#  ordenar os desfechos 1 na frente dos 0
require(survminer)
## Loading required package: survminer
## Warning: package 'survminer' was built under R version 4.0.5
## Loading required package: ggplot2
## Loading required package: ggpubr
## Warning: package 'ggpubr' was built under R version 4.0.5
require(survival)
## Loading required package: survival
require(readxl)
## Loading required package: readxl
#Coinfectados

Cronicos_TB_IO_Janela_para_Lu_1_ <- read_excel("Cronicos_TB_IO Janela para Lu (1).xlsx", 
    sheet = "Coinfectados_TB")
#load("~/banco.Rdata")
#dataset<-banco
#require(survival)
#require(dplyr)
#require(XML)
#require(survminer)
load("C:/Users/edson/Downloads/luciane_novo/outrasvar.RData")
#load("C:/Users/edson/Downloads/luciane_novo/banco_desfecho.RData")
#load("C:/Users/edson/Downloads/luciane_novo/cv_baseFEV21.RData")

#banco_desfecho$Grupo6<-banco_desfecho$Grupo5
#ordenar os desfechos 1 na frente dos 0
#require(dplyr)
#banco_desfecho<-arrange(banco_desfecho,desc(banco_desfecho$desfecho))

#selecionar primeiro prontuario quando tiver mais de um

#banco_desfecho2<-distinct(banco_desfecho, banco_desfecho$Registro, .keep_all=T)

#tranformar dias em meses

#banco_desfecho2$tempomeses<-banco_desfecho2$tempocarini/30
#banco_desfecho2$tempomeses<-as.numeric(banco_desfecho2$tempomeses)

#transformar em NA quando grupo 5 == somente cronico sem cd4
#banco_desfecho2$Grupo5[banco_desfecho2$Grupo5=="Crônico"]<-NA
#banco_desfecho2$Grupo6[banco_desfecho2$Grupo6=="Crônico"]<-NA

#Reordenar fatores
#banco_desfecho2$Grupo5[banco_desfecho2$Grupo5=="Agudo"]<-"0Agudo"
#banco_desfecho2$Grupo5[banco_desfecho2$Grupo5=="Recente"]<-"1Recente"
#banco_desfecho2$Grupo5[banco_desfecho2$Grupo5=="Crônico<350"]<-"2Cronicomenor350"
#banco_desfecho2$Grupo5[banco_desfecho2$Grupo5=="Crônico>=350"]<-"3Cronico=>350"


#Kaplan


require(XML)
## Loading required package: XML
## Warning: package 'XML' was built under R version 4.0.5
require(dplyr)
## Loading required package: dplyr
## Warning: package 'dplyr' was built under R version 4.0.4
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#Merge com cv

#banco<-merge(banco_desfecho2,cv_baseFEV21)

# Merge com banco Modelo4

#banco<-merge(banco, modelo4_enviadoEdu_1_)
#load("C:/Users/edson/Downloads/cd8_base.RData")
#banco<-merge(banco,cd8_base)

#Escolaridade 
#banco$escola2[banco$escola=="mais de 12 anos"]<-"12 year or more of schooling"
#banco$escola2[banco$escola!="mais de 12 anos"]<-"less than 12 years of schooling"
#banco$escola2<-as.factor(banco$escola2)
#load("~/banco.Rdata")
#subset para fazer o table stack
#banco2<-subset(banco, select = c(gon, clam, sifilis,hbv_cronico.y.x, esquema2, CMV_pos_ARV,escola2, Registro))
#banco3<-banco2


#transformar desfecho em fator
#banco2$desfecho<-as.factor(banco2$desfecho)
#banco<-merge(banco_desfecho2, banco2,by="Registro")
#banco<-merge(banco,cd8_base)
#banco<-merge(banco,modelo4_enviadoEdu_1_)
#banco<-merge(banco,cd8_base)
#banco<-merge(banco,cv_baseFEV21)
#banco$idade[banco$Registro==34706]<-18.66593
#banco2<-banco
#banco3<-banco2
#transformar desfecho em fator
#banco2$desfecho<-as.factor(banco2$desfecho)
#banco$escola2[banco$escola=="mais de 12 anos"]<-"12 year or more of schooling"
#banco$escola2[banco$escola!="mais de 12 anos"]<-"less than 12 years of schooling"
#banco$escola2[banco$escola2=="até 8 anos"]<-"less than 12 years of schooling"
#banco$escola2[banco$escola==NA]<-NA
require(readxl)
require(utils)
banco<-read.csv2("C:/Users/edson/OneDrive/Documentos/IVAS_EDU.csv",header = T,sep=",")


banco$logcv<-as.numeric(banco$logcv)
banco$cv<-as.numeric(banco$cv)


banco$cd8_cd4<-as.numeric(banco$cd8_cd4)

banco<-full_join(banco,Cronicos_TB_IO_Janela_para_Lu_1_)
## Joining, by = "Registro"
banco$coinfec2<-"n"
banco$coinfec2[banco$coinfec=="s"]<-"s"

Cronicos_TB_IO_Janela_para_Lu_1_ <- read_excel("Cronicos_TB_IO Janela para Lu (1).xlsx",
sheet = "Doenças Relacionadas")
## New names:
## * `` -> ...7
como<-dplyr::distinct (Cronicos_TB_IO_Janela_para_Lu_1_,Cronicos_TB_IO_Janela_para_Lu_1_$Registro,.keep_all=T)
a<-dplyr::left_join(banco,como, by="Registro")
a$qualquerco<-0
a$qualquerco[is.na(a$I202_DOEN.y)==F]<-1
a$qualquerco<-as.factor(a$qualquerco)

banco<-a



#banco <- read_excel("C:/Users/edson/OneDrive/Documentos/IVAS_EDU.xlsx")
#banco_lu_update <- read_excel("C:/Users/edson/OneDrive/Documentos/banco_lu_update.xlsx")

#g<-subset(banco_lu_update,select = c(Registro, FIBIG2))
#banco<-dplyr::left_join(banco, g, by="Registro")
banco$tempomeses<-as.numeric(banco$tempomeses)
.Survfit <- survfit(Surv(tempomeses, desfecho) ~ Grupo5, 
                    conf.type="log", conf.int=0.95, type="kaplan-meier", error="greenwood", 
                    data=banco)

ggsurvplot(.Survfit, data = banco,
           
           # Change legends: title & labels
           ylab="Probability of CD4/CD8 ratio normalization",
           legend.title = "Grupos",
           legend.labs = c("Acute HIV infection", "Recent HIV Infection","Chronic HIV Infection, TCD4 <350","Chronic HIV Infection, TCD4>=350"),
           # Add p-value and tervals
           pval = TRUE,
           conf.int = F,
           conf.int.style="step"
           
)

.Survfit
## Call: survfit(formula = Surv(tempomeses, desfecho) ~ Grupo5, data = banco, 
##     error = "greenwood", conf.type = "log", conf.int = 0.95, 
##     type = "kaplan-meier")
## 
##    55 observations deleted due to missingness 
##                           n events   median  0.95LCL  0.95UCL
## Grupo5=0Agudo            65     49 1.13e+14 1.03e+14 2.51e+14
## Grupo5=1Recente          35     25 1.20e+14 1.67e-01 4.39e+14
## Grupo5=2Cronicomenor350 193     33 8.73e+14 7.47e+14       NA
## Grupo5=3Cronico=>350    257     92 5.63e+14 4.62e+14 7.67e+14
summary(.Survfit)
## Call: survfit(formula = Surv(tempomeses, desfecho) ~ Grupo5, data = banco, 
##     error = "greenwood", conf.type = "log", conf.int = 0.95, 
##     type = "kaplan-meier")
## 
## 55 observations deleted due to missingness 
##                 Grupo5=0Agudo 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI
##  1.67e-01     65      24   0.6308  0.0599       0.5237        0.760
##  1.03e+14     32       2   0.5913  0.0623       0.4811        0.727
##  1.04e+14     30       1   0.5716  0.0632       0.4602        0.710
##  1.07e+14     29       2   0.5322  0.0647       0.4193        0.675
##  1.13e+14     27       2   0.4928  0.0657       0.3795        0.640
##  1.17e+14     25       2   0.4534  0.0661       0.3407        0.603
##  1.27e+14     23       1   0.4337  0.0661       0.3217        0.585
##  1.63e+14     22       1   0.4139  0.0659       0.3029        0.566
##  2.33e+14     20       1   0.3932  0.0658       0.2833        0.546
##  2.43e+14     19       1   0.3725  0.0655       0.2639        0.526
##  2.47e+14     18       1   0.3519  0.0651       0.2449        0.506
##  2.51e+14     17       1   0.3312  0.0644       0.2261        0.485
##  2.93e+14     16       1   0.3105  0.0637       0.2077        0.464
##  2.97e+14     15       1   0.2898  0.0627       0.1896        0.443
##  3.23e+14     14       1   0.2691  0.0615       0.1719        0.421
##  3.63e+14     11       2   0.2201  0.0593       0.1299        0.373
##  5.73e+14      7       1   0.1887  0.0586       0.1027        0.347
##  5.77e+14      6       1   0.1572  0.0566       0.0776        0.318
##  5.97e+14      5       1   0.1258  0.0533       0.0548        0.289
##  6.13e+14      4       1   0.0943  0.0484       0.0345        0.258
##  6.17e+14      3       1   0.0629  0.0412       0.0174        0.227
## 
##                 Grupo5=1Recente 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI
##  1.67e-01     35      13    0.629  0.0817       0.4873        0.811
##  1.03e+14     18       1    0.594  0.0843       0.4495        0.784
##  1.12e+14     17       1    0.559  0.0862       0.4129        0.756
##  1.13e+14     16       1    0.524  0.0876       0.3774        0.727
##  1.20e+14     15       1    0.489  0.0885       0.3429        0.697
##  1.43e+14     14       1    0.454  0.0888       0.3094        0.666
##  1.87e+14     12       1    0.416  0.0891       0.2735        0.633
##  2.03e+14     11       1    0.378  0.0887       0.2390        0.599
##  2.93e+14     10       1    0.340  0.0875       0.2058        0.563
##  3.03e+14      9       1    0.303  0.0856       0.1739        0.527
##  4.39e+14      7       1    0.259  0.0835       0.1380        0.488
##  4.63e+14      6       1    0.216  0.0800       0.1046        0.447
##  6.47e+14      5       1    0.173  0.0748       0.0741        0.404
## 
##                 Grupo5=2Cronicomenor350 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI
##  1.67e-01    193      15    0.922  0.0193       0.8853        0.961
##  1.12e+14    116       1    0.914  0.0207       0.8747        0.956
##  1.38e+14    108       1    0.906  0.0222       0.8635        0.950
##  1.64e+14     98       1    0.897  0.0238       0.8512        0.944
##  1.73e+14     93       1    0.887  0.0254       0.8386        0.938
##  1.74e+14     91       1    0.877  0.0269       0.8260        0.932
##  1.77e+14     87       1    0.867  0.0284       0.8132        0.925
##  1.97e+14     85       1    0.857  0.0299       0.8003        0.918
##  2.31e+14     76       1    0.846  0.0315       0.7860        0.910
##  2.40e+14     73       1    0.834  0.0332       0.7715        0.902
##  2.77e+14     61       1    0.820  0.0353       0.7540        0.893
##  3.37e+14     45       1    0.802  0.0390       0.7293        0.882
##  3.68e+14     42       1    0.783  0.0425       0.7041        0.871
##  4.63e+14     29       1    0.756  0.0488       0.6662        0.858
##  4.78e+14     27       1    0.728  0.0545       0.6288        0.843
##  4.90e+14     26       1    0.700  0.0591       0.5933        0.826
##  7.47e+14     10       1    0.630  0.0851       0.4835        0.821
##  7.63e+14      8       1    0.551  0.1048       0.3799        0.800
##  8.73e+14      2       1    0.276  0.2018       0.0656        1.000
## 
##                 Grupo5=3Cronico=>350 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI
##  1.67e-01    257      27   0.8949  0.0191       0.8582        0.933
##  1.03e+14    186       1   0.8901  0.0196       0.8525        0.929
##  1.06e+14    185       1   0.8853  0.0201       0.8468        0.926
##  1.07e+14    184       1   0.8805  0.0206       0.8411        0.922
##  1.09e+14    183       1   0.8757  0.0210       0.8355        0.918
##  1.10e+14    182       1   0.8709  0.0214       0.8299        0.914
##  1.11e+14    181       1   0.8661  0.0218       0.8243        0.910
##  1.17e+14    180       1   0.8613  0.0222       0.8187        0.906
##  1.20e+14    179       1   0.8564  0.0226       0.8132        0.902
##  1.22e+14    177       1   0.8516  0.0230       0.8077        0.898
##  1.25e+14    176       1   0.8468  0.0234       0.8021        0.894
##  1.27e+14    174       1   0.8419  0.0238       0.7966        0.890
##  1.33e+14    170       1   0.8370  0.0241       0.7910        0.886
##  1.35e+14    169       1   0.8320  0.0245       0.7854        0.881
##  1.37e+14    167       1   0.8270  0.0248       0.7797        0.877
##  1.52e+14    158       1   0.8218  0.0252       0.7738        0.873
##  1.54e+14    157       2   0.8113  0.0260       0.7620        0.864
##  1.69e+14    148       1   0.8058  0.0264       0.7558        0.859
##  1.73e+14    145       1   0.8003  0.0268       0.7495        0.854
##  1.75e+14    144       1   0.7947  0.0272       0.7432        0.850
##  1.79e+14    141       1   0.7891  0.0275       0.7369        0.845
##  1.80e+14    140       1   0.7834  0.0279       0.7306        0.840
##  1.87e+14    137       1   0.7777  0.0283       0.7242        0.835
##  1.97e+14    133       1   0.7719  0.0287       0.7177        0.830
##  2.12e+14    125       1   0.7657  0.0291       0.7107        0.825
##  2.15e+14    124       1   0.7595  0.0295       0.7038        0.820
##  2.27e+14    120       1   0.7532  0.0299       0.6967        0.814
##  2.37e+14    118       1   0.7468  0.0304       0.6896        0.809
##  2.47e+14    116       1   0.7404  0.0308       0.6825        0.803
##  2.63e+14    112       1   0.7338  0.0312       0.6751        0.798
##  2.67e+14    111       1   0.7272  0.0316       0.6678        0.792
##  2.71e+14    108       1   0.7204  0.0320       0.6603        0.786
##  2.73e+14    107       1   0.7137  0.0324       0.6529        0.780
##  2.77e+14    106       1   0.7070  0.0328       0.6455        0.774
##  2.91e+14     94       1   0.6994  0.0333       0.6371        0.768
##  2.97e+14     93       1   0.6919  0.0338       0.6288        0.761
##  3.07e+14     86       1   0.6839  0.0343       0.6198        0.755
##  3.10e+14     85       1   0.6758  0.0349       0.6108        0.748
##  3.27e+14     80       1   0.6674  0.0354       0.6014        0.741
##  3.67e+14     70       1   0.6578  0.0362       0.5906        0.733
##  3.87e+14     63       1   0.6474  0.0371       0.5786        0.724
##  3.93e+14     62       1   0.6370  0.0379       0.5668        0.716
##  4.07e+14     61       1   0.6265  0.0387       0.5550        0.707
##  4.24e+14     58       1   0.6157  0.0395       0.5429        0.698
##  4.25e+14     56       1   0.6047  0.0403       0.5306        0.689
##  4.33e+14     55       1   0.5937  0.0411       0.5184        0.680
##  4.43e+14     54       1   0.5827  0.0418       0.5064        0.671
##  4.62e+14     52       1   0.5715  0.0424       0.4941        0.661
##  4.77e+14     50       1   0.5601  0.0431       0.4817        0.651
##  5.17e+14     48       3   0.5251  0.0449       0.4441        0.621
##  5.58e+14     40       1   0.5120  0.0456       0.4299        0.610
##  5.63e+14     38       1   0.4985  0.0464       0.4154        0.598
##  5.77e+14     37       1   0.4850  0.0471       0.4010        0.587
##  5.97e+14     33       1   0.4703  0.0479       0.3853        0.574
##  6.23e+14     28       1   0.4535  0.0490       0.3669        0.561
##  6.97e+14     19       1   0.4297  0.0519       0.3390        0.544
##  7.03e+14     17       1   0.4044  0.0547       0.3102        0.527
##  7.63e+14     11       1   0.3676  0.0608       0.2658        0.508
##  7.67e+14      9       1   0.3268  0.0664       0.2195        0.487
##  8.36e+14      4       1   0.2451  0.0865       0.1227        0.490
##  8.53e+14      3       1   0.1634  0.0882       0.0567        0.471
##  9.33e+14      2       1   0.0817  0.0727       0.0143        0.467
##  9.37e+14      1       1   0.0000     NaN           NA           NA
banco$desfecho<-as.factor(banco$desfecho)
#Escolaridade 

htmlTable::htmlTable(epiDisplay::tableStack(c(gon, clam, sifilis,hbv_cronico.y.x, esquema2, CMV_pos_ARV,escola2,cd4,cd8,cd8_cd4,FIBIG2, tempomeses, desfecho, COR,GENERO, idade,coinfec2,qualquerco), by=Grupo5, percent= "column", simulate.p.value = T, dataFrame = banco, var.labels = F, decimal = 2, total.column = T))
0Agudo 1Recente 2Cronicomenor350 3Cronico=>350 Total Test stat. P value
Total 65 35 193 257 605
16 : gon Fisher’s exact test 0.0925
Não 12 (70.59) 0 (0) 18 (85.71) 48 (87.27) 78 (82.98)
Sim 5 (29.41) 1 (100) 3 (14.29) 7 (12.73) 16 (17.02)
17 : clam Fisher’s exact test 0.5152
Não 13 (76.47) 1 (100) 19 (90.48) 41 (74.55) 74 (78.72)
Sim 4 (23.53) 0 (0) 2 (9.52) 14 (25.45) 20 (21.28)
18 : sifilis Chisq. (3 df) = 2.634 0.4516
Não 46 (82.14) 21 (84) 94 (74.02) 123 (74.1) 284 (75.94)
Sim 10 (17.86) 4 (16) 33 (25.98) 43 (25.9) 90 (24.06)
19 : hbv_cronico.y.x Fisher’s exact test 0.0355
não 62 (100) 33 (100) 169 (96.02) 236 (99.58) 500 (98.43)
sim 0 (0) 0 (0) 7 (3.98) 1 (0.42) 8 (1.57)
20 : esquema2 Chisq. (6 df) = 57.719 < 0.001
INSTI 29 (44.62) 4 (11.43) 90 (46.63) 158 (61.48) 281 (51.09)
IP 17 (26.15) 3 (8.57) 35 (18.13) 19 (7.39) 74 (13.45)
NNRTI 19 (29.23) 28 (80) 68 (35.23) 80 (31.13) 195 (35.45)
21 : CMV_pos_ARV Kruskal-Wallis test 0.5898
median(IQR) 1 (1,1) 1 (1,1) 1 (1,1) 1 (1,1) 1 (1,1)
22 : escola2 Chisq. (3 df) = 28.568 < 0.001
12 year or more of schooling 21 (32.31) 18 (51.43) 32 (16.93) 44 (17.19) 115 (21.1)
less than 12 years of schooling 44 (67.69) 17 (48.57) 157 (83.07) 212 (82.81) 430 (78.9)
5 : cd4 Kruskal-Wallis test < 0.001
median(IQR) 582 (399.25,845.25) 588.5 (439,679) 160 (71,255) 553 (433,773) 424 (237,633)
4 : cd8 Kruskal-Wallis test < 0.001
median(IQR) 940 (545.5,1609) 1243 (814,1651.25) 912.5 (545.5,1207.75) 1124.5 (895,1528.75) 1043 (696.5,1473)
6 : cd8_cd4 Kruskal-Wallis test < 0.001
median(IQR) 0.7 (0.4,108250773559356) 0.53 (0.29,0.73) 0.18 (0.09,0.28) 0.52 (0.4,0.73) 0.41 (0.22,0.67)
39 : FIBIG2 Fisher’s exact test < 0.001
Chronic 0 (0) 0 (0) 193 (100) 257 (100) 450 (81.82)
I 5 (7.69) 0 (0) 0 (0) 0 (0) 5 (0.91)
II 3 (4.62) 0 (0) 0 (0) 0 (0) 3 (0.55)
III 10 (15.38) 0 (0) 0 (0) 0 (0) 10 (1.82)
IV 13 (20) 0 (0) 0 (0) 0 (0) 13 (2.36)
V 34 (52.31) 0 (0) 0 (0) 0 (0) 34 (6.18)
VI 0 (0) 35 (100) 0 (0) 0 (0) 35 (6.36)
15 : tempomeses Kruskal-Wallis test < 0.001
median(IQR) 101333333333333 (6.3,250666666666667) 103333333333333 (9.5,298333333333333) 163666666666667 (33.4,321666666666667) 201666666666667 (54.1,383666666666667) 169833333333333 (34.88,356583333333334)
11 : desfecho Chisq. (3 df) = 92.549 < 0.001
0 16 (24.62) 10 (28.57) 160 (82.9) 165 (64.2) 351 (63.82)
1 49 (75.38) 25 (71.43) 33 (17.1) 92 (35.8) 199 (36.18)
29 : COR Chisq. (3 df) = 10.912 0.0122
Branca 27 (41.54) 12 (35.29) 65 (34.76) 61 (23.92) 165 (30.5)
Pardo/Negro 38 (58.46) 22 (64.71) 122 (65.24) 194 (76.08) 376 (69.5)
30 : GENERO Chisq. (3 df) = 10.401 0.0154
FEMININO 10 (15.38) 2 (5.71) 36 (18.65) 66 (25.78) 114 (20.77)
MASCULINO 55 (84.62) 33 (94.29) 157 (81.35) 190 (74.22) 435 (79.23)
27 : idade Kruskal-Wallis test < 0.001
median(IQR) 2674718638 (2283283009,3230579193) 2671150151 (2497117760,3067389514.5) 2995333516 (2412846555,3787537744) 2473510843 (2094976668,3038429865) 2637112270 (2240255284.5,3329947845.25)
46 : coinfec2 Fisher’s exact test < 0.001
n 65 (100) 35 (100) 168 (87.05) 252 (98.05) 520 (94.55)
s 0 (0) 0 (0) 25 (12.95) 5 (1.95) 30 (5.45)
54 : qualquerco Chisq. (3 df) = 105.095 < 0.001
0 65 (100) 35 (100) 105 (54.4) 225 (87.55) 430 (78.18)
1 0 (0) 0 (0) 88 (45.6) 32 (12.45) 120 (21.82)
#Reordenar fatores
#banco$Grupo6[banco$Grupo6=="Agudo"]<-"3Agudo"
#banco$Grupo6[banco$Grupo6=="Recente"]<-"1Recente"
banco$Grupo6[banco$Grupo6=="2Cronicomenor350"]<-"0Cronicomenor350"
banco$Grupo6[banco$Grupo6=="0Cronico=>350"]<-"2Cronico=>350"

