# 周次:w12
# 任務:應用(資料框處理與繪圖)
# 姓名:高千琇
# 日期:2021年04月21日
### 資料框處理
# 請至台灣傳播資料庫下載「2019年調查」的sav檔
# 網址:https://www.crctaiwan.nctu.edu.tw/AnnualSurvey.asp
## 1. 將輸入的sav檔案命名為tcs2019
# install.packages("sjlabelled")
library(sjlabelled)
tcs2019 <- read_spss("tcs2019.sav") 

## 2. 檢視資料框的各種函數
# 列數
#nrow(tcs2019)
# 檢視資料框內容
#View(tcs2019)
# 前六行
#head(tcs2019)
# 後六行
#tail(tcs2019)
# 欄位名稱或變數名稱
#names(tcs2019)
# 另一種寫法
#colnames(tcs2019)
# 得知每個變數的描述性統計量
#summary(tcs2019)
# 得知資料框複合式的資訊
# (含資料結構種類、觀察值個數、變數個數、前幾筆觀察值資訊等)
#str(tcs2019)
## 欄數
#ncol(tcs2019)
## 維度
#dim(tcs2019)
## 列的索引值
row.names(tcs2019)
##    [1] "1"    "2"    "3"    "4"    "5"    "6"    "7"    "8"    "9"    "10"  
##   [11] "11"   "12"   "13"   "14"   "15"   "16"   "17"   "18"   "19"   "20"  
##   [21] "21"   "22"   "23"   "24"   "25"   "26"   "27"   "28"   "29"   "30"  
##   [31] "31"   "32"   "33"   "34"   "35"   "36"   "37"   "38"   "39"   "40"  
##   [41] "41"   "42"   "43"   "44"   "45"   "46"   "47"   "48"   "49"   "50"  
##   [51] "51"   "52"   "53"   "54"   "55"   "56"   "57"   "58"   "59"   "60"  
##   [61] "61"   "62"   "63"   "64"   "65"   "66"   "67"   "68"   "69"   "70"  
##   [71] "71"   "72"   "73"   "74"   "75"   "76"   "77"   "78"   "79"   "80"  
##   [81] "81"   "82"   "83"   "84"   "85"   "86"   "87"   "88"   "89"   "90"  
##   [91] "91"   "92"   "93"   "94"   "95"   "96"   "97"   "98"   "99"   "100" 
##  [101] "101"  "102"  "103"  "104"  "105"  "106"  "107"  "108"  "109"  "110" 
##  [111] "111"  "112"  "113"  "114"  "115"  "116"  "117"  "118"  "119"  "120" 
##  [121] "121"  "122"  "123"  "124"  "125"  "126"  "127"  "128"  "129"  "130" 
##  [131] "131"  "132"  "133"  "134"  "135"  "136"  "137"  "138"  "139"  "140" 
##  [141] "141"  "142"  "143"  "144"  "145"  "146"  "147"  "148"  "149"  "150" 
##  [151] "151"  "152"  "153"  "154"  "155"  "156"  "157"  "158"  "159"  "160" 
##  [161] "161"  "162"  "163"  "164"  "165"  "166"  "167"  "168"  "169"  "170" 
##  [171] "171"  "172"  "173"  "174"  "175"  "176"  "177"  "178"  "179"  "180" 
##  [181] "181"  "182"  "183"  "184"  "185"  "186"  "187"  "188"  "189"  "190" 
##  [191] "191"  "192"  "193"  "194"  "195"  "196"  "197"  "198"  "199"  "200" 
##  [201] "201"  "202"  "203"  "204"  "205"  "206"  "207"  "208"  "209"  "210" 
##  [211] "211"  "212"  "213"  "214"  "215"  "216"  "217"  "218"  "219"  "220" 
##  [221] "221"  "222"  "223"  "224"  "225"  "226"  "227"  "228"  "229"  "230" 
##  [231] "231"  "232"  "233"  "234"  "235"  "236"  "237"  "238"  "239"  "240" 
##  [241] "241"  "242"  "243"  "244"  "245"  "246"  "247"  "248"  "249"  "250" 
##  [251] "251"  "252"  "253"  "254"  "255"  "256"  "257"  "258"  "259"  "260" 
##  [261] "261"  "262"  "263"  "264"  "265"  "266"  "267"  "268"  "269"  "270" 
##  [271] "271"  "272"  "273"  "274"  "275"  "276"  "277"  "278"  "279"  "280" 
##  [281] "281"  "282"  "283"  "284"  "285"  "286"  "287"  "288"  "289"  "290" 
##  [291] "291"  "292"  "293"  "294"  "295"  "296"  "297"  "298"  "299"  "300" 
##  [301] "301"  "302"  "303"  "304"  "305"  "306"  "307"  "308"  "309"  "310" 
##  [311] "311"  "312"  "313"  "314"  "315"  "316"  "317"  "318"  "319"  "320" 
##  [321] "321"  "322"  "323"  "324"  "325"  "326"  "327"  "328"  "329"  "330" 
##  [331] "331"  "332"  "333"  "334"  "335"  "336"  "337"  "338"  "339"  "340" 
##  [341] "341"  "342"  "343"  "344"  "345"  "346"  "347"  "348"  "349"  "350" 
##  [351] "351"  "352"  "353"  "354"  "355"  "356"  "357"  "358"  "359"  "360" 
##  [361] "361"  "362"  "363"  "364"  "365"  "366"  "367"  "368"  "369"  "370" 
##  [371] "371"  "372"  "373"  "374"  "375"  "376"  "377"  "378"  "379"  "380" 
##  [381] "381"  "382"  "383"  "384"  "385"  "386"  "387"  "388"  "389"  "390" 
##  [391] "391"  "392"  "393"  "394"  "395"  "396"  "397"  "398"  "399"  "400" 
##  [401] "401"  "402"  "403"  "404"  "405"  "406"  "407"  "408"  "409"  "410" 
##  [411] "411"  "412"  "413"  "414"  "415"  "416"  "417"  "418"  "419"  "420" 
##  [421] "421"  "422"  "423"  "424"  "425"  "426"  "427"  "428"  "429"  "430" 
##  [431] "431"  "432"  "433"  "434"  "435"  "436"  "437"  "438"  "439"  "440" 
##  [441] "441"  "442"  "443"  "444"  "445"  "446"  "447"  "448"  "449"  "450" 
##  [451] "451"  "452"  "453"  "454"  "455"  "456"  "457"  "458"  "459"  "460" 
##  [461] "461"  "462"  "463"  "464"  "465"  "466"  "467"  "468"  "469"  "470" 
##  [471] "471"  "472"  "473"  "474"  "475"  "476"  "477"  "478"  "479"  "480" 
##  [481] "481"  "482"  "483"  "484"  "485"  "486"  "487"  "488"  "489"  "490" 
##  [491] "491"  "492"  "493"  "494"  "495"  "496"  "497"  "498"  "499"  "500" 
##  [501] "501"  "502"  "503"  "504"  "505"  "506"  "507"  "508"  "509"  "510" 
##  [511] "511"  "512"  "513"  "514"  "515"  "516"  "517"  "518"  "519"  "520" 
##  [521] "521"  "522"  "523"  "524"  "525"  "526"  "527"  "528"  "529"  "530" 
##  [531] "531"  "532"  "533"  "534"  "535"  "536"  "537"  "538"  "539"  "540" 
##  [541] "541"  "542"  "543"  "544"  "545"  "546"  "547"  "548"  "549"  "550" 
##  [551] "551"  "552"  "553"  "554"  "555"  "556"  "557"  "558"  "559"  "560" 
##  [561] "561"  "562"  "563"  "564"  "565"  "566"  "567"  "568"  "569"  "570" 
##  [571] "571"  "572"  "573"  "574"  "575"  "576"  "577"  "578"  "579"  "580" 
##  [581] "581"  "582"  "583"  "584"  "585"  "586"  "587"  "588"  "589"  "590" 
##  [591] "591"  "592"  "593"  "594"  "595"  "596"  "597"  "598"  "599"  "600" 
##  [601] "601"  "602"  "603"  "604"  "605"  "606"  "607"  "608"  "609"  "610" 
##  [611] "611"  "612"  "613"  "614"  "615"  "616"  "617"  "618"  "619"  "620" 
##  [621] "621"  "622"  "623"  "624"  "625"  "626"  "627"  "628"  "629"  "630" 
##  [631] "631"  "632"  "633"  "634"  "635"  "636"  "637"  "638"  "639"  "640" 
##  [641] "641"  "642"  "643"  "644"  "645"  "646"  "647"  "648"  "649"  "650" 
##  [651] "651"  "652"  "653"  "654"  "655"  "656"  "657"  "658"  "659"  "660" 
##  [661] "661"  "662"  "663"  "664"  "665"  "666"  "667"  "668"  "669"  "670" 
##  [671] "671"  "672"  "673"  "674"  "675"  "676"  "677"  "678"  "679"  "680" 
##  [681] "681"  "682"  "683"  "684"  "685"  "686"  "687"  "688"  "689"  "690" 
##  [691] "691"  "692"  "693"  "694"  "695"  "696"  "697"  "698"  "699"  "700" 
##  [701] "701"  "702"  "703"  "704"  "705"  "706"  "707"  "708"  "709"  "710" 
##  [711] "711"  "712"  "713"  "714"  "715"  "716"  "717"  "718"  "719"  "720" 
##  [721] "721"  "722"  "723"  "724"  "725"  "726"  "727"  "728"  "729"  "730" 
##  [731] "731"  "732"  "733"  "734"  "735"  "736"  "737"  "738"  "739"  "740" 
##  [741] "741"  "742"  "743"  "744"  "745"  "746"  "747"  "748"  "749"  "750" 
##  [751] "751"  "752"  "753"  "754"  "755"  "756"  "757"  "758"  "759"  "760" 
##  [761] "761"  "762"  "763"  "764"  "765"  "766"  "767"  "768"  "769"  "770" 
##  [771] "771"  "772"  "773"  "774"  "775"  "776"  "777"  "778"  "779"  "780" 
##  [781] "781"  "782"  "783"  "784"  "785"  "786"  "787"  "788"  "789"  "790" 
##  [791] "791"  "792"  "793"  "794"  "795"  "796"  "797"  "798"  "799"  "800" 
##  [801] "801"  "802"  "803"  "804"  "805"  "806"  "807"  "808"  "809"  "810" 
##  [811] "811"  "812"  "813"  "814"  "815"  "816"  "817"  "818"  "819"  "820" 
##  [821] "821"  "822"  "823"  "824"  "825"  "826"  "827"  "828"  "829"  "830" 
##  [831] "831"  "832"  "833"  "834"  "835"  "836"  "837"  "838"  "839"  "840" 
##  [841] "841"  "842"  "843"  "844"  "845"  "846"  "847"  "848"  "849"  "850" 
##  [851] "851"  "852"  "853"  "854"  "855"  "856"  "857"  "858"  "859"  "860" 
##  [861] "861"  "862"  "863"  "864"  "865"  "866"  "867"  "868"  "869"  "870" 
##  [871] "871"  "872"  "873"  "874"  "875"  "876"  "877"  "878"  "879"  "880" 
##  [881] "881"  "882"  "883"  "884"  "885"  "886"  "887"  "888"  "889"  "890" 
##  [891] "891"  "892"  "893"  "894"  "895"  "896"  "897"  "898"  "899"  "900" 
##  [901] "901"  "902"  "903"  "904"  "905"  "906"  "907"  "908"  "909"  "910" 
##  [911] "911"  "912"  "913"  "914"  "915"  "916"  "917"  "918"  "919"  "920" 
##  [921] "921"  "922"  "923"  "924"  "925"  "926"  "927"  "928"  "929"  "930" 
##  [931] "931"  "932"  "933"  "934"  "935"  "936"  "937"  "938"  "939"  "940" 
##  [941] "941"  "942"  "943"  "944"  "945"  "946"  "947"  "948"  "949"  "950" 
##  [951] "951"  "952"  "953"  "954"  "955"  "956"  "957"  "958"  "959"  "960" 
##  [961] "961"  "962"  "963"  "964"  "965"  "966"  "967"  "968"  "969"  "970" 
##  [971] "971"  "972"  "973"  "974"  "975"  "976"  "977"  "978"  "979"  "980" 
##  [981] "981"  "982"  "983"  "984"  "985"  "986"  "987"  "988"  "989"  "990" 
##  [991] "991"  "992"  "993"  "994"  "995"  "996"  "997"  "998"  "999"  "1000"
## [1001] "1001" "1002" "1003" "1004" "1005" "1006" "1007" "1008" "1009" "1010"
## [1011] "1011" "1012" "1013" "1014" "1015" "1016" "1017" "1018" "1019" "1020"
## [1021] "1021" "1022" "1023" "1024" "1025" "1026" "1027" "1028" "1029" "1030"
## [1031] "1031" "1032" "1033" "1034" "1035" "1036" "1037" "1038" "1039" "1040"
## [1041] "1041" "1042" "1043" "1044" "1045" "1046" "1047" "1048" "1049" "1050"
## [1051] "1051" "1052" "1053" "1054" "1055" "1056" "1057" "1058" "1059" "1060"
## [1061] "1061" "1062" "1063" "1064" "1065" "1066" "1067" "1068" "1069" "1070"
## [1071] "1071" "1072" "1073" "1074" "1075" "1076" "1077" "1078" "1079" "1080"
## [1081] "1081" "1082" "1083" "1084" "1085" "1086" "1087" "1088" "1089" "1090"
## [1091] "1091" "1092" "1093" "1094" "1095" "1096" "1097" "1098" "1099" "1100"
## [1101] "1101" "1102" "1103" "1104" "1105" "1106" "1107" "1108" "1109" "1110"
## [1111] "1111" "1112" "1113" "1114" "1115" "1116" "1117" "1118" "1119" "1120"
## [1121] "1121" "1122" "1123" "1124" "1125" "1126" "1127" "1128" "1129" "1130"
## [1131] "1131" "1132" "1133" "1134" "1135" "1136" "1137" "1138" "1139" "1140"
## [1141] "1141" "1142" "1143" "1144" "1145" "1146" "1147" "1148" "1149" "1150"
## [1151] "1151" "1152" "1153" "1154" "1155" "1156" "1157" "1158" "1159" "1160"
## [1161] "1161" "1162" "1163" "1164" "1165" "1166" "1167" "1168" "1169" "1170"
## [1171] "1171" "1172" "1173" "1174" "1175" "1176" "1177" "1178" "1179" "1180"
## [1181] "1181" "1182" "1183" "1184" "1185" "1186" "1187" "1188" "1189" "1190"
## [1191] "1191" "1192" "1193" "1194" "1195" "1196" "1197" "1198" "1199" "1200"
## [1201] "1201" "1202" "1203" "1204" "1205" "1206" "1207" "1208" "1209" "1210"
## [1211] "1211" "1212" "1213" "1214" "1215" "1216" "1217" "1218" "1219" "1220"
## [1221] "1221" "1222" "1223" "1224" "1225" "1226" "1227" "1228" "1229" "1230"
## [1231] "1231" "1232" "1233" "1234" "1235" "1236" "1237" "1238" "1239" "1240"
## [1241] "1241" "1242" "1243" "1244" "1245" "1246" "1247" "1248" "1249" "1250"
## [1251] "1251" "1252" "1253" "1254" "1255" "1256" "1257" "1258" "1259" "1260"
## [1261] "1261" "1262" "1263" "1264" "1265" "1266" "1267" "1268" "1269" "1270"
## [1271] "1271" "1272" "1273" "1274" "1275" "1276" "1277" "1278" "1279" "1280"
