library(tidyverse)
Registered S3 methods overwritten by 'dbplyr':
  method         from
  print.tbl_lazy     
  print.tbl_sql      
── Attaching packages ──────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.3     ✓ purrr   0.3.4
✓ tibble  3.0.5     ✓ dplyr   1.0.3
✓ tidyr   1.1.2     ✓ stringr 1.4.0
✓ readr   1.4.0     ✓ forcats 0.5.0
── Conflicts ─────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(readxl)
install.packages("readxl")
Error in install.packages : Updating loaded packages
install.packages("readxl")
Error in install.packages : Updating loaded packages
install.packages("ggplot2")

Restarting R session...
stress <- readxl::read_excel("stress.xlsx")
stress
stress <- stress %>% 
  mutate(gender = as.factor(gender))


stress %>% 
  count(gender)

I only had females take my survey because I only wanted to analyze how they cope with stress and if there is a correlation between their major, sport, eating habits, and sleeping habits.

stress <- stress %>% 
  mutate(play = as.factor(play))


stress %>% 
  count(play)

9 people did not play a sport and 18 did.

stress %>% 
  drop_na(major) %>% 
  ggplot(aes(x = major)) +
  geom_bar() +
  facet_wrap(vars(play)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of people", 
       x = "play sport", 
       title = "does the subject play a sport")

This shows if the person played a sport and what their majors were.

stress <- stress %>% 
  mutate(stress = as.factor(stress))


stress %>% 
  count(stress)

9 people answered “sometimes” to the question that said “are you more stressed in your competition season compared to the off season?” and 18 people answered “yes”.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(play)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "play a sport")

This shows a correlation between stress level and if they play a sport or not.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(season)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "if their stress is higher in season")

People that played a sport have a higher stress level in their competition season than their off season.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(sleep)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "get enough sleep?")

People that answered “yes” they are stressed, often times did not get enough sleep.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(food)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "eat healthy food?")

This did not show a correlation between stress level and healthy foods.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(cope)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "know how to cope with stress?")

The majority of people who are stressed state that they do know how to cope with their stress.

stress %>% 
  drop_na(stress) %>% 
  ggplot(aes(x = stress)) +
  geom_bar() +
  facet_wrap(vars(working)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "is the coping working?")

Even though people answered that they do know how to cope with stress, a majority said that they do not know how to cope with it.

stress %>% 
  drop_na(gender) %>% 
  ggplot(aes(x = gender)) +
  geom_bar() +
  facet_wrap(vars(level)) +
  coord_flip() +
  theme_minimal() +
  labs(y = "Number of People", 
       x = "stress", 
       title = "stress level 1-10 ")

All the participants answered a questions asking them to rate their stress. (1=low, 10=high)