#modelo de cox univariado
a<-coxph(Surv(tempomeses, desfecho) ~ banco$FIBIG2 ,method='efron',id=Registro ,data=banco)
b<-coxph(Surv(tempomeses, desfecho) ~ Grupo6 ,method='efron',id=Registro ,data=banco)
c<-coxph(Surv(tempomeses, desfecho) ~ logcv ,method='efron',id=Registro ,data=banco)
d<-coxph(Surv(tempomeses, desfecho) ~ esquema2 ,method='efron',id=Registro ,data=banco)
aa<-coxph(Surv(tempomeses, desfecho) ~ COR ,method='efron',id=Registro ,data=banco)
bb<-coxph(Surv(tempomeses, desfecho) ~ idade ,method='efron',id=Registro ,data=banco)
cc<-coxph(Surv(tempomeses, desfecho) ~ escola2 ,method='efron',id=Registro ,data=banco)
dd<-coxph(Surv(tempomeses, desfecho) ~ GENERO ,method='efron',id=Registro ,data=banco)
e<-coxph(Surv(tempomeses, desfecho) ~ cd8_cd4 ,method='efron',id=Registro ,data=banco)
f<-coxph(Surv(tempomeses, desfecho) ~ gon ,method='efron',id=Registro ,data=banco)
g<-coxph(Surv(tempomeses, desfecho) ~ clam ,method='efron',id=Registro ,data=banco)
h<-coxph(Surv(tempomeses, desfecho) ~ sifilis ,method='efron',id=Registro ,data=banco)
i<-coxph(Surv(tempomeses, desfecho) ~ CMV_pos_ARV ,method='efron',id=Registro ,data=banco)
j<-coxph(Surv(tempomeses, desfecho) ~ coinfec2 ,method='efron',id=Registro ,data=banco)
k<-coxph(Surv(tempomeses, desfecho) ~ qualquerco ,method='efron',id=Registro ,data=banco)