## [1281] "1281" "1282" "1283" "1284" "1285" "1286" "1287" "1288" "1289" "1290"
## [1291] "1291" "1292" "1293" "1294" "1295" "1296" "1297" "1298" "1299" "1300"
## [1301] "1301" "1302" "1303" "1304" "1305" "1306" "1307" "1308" "1309" "1310"
## [1311] "1311" "1312" "1313" "1314" "1315" "1316" "1317" "1318" "1319" "1320"
## [1321] "1321" "1322" "1323" "1324" "1325" "1326" "1327" "1328" "1329" "1330"
## [1331] "1331" "1332" "1333" "1334" "1335" "1336" "1337" "1338" "1339" "1340"
## [1341] "1341" "1342" "1343" "1344" "1345" "1346" "1347" "1348" "1349" "1350"
## [1351] "1351" "1352" "1353" "1354" "1355" "1356" "1357" "1358" "1359" "1360"
## [1361] "1361" "1362" "1363" "1364" "1365" "1366" "1367" "1368" "1369" "1370"
## [1371] "1371" "1372" "1373" "1374" "1375" "1376" "1377" "1378" "1379" "1380"
## [1381] "1381" "1382" "1383" "1384" "1385" "1386" "1387" "1388" "1389" "1390"
## [1391] "1391" "1392" "1393" "1394" "1395" "1396" "1397" "1398" "1399" "1400"
## [1401] "1401" "1402" "1403" "1404" "1405" "1406" "1407" "1408" "1409" "1410"
## [1411] "1411" "1412" "1413" "1414" "1415" "1416" "1417" "1418" "1419" "1420"
## [1421] "1421" "1422" "1423" "1424" "1425" "1426" "1427" "1428" "1429" "1430"
## [1431] "1431" "1432" "1433" "1434" "1435" "1436" "1437" "1438" "1439" "1440"
## [1441] "1441" "1442" "1443" "1444" "1445" "1446" "1447" "1448" "1449" "1450"
## [1451] "1451" "1452" "1453" "1454" "1455" "1456" "1457" "1458" "1459" "1460"
## [1461] "1461" "1462" "1463" "1464" "1465" "1466" "1467" "1468" "1469" "1470"
## [1471] "1471" "1472" "1473" "1474" "1475" "1476" "1477" "1478" "1479" "1480"
## [1481] "1481" "1482" "1483" "1484" "1485" "1486" "1487" "1488" "1489" "1490"
## [1491] "1491" "1492" "1493" "1494" "1495" "1496" "1497" "1498" "1499" "1500"
## [1501] "1501" "1502" "1503" "1504" "1505" "1506" "1507" "1508" "1509" "1510"
## [1511] "1511" "1512" "1513" "1514" "1515" "1516" "1517" "1518" "1519" "1520"
## [1521] "1521" "1522" "1523" "1524" "1525" "1526" "1527" "1528" "1529" "1530"
## [1531] "1531" "1532" "1533" "1534" "1535" "1536" "1537" "1538" "1539" "1540"
## [1541] "1541" "1542" "1543" "1544" "1545" "1546" "1547" "1548" "1549" "1550"
## [1551] "1551" "1552" "1553" "1554" "1555" "1556" "1557" "1558" "1559" "1560"
## [1561] "1561" "1562" "1563" "1564" "1565" "1566" "1567" "1568" "1569" "1570"
## [1571] "1571" "1572" "1573" "1574" "1575" "1576" "1577" "1578" "1579" "1580"
## [1581] "1581" "1582" "1583" "1584" "1585" "1586" "1587" "1588" "1589" "1590"
## [1591] "1591" "1592" "1593" "1594" "1595" "1596" "1597" "1598" "1599" "1600"
## [1601] "1601" "1602" "1603" "1604" "1605" "1606" "1607" "1608" "1609" "1610"
## [1611] "1611" "1612" "1613" "1614" "1615" "1616" "1617" "1618" "1619" "1620"
