Data
Search for Best Configuration
M1 <- 1000001
M2 <- 2000000
Xsum <- numeric(0)
Values_mat <- numeric(0)
for(k in M1:M2){
set.seed(k)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
}
colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
cor(Values_mat) %>%
round(4)
## X1 X2 X3 X4 X5 X6
## X1 1.0000 -0.0032 0.0205 0.0055 -0.0014 -0.0048
## X2 -0.0032 1.0000 -0.0040 -0.0002 -0.0026 0.0017
## X3 0.0205 -0.0040 1.0000 0.0023 -0.0018 -0.0044
## X4 0.0055 -0.0002 0.0023 1.0000 -0.0026 0.0015
## X5 -0.0014 -0.0026 -0.0018 -0.0026 1.0000 -0.0025
## X6 -0.0048 0.0017 -0.0044 0.0015 -0.0025 1.0000
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.70 16.43 20.41 21.05 24.96 64.05
Xsum %>%
sd %>%
round(2)
## [1] 6.42
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 1018104 1037045 1041956 1049824 1061039 1069521 1085722 1095609 1110740 1112269
## 3.70 4.51 4.74 4.20 4.09 4.94 4.00 4.74 4.61 4.39
## 1118034 1123352 1137351 1171643 1177936 1181085 1198449 1203583 1224986 1225143
## 4.18 4.85 4.95 4.92 4.65 4.85 4.69 4.81 3.04 4.92
## 1238856 1247492 1268598 1270360 1270872 1277724 1308287 1338454 1341067 1355056
## 3.79 4.92 4.09 4.94 4.85 4.89 3.58 4.85 4.96 4.94
## 1370886 1373575 1380383 1383911 1384735 1387329 1391248 1394924 1429714 1441114
## 4.12 3.66 3.88 4.57 4.74 4.45 4.85 4.42 4.82 2.70
## 1463676 1468769 1472420 1474897 1475765 1480132 1496299 1512072 1523295 1531738
## 4.76 4.79 4.77 4.70 4.70 4.37 3.21 4.81 4.41 4.67
## 1541593 1545993 1550187 1553129 1558254 1560098 1584945 1610184 1619881 1622213
## 4.91 4.73 4.84 4.74 4.56 4.28 4.11 4.03 4.28 3.80
## 1626416 1627520 1632961 1640255 1643641 1648515 1654738 1668062 1669372 1673015
## 4.66 4.29 2.97 4.45 4.19 4.78 4.80 3.85 4.87 3.76
## 1677633 1678909 1690878 1703196 1704560 1732088 1743416 1744583 1745877 1750073
## 3.38 4.31 3.85 3.90 4.33 4.80 4.59 4.73 4.73 4.97
## 1758681 1759019 1801476 1810071 1838888 1845775 1867753 1869142 1881400 1887657
## 4.76 4.56 4.96 5.00 4.61 4.99 4.94 4.49 4.85 4.88
## 1920200 1927516 1934565 1971266 1974611 1987441
## 5.00 4.33 4.87 3.27 4.81 4.89
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "1441114"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(class_roll)
## $Values
## [1] 1.2869471 0.2058171 0.0000000 0.3941606 0.4497599 0.3595136
##
## $Xsum
## [1] 2.696198
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2015, "2015", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2015 이전", 2016:2021))
tbl1 %>%
pander
Red |
16 |
37 |
31 |
38 |
16 |
63 |
42 |
Black |
16 |
31 |
33 |
36 |
19 |
69 |
39 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 1.286947
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
122 |
121 |
Black |
117 |
126 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.2058171
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.3941606
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
21 |
22 |
21 |
26 |
30 |
22 |
21 |
28 |
25 |
27 |
Black |
20 |
21 |
24 |
27 |
29 |
22 |
21 |
30 |
24 |
25 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 0.4497599
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
46 |
42 |
17 |
138 |
Black |
46 |
41 |
14 |
142 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.3595136
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 2.696198