# idade 10 anos uni 

bb
## Call:
## coxph(formula = Surv(tempomeses, desfecho) ~ idade, data = banco, 
##     method = "efron", id = Registro)
## 
##        
## 1:2           coef  exp(coef)   se(coef)      z     p
##   idade -4.251e-11  1.000e+00  5.458e-11 -0.779 0.436
## 
##  States:  1= (s0), 2= 1 
## 
## Likelihood ratio test=0.6  on 1 df, p=0.4372
## n= 604, number of events= 216 
##    (1 observation deleted due to missingness)
estimate<-exp(-0.021988 *10)
cihigh<-exp(-0.021988*10+ 20*0.008678)
cilow<-exp(-0.021988*10 - 20*0.008678)
estimate
## [1] 0.8026151
cihigh
## [1] 0.9547364
cilow
## [1] 0.6747318
#teste log rank
summary(b)
## Call:
## coxph(formula = Surv(tempomeses, desfecho) ~ Grupo6, data = banco, 
##     method = "efron", id = Registro)
## 
##   n= 550, number of events= 199 
##    (55 observations deleted due to missingness)
## 
##                       coef exp(coef) se(coef)     z Pr(>|z|)    
## Grupo61Recente      1.5451    4.6887   0.2664 5.800 6.63e-09 ***
## Grupo62Cronico=>350 0.6299    1.8774   0.2031 3.101  0.00193 ** 
## Grupo63Agudo        1.8016    6.0595   0.2262 7.965 1.65e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                     exp(coef) exp(-coef) lower .95 upper .95
## Grupo61Recente          4.689     0.2133     2.782     7.903
## Grupo62Cronico=>350     1.877     0.5327     1.261     2.795
## Grupo63Agudo            6.060     0.1650     3.890     9.440
## 
## Concordance= 0.677  (se = 0.022 )
## Likelihood ratio test= 76.68  on 3 df,   p=<2e-16
## Wald test            = 82.55  on 3 df,   p=<2e-16
## Score (logrank) test = 96.96  on 3 df,   p=<2e-16
#tab_model
a<-sjPlot::tab_model(a)
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
b<-sjPlot::tab_model(b)
c<-sjPlot::tab_model(c)
d<-sjPlot::tab_model(d)
aa<-sjPlot::tab_model(aa)
bb<-sjPlot::tab_model(bb)
cc<-sjPlot::tab_model(cc)
dd<-sjPlot::tab_model(dd)
e<-sjPlot::tab_model(e)
f<-sjPlot::tab_model(f)
g<-sjPlot::tab_model(g)
h<-sjPlot::tab_model(h)
i<-sjPlot::tab_model(i)
j<-sjPlot::tab_model(j)
k<-sjPlot::tab_model(k)