## [1621] "1621" "1622" "1623" "1624" "1625" "1626" "1627" "1628" "1629" "1630"
## [1631] "1631" "1632" "1633" "1634" "1635" "1636" "1637" "1638" "1639" "1640"
## [1641] "1641" "1642" "1643" "1644" "1645" "1646" "1647" "1648" "1649" "1650"
## [1651] "1651" "1652" "1653" "1654" "1655" "1656" "1657" "1658" "1659" "1660"
## [1661] "1661" "1662" "1663" "1664" "1665" "1666" "1667" "1668" "1669" "1670"
## [1671] "1671" "1672" "1673" "1674" "1675" "1676" "1677" "1678" "1679" "1680"
## [1681] "1681" "1682" "1683" "1684" "1685" "1686" "1687" "1688" "1689" "1690"
## [1691] "1691" "1692" "1693" "1694" "1695" "1696" "1697" "1698" "1699" "1700"
## [1701] "1701" "1702" "1703" "1704" "1705" "1706" "1707" "1708" "1709" "1710"
## [1711] "1711" "1712" "1713" "1714" "1715" "1716" "1717" "1718" "1719" "1720"
## [1721] "1721" "1722" "1723" "1724" "1725" "1726" "1727" "1728" "1729" "1730"
## [1731] "1731" "1732" "1733" "1734" "1735" "1736" "1737" "1738" "1739" "1740"
## [1741] "1741" "1742" "1743" "1744" "1745" "1746" "1747" "1748" "1749" "1750"
## [1751] "1751" "1752" "1753" "1754" "1755" "1756" "1757" "1758" "1759" "1760"
## [1761] "1761" "1762" "1763" "1764" "1765" "1766" "1767" "1768" "1769" "1770"
## [1771] "1771" "1772" "1773" "1774" "1775" "1776" "1777" "1778" "1779" "1780"
## [1781] "1781" "1782" "1783" "1784" "1785" "1786" "1787" "1788" "1789" "1790"
## [1791] "1791" "1792" "1793" "1794" "1795" "1796" "1797" "1798" "1799" "1800"
## [1801] "1801" "1802" "1803" "1804" "1805" "1806" "1807" "1808" "1809" "1810"
## [1811] "1811" "1812" "1813" "1814" "1815" "1816" "1817" "1818" "1819" "1820"
## [1821] "1821" "1822" "1823" "1824" "1825" "1826" "1827" "1828" "1829" "1830"
## [1831] "1831" "1832" "1833" "1834" "1835" "1836" "1837" "1838" "1839" "1840"
## [1841] "1841" "1842" "1843" "1844" "1845" "1846" "1847" "1848" "1849" "1850"
## [1851] "1851" "1852" "1853" "1854" "1855" "1856" "1857" "1858" "1859" "1860"
## [1861] "1861" "1862" "1863" "1864" "1865" "1866" "1867" "1868" "1869" "1870"
## [1871] "1871" "1872" "1873" "1874" "1875" "1876" "1877" "1878" "1879" "1880"
## [1881] "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889" "1890"
## [1891] "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899" "1900"
## [1901] "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909" "1910"
## [1911] "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919" "1920"
## [1921] "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929" "1930"
## [1931] "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939" "1940"
## [1941] "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949" "1950"
## [1951] "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959" "1960"
## [1961] "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969" "1970"
