Carregando a Base de Dados

load("C:/Users/sgonc/Desktop/Base_de_dados-master/df_pokemon.RData")

names(df)
##  [1] "id"              "pokemon"         "species_id"      "height"         
##  [5] "weight"          "base_experience" "type_1"          "type_2"         
##  [9] "attack"          "defense"         "hp"              "special_attack" 
## [13] "special_defense" "speed"           "color_1"         "color_2"        
## [17] "color_f"         "egg_group_1"     "egg_group_2"     "url_image"      
## [21] "x"               "y"

Diagrama de dispersão : Velocidade x Ataque

plot(df$speed, df$attack, pch=20, col="blue", main = "Diagrama de dispersão",
     xlab = "Velocidade", ylab = "Poder de ataque")
abline(lsfit(df$speed, df$attack), col="darkblue")

Carregar as bibliotecas

library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.5
## corrplot 0.84 loaded
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Matriz de correlação entre Velocidade e Ataque

cor(df$speed, df$attack)
## [1] 0.3356615
poke_quanti <- df %>% select(speed, attack, height, weight, defense, hp, special_attack, special_defense)
poke_quanti
## # A tibble: 718 x 8
##    speed attack height weight defense    hp special_attack special_defense
##    <int>  <int>  <int>  <int>   <int> <int>          <int>           <int>
##  1    45     49      7     69      49    45             65              65
##  2    60     62     10    130      63    60             80              80
##  3    80     82     20   1000      83    80            100             100
##  4    65     52      6     85      43    39             60              50
##  5    80     64     11    190      58    58             80              65
##  6   100     84     17    905      78    78            109              85
##  7    43     48      5     90      65    44             50              64
##  8    58     63     10    225      80    59             65              80
##  9    78     83     16    855     100    79             85             105
## 10    45     30      3     29      35    45             20              20
## # ... with 708 more rows
MCorrel <- cor(poke_quanti)
MCorrel
##                       speed    attack    height    weight     defense        hp
## speed            1.00000000 0.3356615 0.2249439 0.1081207 -0.00597676 0.1694177
## attack           0.33566149 1.0000000 0.4088367 0.4605428  0.43177454 0.4298658
## height           0.22494390 0.4088367 1.0000000 0.6465813  0.35995909 0.4401011
## weight           0.10812069 0.4605428 0.6465813 1.0000000  0.48171259 0.4314012
## defense         -0.00597676 0.4317745 0.3599591 0.4817126  1.00000000 0.2352107
## hp               0.16941766 0.4298658 0.4401011 0.4314012  0.23521065 1.0000000
## special_attack   0.44706699 0.3278213 0.3330252 0.2793074  0.19828306 0.3678422
## special_defense  0.23825607 0.2008107 0.3239820 0.3403940  0.48187370 0.3838715
##                 special_attack special_defense
## speed                0.4470670       0.2382561
## attack               0.3278213       0.2008107
## height               0.3330252       0.3239820
## weight               0.2793074       0.3403940
## defense              0.1982831       0.4818737
## hp                   0.3678422       0.3838715
## special_attack       1.0000000       0.4867300
## special_defense      0.4867300       1.0000000
corrplot(MCorrel, addCoef.col = TRUE, number.cex = 0.7)