#fazer tabela compilada bonitinha
e<-c(a$page.content,b$page.content,c$page.content,d$page.content,aa$page.content,bb$page.content,cc$page.content,dd$page.content,e$page.content,f$page.content,g$page.content,h$page.content,i$page.content,j$page.content,k$page.content)
#e<- as.list(a$page.content,b$page.content,c$page.content,d$page.content,aa$page.content,bb$page.content,cc$page.content,dd$page.content,e$page.content,f$page.content,g$page.content,h$page.content,i$page.content,j$page.content)
e<-as.list(e)
e<- htmlTable::concatHtmlTables(e)
questions<-readHTMLTable(e, trim=T, as.data.frame=T, header=T)
data<-bind_rows(questions)
names(data)[c(1)] <- c("Variavel")
names(data)[c(2)] <- c("Estimates")
names(data)[c(3)]<- c("CI")
names(data)[c(4)]<- c("P")
data<-subset(data, data$Variavel!="Â")
data<-subset(data, data$Variavel!="Predictors")
data<-subset(data, data$Variavel!="R2 Nagelkerke")
data<-subset(data, data$Variavel!="Observations")
data$CI<-stringr::str_replace(data$CI, "â€","-")
data$CI<-stringr::str_replace(data$CI, "“Â","-")
data$CI<-stringr::str_replace(data$CI, "Â -","")
data$CI<-stringr::str_replace(data$CI, "Â","")
data$CI<-stringr::str_replace(data$CI, "--","-")
data$CI<-stringr::str_replace(data$CI, "Â","")
data<-unique(data)
#modelo uni
htmlTable::htmlTable(data)
Variavel Estimates CI P
2 banco\(FIBIG2[banco\)FIBIG2I] 15.92 6.40 - 39.64 <0.001
3 banco\(FIBIG2[banco\)FIBIG2II] 3.94 0.97 - 15.95 0.055
4 banco\(FIBIG2[banco\)FIBIG2III] 3.68 1.72 - 7.88 0.001
5 banco\(FIBIG2[banco\)FIBIG2IV] 3.57 1.93 - 6.61 <0.001
6 banco\(FIBIG2[banco\)FIBIG2V] 3.73 2.41 - 5.75 <0.001
7 banco\(FIBIG2[banco\)FIBIG2VI] 3.05 1.99 - 4.68 <0.001
11 Grupo6 [1Recente] 4.69 2.78 - 7.90 <0.001
12 Grupo6 [2Cronico=>350] 1.88 1.26 - 2.80 0.002
13 Grupo6 [3Agudo] 6.06 3.89 - 9.44 <0.001
17 logcv 1.00 1.00 - 1.00 0.057
21 esquema2 [IP] 1.71 1.14 - 2.56 0.009
22 esquema2 [NNRTI] 1.60 1.17 - 2.17 0.003
26 COR [Pardo/Negro] 1.16 0.87 - 1.56 0.319
30 idade 1.00 1.00 - 1.00 0.436
34 escola2 [less than 12years of schooling] 1.01 0.73 - 1.39 0.966
38 GENERO [MASCULINO] 1.01 0.74 - 1.38 0.940
42 cd8_cd4 1.00 1.00 - 1.00 0.001
46 gon [Sim] 1.16 0.48 - 2.78 0.741
50 clam [Sim] 0.60 0.25 - 1.47 0.265
54 sifilis [Sim] 0.96 0.67 - 1.39 0.838
58 CMV_pos_ARV 2.63 0.36 - 19.01 0.338
62 coinfec2 [s] 0.54 0.27 - 1.10 0.088
66 qualquerco [1] 0.68 0.48 - 0.97 0.033
#Modelo Multivariado