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHJlYWR4bCkKYGBgCgoKYGBge3J9Cmluc3RhbGwucGFja2FnZXMoInJlYWR4bCIpCmBgYAoKYGBge3J9Cmluc3RhbGwucGFja2FnZXMoInJlYWR4bCIpCmBgYAoKCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJnZ3Bsb3QyIikKYGBgCgpgYGB7cn0Kc3RyZXNzIDwtIHJlYWR4bDo6cmVhZF9leGNlbCgic3RyZXNzLnhsc3giKQpgYGAKCmBgYHtyfQpzdHJlc3MKYGBgCgoKYGBge3J9CnN0cmVzcyA8LSBzdHJlc3MgJT4lIAogIG11dGF0ZShnZW5kZXIgPSBhcy5mYWN0b3IoZ2VuZGVyKSkKCgpzdHJlc3MgJT4lIAogIGNvdW50KGdlbmRlcikKYGBgCgpJIG9ubHkgaGFkIGZlbWFsZXMgdGFrZSBteSBzdXJ2ZXkgYmVjYXVzZSBJIG9ubHkgd2FudGVkIHRvIGFuYWx5emUgaG93IHRoZXkgY29wZSB3aXRoIHN0cmVzcyBhbmQgaWYgdGhlcmUgaXMgYSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZWlyIG1ham9yLCBzcG9ydCwgZWF0aW5nIGhhYml0cywgYW5kIHNsZWVwaW5nIGhhYml0cy4gCgoKCmBgYHtyfQpzdHJlc3MgPC0gc3RyZXNzICU+JSAKICBtdXRhdGUocGxheSA9IGFzLmZhY3RvcihwbGF5KSkKCgpzdHJlc3MgJT4lIAogIGNvdW50KHBsYXkpCmBgYAoKOSBwZW9wbGUgZGlkIG5vdCBwbGF5IGEgc3BvcnQgYW5kIDE4IGRpZC4gCgoKYGBge3J9CnN0cmVzcyAlPiUgCiAgZHJvcF9uYShtYWpvcikgJT4lIAogIGdncGxvdChhZXMoeCA9IG1ham9yKSkgKwogIGdlb21fYmFyKCkgKwogIGZhY2V0X3dyYXAodmFycyhwbGF5KSkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHkgPSAiTnVtYmVyIG9mIHBlb3BsZSIsIAogICAgICAgeCA9ICJwbGF5IHNwb3J0IiwgCiAgICAgICB0aXRsZSA9ICJkb2VzIHRoZSBzdWJqZWN0IHBsYXkgYSBzcG9ydCIpCmBgYApUaGlzIHNob3dzIGlmIHRoZSBwZXJzb24gcGxheWVkIGEgc3BvcnQgYW5kIHdoYXQgdGhlaXIgbWFqb3JzIHdlcmUuIAoKCgpgYGB7cn0Kc3RyZXNzIDwtIHN0cmVzcyAlPiUgCiAgbXV0YXRlKHN0cmVzcyA9IGFzLmZhY3RvcihzdHJlc3MpKQoKCnN0cmVzcyAlPiUgCiAgY291bnQoc3RyZXNzKQpgYGAKOSBwZW9wbGUgYW5zd2VyZWQgInNvbWV0aW1lcyIgdG8gdGhlIHF1ZXN0aW9uIHRoYXQgc2FpZCAiYXJlIHlvdSBtb3JlIHN0cmVzc2VkIGluIHlvdXIgY29tcGV0aXRpb24gc2Vhc29uIGNvbXBhcmVkIHRvIHRoZSBvZmYgc2Vhc29uPyIgYW5kIDE4IHBlb3BsZSBhbnN3ZXJlZCAieWVzIi4gCgoKCmBgYHtyfQpzdHJlc3MgJT4lIAogIGRyb3BfbmEoc3RyZXNzKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gc3RyZXNzKSkgKwogIGdlb21fYmFyKCkgKwogIGZhY2V0X3dyYXAodmFycyhwbGF5KSkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHkgPSAiTnVtYmVyIG9mIFBlb3BsZSIsIAogICAgICAgeCA9ICJzdHJlc3MiLCAKICAgICAgIHRpdGxlID0gInBsYXkgYSBzcG9ydCIpCmBgYAoKVGhpcyBzaG93cyBhIGNvcnJlbGF0aW9uIGJldHdlZW4gc3RyZXNzIGxldmVsIGFuZCBpZiB0aGV5IHBsYXkgYSBzcG9ydCBvciBub3QuIAoKCgoKYGBge3J9CnN0cmVzcyAlPiUgCiAgZHJvcF9uYShzdHJlc3MpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBzdHJlc3MpKSArCiAgZ2VvbV9iYXIoKSArCiAgZmFjZXRfd3JhcCh2YXJzKHNlYXNvbikpICsKICBjb29yZF9mbGlwKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh5ID0gIk51bWJlciBvZiBQZW9wbGUiLCAKICAgICAgIHggPSAic3RyZXNzIiwgCiAgICAgICB0aXRsZSA9ICJpZiB0aGVpciBzdHJlc3MgaXMgaGlnaGVyIGluIHNlYXNvbiIpCmBgYAoKUGVvcGxlIHRoYXQgcGxheWVkIGEgc3BvcnQgaGF2ZSBhIGhpZ2hlciBzdHJlc3MgbGV2ZWwgaW4gdGhlaXIgY29tcGV0aXRpb24gc2Vhc29uIHRoYW4gdGhlaXIgb2ZmIHNlYXNvbi4KCgpgYGB7cn0Kc3RyZXNzICU+JSAKICBkcm9wX25hKHN0cmVzcykgJT4lIAogIGdncGxvdChhZXMoeCA9IHN0cmVzcykpICsKICBnZW9tX2JhcigpICsKICBmYWNldF93cmFwKHZhcnMoc2xlZXApKSArCiAgY29vcmRfZmxpcCgpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoeSA9ICJOdW1iZXIgb2YgUGVvcGxlIiwgCiAgICAgICB4ID0gInN0cmVzcyIsIAogICAgICAgdGl0bGUgPSAiZ2V0IGVub3VnaCBzbGVlcD8iKQpgYGAKClBlb3BsZSB0aGF0IGFuc3dlcmVkICJ5ZXMiIHRoZXkgYXJlIHN0cmVzc2VkLCBvZnRlbiB0aW1lcyBkaWQgbm90IGdldCBlbm91Z2ggc2xlZXAuIAoKYGBge3J9CnN0cmVzcyAlPiUgCiAgZHJvcF9uYShzdHJlc3MpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBzdHJlc3MpKSArCiAgZ2VvbV9iYXIoKSArCiAgZmFjZXRfd3JhcCh2YXJzKGZvb2QpKSArCiAgY29vcmRfZmxpcCgpICsKICB0aGVtZV9taW5pbWFsKCkgKwogIGxhYnMoeSA9ICJOdW1iZXIgb2YgUGVvcGxlIiwgCiAgICAgICB4ID0gInN0cmVzcyIsIAogICAgICAgdGl0bGUgPSAiZWF0IGhlYWx0aHkgZm9vZD8iKQpgYGAKClRoaXMgZGlkIG5vdCBzaG93IGEgY29ycmVsYXRpb24gYmV0d2VlbiBzdHJlc3MgbGV2ZWwgYW5kIGhlYWx0aHkgZm9vZHMuCgoKCmBgYHtyfQpzdHJlc3MgJT4lIAogIGRyb3BfbmEoc3RyZXNzKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gc3RyZXNzKSkgKwogIGdlb21fYmFyKCkgKwogIGZhY2V0X3dyYXAodmFycyhjb3BlKSkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHkgPSAiTnVtYmVyIG9mIFBlb3BsZSIsIAogICAgICAgeCA9ICJzdHJlc3MiLCAKICAgICAgIHRpdGxlID0gImtub3cgaG93IHRvIGNvcGUgd2l0aCBzdHJlc3M/IikKYGBgClRoZSBtYWpvcml0eSBvZiBwZW9wbGUgd2hvIGFyZSBzdHJlc3NlZCBzdGF0ZSB0aGF0IHRoZXkgZG8ga25vdyBob3cgdG8gY29wZSB3aXRoIHRoZWlyIHN0cmVzcy4KCgpgYGB7cn0Kc3RyZXNzICU+JSAKICBkcm9wX25hKHN0cmVzcykgJT4lIAogIGdncGxvdChhZXMoeCA9IHN0cmVzcykpICsKICBnZW9tX2JhcigpICsKICBmYWNldF93cmFwKHZhcnMod29ya2luZykpICsKICBjb29yZF9mbGlwKCkgKwogIHRoZW1lX21pbmltYWwoKSArCiAgbGFicyh5ID0gIk51bWJlciBvZiBQZW9wbGUiLCAKICAgICAgIHggPSAic3RyZXNzIiwgCiAgICAgICB0aXRsZSA9ICJpcyB0aGUgY29waW5nIHdvcmtpbmc/IikKYGBgCgpFdmVuIHRob3VnaCBwZW9wbGUgYW5zd2VyZWQgdGhhdCB0aGV5IGRvIGtub3cgaG93IHRvIGNvcGUgd2l0aCBzdHJlc3MsIGEgbWFqb3JpdHkgc2FpZCB0aGF0IHRoZXkgZG8gbm90IGtub3cgaG93IHRvIGNvcGUgd2l0aCBpdC4gCgoKYGBge3J9CnN0cmVzcyAlPiUgCiAgZHJvcF9uYShnZW5kZXIpICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBnZW5kZXIpKSArCiAgZ2VvbV9iYXIoKSArCiAgZmFjZXRfd3JhcCh2YXJzKGxldmVsKSkgKwogIGNvb3JkX2ZsaXAoKSArCiAgdGhlbWVfbWluaW1hbCgpICsKICBsYWJzKHkgPSAiTnVtYmVyIG9mIFBlb3BsZSIsIAogICAgICAgeCA9ICJzdHJlc3MiLCAKICAgICAgIHRpdGxlID0gInN0cmVzcyBsZXZlbCAxLTEwICIpCmBgYAoKQWxsIHRoZSBwYXJ0aWNpcGFudHMgYW5zd2VyZWQgYSBxdWVzdGlvbnMgYXNraW5nIHRoZW0gdG8gcmF0ZSB0aGVpciBzdHJlc3MuICgxPWxvdywgMTA9aGlnaCkKCgoKCgo=