## [1971] "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979" "1980"
## [1981] "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989" "1990"
## [1991] "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999" "2000"
# 
# # 當資料較大時,建議使用sjPlot套件
# library(sjPlot)
# view_df(tcs2019,
#         file="tcs2019tab.html",  # 結果直接另存新檔
#         show.na = T, # 顯示未重新編碼前的無效值個數
#         show.frq = T, # 顯示次數
#         show.prc = T, # 顯示百分比
#         encoding = "big5"
# )
### 3. 應用實作
# 偵測與處理,讓65+熟齡族告別假新聞危害 
# http://www.crctaiwan.nctu.edu.tw/epaper/%E7%AC%AC202%E6%9C%9F20210409.htm
# RQ1:遇到假新聞的經驗,是否有年齡層的差異存在呢?
# RQ2:對假新聞的感受,是否有年齡層的差異存在呢?
# RQ3:對假新聞的確認與處理方式等,是否有年齡層的差異存在呢?

# (1)確認欲分析的變數
# 年齡 ra2
# 是否有遇到過假新聞? i12.1
# 對假新聞的感受:
# 普遍性 i7a
# 嚴重性 i7b
# 受影響的可能性 i7c
# 確認你接觸到的新聞是不是假新聞? i11.1-i11.8
# 遇到假新聞,你會如何處理? i12.2.1-i12.2.8

# (2)變數整理
# 年齡「變數重新分類」為4類:18-35,36-49,50-64,65UP
# 備註:break的值(x,y,z)是指: group1 >x & <=y; group2 >y & <=z
tcs2019$agegroup <- cut(tcs2019$ra2, breaks=c(17,35,49,64,Inf),
                        labels = c("18至35歲","36至49歲","50至64歲","65歲以上"))
# 檢視各類別有多少人?
table(tcs2019$agegroup)
## 
## 18至35歲 36至49歲 50至64歲 65歲以上 
##      343      534      583      540
# 另一種方法:製作次數分配表
#install.packages("sjmisc")
library(sjmisc)
frq(tcs2019$agegroup, encoding = "big-5", out="v")
x <categorical>
val label frq raw.prc valid.prc cum.prc
18至35歲 343 17.15 17.15 17.15
36至49歲 534 26.70 26.70 43.85
50至64歲 583 29.15 29.15 73.00
65歲以上 540 27.00 27.00 100.00
NA NA 0 0.00 NA NA
total N=2000 · valid N=2000 · x̄=2.66 · σ=1.05
### (3)回答RQ
## RQ1:遇到假新聞的經驗,是否有年齡層的差異存在呢?
## 製表
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
sjt.xtab(tcs2019$agegroup, tcs2019$i12.1,encoding = "utf-8")
agegroup I12-1.你過去是否有遇到過假新聞? Total
有遇到過假新聞 從未遇過假新聞 不知道是否遇過假新聞
18至35歲 304 32 7 343
36至49歲 426 87 21 534
50至64歲 429 116 38 583
65歲以上 309 170 61 540
Total 1468 405 127 2000
χ2=126.835 · df=6 · Cramer’s V=0.178 · p=0.000
#sjt.xtab(tcs2019$i12.1,tcs2019$agegroup,encoding = "utf-8",show.cell.prc = T,
        # show.row.prc = T,
        # show.col.prc = T)
## 製圖
# 1. 變數處理
# (1) 將要繪製的變數變成類別變數或先進行排序
tcs2019$i12.1 <- as.factor(tcs2019$i12.1)
# tcs2019$agegroup <- factor(tcs2019$agegroup, ordered = TRUE,
#                        levels = c("65歲以上", "50至64歲","36至49歲","18至35歲"))

# 2. 安裝並載入 ggplot2
# 參考 R for Data Science書籍: https://r4ds.had.co.nz/index.html
# 參考ggplot2書籍: https://ggplot2-book.org/index.html
# https://blog.gtwang.org/r/ggplot2-tutorial-layer-by-layer-plotting/3/
# https://rpubs.com/chiahung_tsai/lecture05012018
# https://yijutseng.github.io/DataScienceRBook/vis.html
# https://bookdown.org/jefflinmd38/r4biost/dataviz.html
#install.packages("ggplot2")
#載入 ggplot2
library(ggplot2)