f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +idade + esquema2 ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.23 2.47 – 7.25 <0.001
Grupo6 [2Cronico=>350] 1.95 1.29 – 2.92 0.001
Grupo6 [3Agudo] 5.89 3.78 – 9.19 <0.001
idade 1.00 1.00 – 1.00 0.979
esquema2 [IP] 1.55 1.01 – 2.38 0.046
esquema2 [NNRTI] 1.40 1.01 – 1.96 0.046
Observations 550
R2 Nagelkerke 0.338
f
## Call:
## coxph(formula = Surv(tempomeses, desfecho) ~ Grupo6 + idade + 
##     esquema2, data = banco, method = "efron", id = Registro)
## 
##                      
## 1:2                        coef exp(coef)  se(coef)     z        p
##   Grupo61Recente      1.443e+00 4.234e+00 2.745e-01 5.258 1.46e-07
##   Grupo62Cronico=>350 6.655e-01 1.946e+00 2.079e-01 3.201  0.00137
##   Grupo63Agudo        1.773e+00 5.890e+00 2.268e-01 7.817 5.41e-15
##   idade               1.575e-12 1.000e+00 5.851e-11 0.027  0.97852
##   esquema2IP          4.381e-01 1.550e+00 2.196e-01 1.995  0.04604
##   esquema2NNRTI       3.380e-01 1.402e+00 1.697e-01 1.992  0.04633
## 
##  States:  1= (s0), 2= 1 
## 
## Likelihood ratio test=82.06  on 6 df, p=1.337e-15
## n= 550, number of events= 199 
##    (55 observations deleted due to missingness)
estimate<-exp(-0.024319*10)
ciupper<-exp(-0.024319*10+ 0.009579*20)
cilow<-exp(-0.024319*10- 0.009579*20)
estimate
## [1] 0.7841225
cilow
## [1] 0.6474136
ciupper
## [1] 0.9496992
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +idade +esquema2 ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.23 2.47 – 7.25 <0.001
Grupo6 [2Cronico=>350] 1.95 1.29 – 2.92 0.001
Grupo6 [3Agudo] 5.89 3.78 – 9.19 <0.001
idade 1.00 1.00 – 1.00 0.979
esquema2 [IP] 1.55 1.01 – 2.38 0.046
esquema2 [NNRTI] 1.40 1.01 – 1.96 0.046
Observations 550
R2 Nagelkerke 0.338
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +cd8_cd4 +esquema2,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 3.00 1.65 – 5.45 <0.001
Grupo6 [2Cronico=>350] 1.62 1.02 – 2.57 0.043
Grupo6 [3Agudo] 4.60 2.75 – 7.69 <0.001
cd8_cd4 1.00 1.00 – 1.00 0.029
esquema2 [IP] 1.50 0.92 – 2.45 0.101
esquema2 [NNRTI] 1.37 0.92 – 2.05 0.117
Observations 363
R2 Nagelkerke 0.302
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +idade ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.70 2.77 – 7.97 <0.001
Grupo6 [2Cronico=>350] 1.88 1.26 – 2.81 0.002
Grupo6 [3Agudo] 6.06 3.89 – 9.45 <0.001
idade 1.00 1.00 – 1.00 0.974
Observations 550
R2 Nagelkerke 0.320
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +cd8_cd4 ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 3.31 1.84 – 5.95 <0.001
Grupo6 [2Cronico=>350] 1.61 1.02 – 2.55 0.041
Grupo6 [3Agudo] 4.73 2.83 – 7.90 <0.001
cd8_cd4 1.00 1.00 – 1.00 0.049
Observations 363
R2 Nagelkerke 0.286
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +gon ,method='efron',id=Registro ,data=banco)
## Warning in fitter(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; coefficient may be infinite.
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 0.00 0.00 – Inf 0.998
Grupo6 [2Cronico=>350] 2.07 0.47 – 9.23 0.339
Grupo6 [3Agudo] 8.99 1.96 – 41.35 0.005
gon [Sim] 1.02 0.43 – 2.43 0.964
Observations 94
R2 Nagelkerke 0.369
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +idade +esquema2 ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.23 2.47 – 7.25 <0.001
Grupo6 [2Cronico=>350] 1.95 1.29 – 2.92 0.001
Grupo6 [3Agudo] 5.89 3.78 – 9.19 <0.001
idade 1.00 1.00 – 1.00 0.979
esquema2 [IP] 1.55 1.01 – 2.38 0.046
esquema2 [NNRTI] 1.40 1.01 – 1.96 0.046
Observations 550
R2 Nagelkerke 0.338
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +cd8_cd4 +qualquerco,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.23 2.16 – 8.27 <0.001
Grupo6 [2Cronico=>350] 1.95 1.16 – 3.29 0.012
Grupo6 [3Agudo] 6.03 3.29 – 11.05 <0.001
cd8_cd4 1.00 1.00 – 1.00 0.046
qualquerco [1] 1.54 0.91 – 2.61 0.112
Observations 363
R2 Nagelkerke 0.297
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +idade+qualquerco ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 5.40 3.03 – 9.62 <0.001
Grupo6 [2Cronico=>350] 2.07 1.34 – 3.20 0.001
Grupo6 [3Agudo] 6.99 4.22 – 11.58 <0.001
idade 1.00 1.00 – 1.00 0.910
qualquerco [1] 1.32 0.85 – 2.05 0.214
Observations 550
R2 Nagelkerke 0.325
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +cd8_cd4+qualquerco ,method='efron',id=Registro ,data=banco)
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 4.23 2.16 – 8.27 <0.001
Grupo6 [2Cronico=>350] 1.95 1.16 – 3.29 0.012
Grupo6 [3Agudo] 6.03 3.29 – 11.05 <0.001
cd8_cd4 1.00 1.00 – 1.00 0.046
qualquerco [1] 1.54 0.91 – 2.61 0.112
Observations 363
R2 Nagelkerke 0.297
f<-coxph(Surv(tempomeses, desfecho) ~  Grupo6 +gon ,method='efron',id=Registro ,data=banco)
## Warning in fitter(X, Y, istrat, offset, init, control, weights = weights, :
## Loglik converged before variable 1 ; coefficient may be infinite.
sjPlot::tab_model(f)
  Surv(tempomeses,
desfecho)
Predictors Estimates CI p
Grupo6 [1Recente] 0.00 0.00 – Inf 0.998
Grupo6 [2Cronico=>350] 2.07 0.47 – 9.23 0.339
Grupo6 [3Agudo] 8.99 1.96 – 41.35 0.005
gon [Sim] 1.02 0.43 – 2.43 0.964
Observations 94
R2 Nagelkerke 0.369