjb25jZWFsZWQgZnJvbSB0aGUgcHVibGljLiIgDQoNCg0KYGBge3J9DQpkYXRhIDwtIGRhdGEgJT4lIA0KICBtdXRhdGUoUTggPSBmY3RfcmVjb2RlKFE4LA0KICAgICAgICAgICAgICAgICAgICAgICAgICJBZ3JlZSIgPSAiMSIsDQogICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWV3aGF0IEFncmVlIiA9ICIyIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAiTmV1dHJhbCIgPSAiMyIsDQogICAgICAgICAgICAgICAgICAgICAgICAgIlNvbWV3aGF0IERpc2FncmVlIiA9ICI0IiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAiRGlzYWdyZWUiID0gIjUiKSkNCmRhdGEgJT4lIA0KICBjb3VudChROCkNCmBgYA0KDQoNCkZvcnR5LWZvdXIgcGVyY2VudCBvciAxLDEwOCByZXNwb25kZW50cyBhZ3JlZWQgd2l0aCB0aGF0IGV2aWRlbmNlIG9mIGFsaWVuIGNvbnRhY3QgYmVpbmcga2VwdCBmcm9tIHRoZSBnZW5lcmFsIHB1YmxpYy4NCg0KDQpgYGB7cn0NCmRhdGEgJT4lIA0KICBkcm9wX25hKFE4KSAlPiUgDQogIGdncGxvdChhZXMoeCA9IFE4LCBmaWxsID0gZ2VuZGVyKSkgKw0KICBnZW9tX2Jhcihwb3NpdGlvbiA9ICJkb2RnZSIpICsNCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoKSArDQogIGNvb3JkX2ZsaXAoKSArDQogIHRoZW1lX21pbmltYWwoKSArDQogIGxhYnMoeSA9ICJOdW1iZXIgb2YgcGVvcGxlIiwgDQogICAgICAgeCA9ICJFdmlkZW5jZSBvZiBhbGllbiBjb250YWN0IGlzIGJlaW5nIGNvbmNlYWxlZCBmcm9tIHRoZSBwdWJsaWMuIiwgDQogICAgICAgdGl0bGUgPSAiRXZpZGVuY2Ugb2YgQWxpZW4gQ29udGFjdCIpDQpgYGANCg0KDQpgYGB7cn0NCmRhdGEgPC0gZGF0YSAlPiUgDQogIG11dGF0ZShRMTMgPSBhcy5mYWN0b3IoUTEzKSkNCg0KDQpkYXRhICU+JSANCiAgY291bnQoUTEzKQ0KYGBgDQoNCg0KYGBge3J9DQpkYXRhIDwtIGRhdGEgJT4lIA0KICBtdXRhdGUoUTEzID0gZmN0X3JlY29kZShRMTMsDQogICAgICAgICAgICAgICAgICAgICAgICAgIkFncmVlIiA9ICIxIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZXdoYXQgQWdyZWUiID0gIjIiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICJOZXV0cmFsIiA9ICIzIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAiU29tZXdoYXQgRGlzYWdyZWUiID0gIjQiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICJEaXNhZ3JlZSIgPSAiNSIpKQ0KZGF0YSAlPiUgDQogIGNvdW50KFExMykNCmBgYA0KDQpMYXN0bHksIGZpZnR5LW9uZSBwZXJjZW50IG9yIDEsMjc2IG9mIHRob3NlIHN1cnZleWVkIGFncmVlZCB3aXRoIHRoZSBsYXN0IHN0YXRlbWVudCBvZiAiU29tZSBVRk8gc2lnaHRpbmdzIGFuZCBydW1vcnMgYXJlIHBsYW5uZWQgb3Igc3RhZ2VkIGluIG9yZGVyIHRvIGRpc3RyYWN0IHRoZSBwdWJsaWMgZnJvbSByZWFsIGFsaWVuIGNvbnRhY3QuIg0KDQpgYGB7cn0NCmRhdGEgJT4lIA0KICBkcm9wX25hKFExMykgJT4lIA0KICBnZ3Bsb3QoYWVzKHggPSBRMTMsIGZpbGwgPSBnZW5kZXIpKSArDQogIGdlb21fYmFyKHBvc2l0aW9uID0gImRvZGdlIikgKw0KICBzY2FsZV9maWxsX3ZpcmlkaXNfZCgpICsNCiAgY29vcmRfZmxpcCgpICsNCiAgdGhlbWVfbWluaW1hbCgpICsNCiAgbGFicyh5ID0gIk51bWJlciBvZiBwZW9wbGUiLCANCiAgICAgICB4ID0gIlNvbWUgVUZPIHNpZ2h0aW5ncyBhbmQgcnVtb3JzIGFyZSBwbGFubmVkIG9yIHN0YWdlZCANCiAgICAgICBpbiBvcmRlciB0byBkaXN0cmFjdCB0aGUgcHVibGljIGZyb20gcmVhbCBhbGllbiBjb250YWN0LiIsIA0KICAgICAgIHRpdGxlID0gIlN0YWdlZCBVRk8gU2lnaHRpbmdzIikNCmBgYA0KDQoNClRoaXMgZGF0YXNldCB0ZWxscyB1cyB0aGVyZSBpcyBhIHN0cm9uZyBiZWxpZWYgaW4gY29uc3BpcmFjaWVzLCBhbGllbnMsIGFuZCBVRk9zLiBUaGUgbmV4dCBzdGVwcyB3b3VsZCBiZSB0byBjb25kdWN0IGFuIGFub255bW91cyBzdXJ2ZXkgdG8gc2VlIGlmIHBlcmNlbnRhZ2VzIG9mIGJlbGllZnMgdG93YXJkcyBjb25zcGlyYWN5IHRoZW9yaWVzIGhhdmUgcmlzZW4sIG9yIGhhdmUgdGhleSByZW1haW5lZCB0aGUgc2FtZT8gTXkgaHlwb3RoZXNpcyBpcywgYmVsaWVmIGluIGNvbnNwaXJhY2llcyB3aWxsIGluY3JlYXNlIGFzIHRoZSBnb3Zlcm5tZW50IHJlbGVhc2VzIG1vcmUgYW5kIG1vcmUgaW5mb3JtYXRpb24gcmVnYXJkaW5nIGFsaWVucyBhbmQgVUZPIGNvbnRhY3QuIEFzIHRoaXMgc2VlbXMgdG8gYmUgdHJ1ZSBhbmQgaGFzIGJlZW4gaGlkZGVuIGZyb20gdXMgZm9yIHllYXJzLCB3aGF0IGVsc2UgY291bGQgdGhleSBiZSBoaWRpbmc/IA0KDQoNCioqUmVmZXJlbmNlcyoqDQpCcm90aGVydG8sIFIuLCBGcmVuY2gsIEMuLCBQaWNrZXJpbmcsIEEuLCAoMjAxMykuIE1lYXN1cmluZyBCZWxpZWYgaW4gQ29uc3BpcmFjeSBUaGVvcmllczogVGhlIEdlbmVyaWMgQ29uc3BpcmFjaXN0IEJlbGllZnMgU2NhbGUuICpGcm9udGllcnMgaW4gUHN5Y2hvbG9neSouIFZPTCAuIDIwMTMuDQogIGh0dHBzOi8vd3d3LmZyb250aWVyc2luLm9yZy9hcnRpY2xlLzEwLjMzODkvZnBzeWcuMjAxMy4wMDI3OSAgICAgDQogIERPST0xMC4zMzg5L2Zwc3lnLjIwMTMuMDAyNzkgICAgDQogIElTU049MTY2NC0xMDc4ICAgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQo=