library(here)
## here() starts at /Users/caoanjie/Desktop/projects/CCRR-CogSci
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
## ✓ tibble  3.1.0     ✓ dplyr   1.0.5
## ✓ tidyr   1.1.1     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(BayesFactor)
## Loading required package: coda
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
## 
## Type BFManual() to open the manual.
## ************
library(brms)
## Loading required package: Rcpp
## Loading 'brms' package (version 2.15.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## 
## Attaching package: 'brms'
## The following object is masked from 'package:stats':
## 
##     ar
d <- read_csv(here("main/cogsci_data/tidy_main.csv"))
## Warning: Missing column names filled in: 'X1' [1]
## Parsed with column specification:
## cols(
##   X1 = col_double(),
##   subject = col_character(),
##   culture = col_character(),
##   task_name = col_character(),
##   task_info = col_character(),
##   trial_info = col_double(),
##   resp_type = col_character(),
##   resp = col_double()
## )
## Warning: 16937 parsing failures.
##  row        col expected actual                                                                          file
## 8705 trial_info a double   RMTS '/Users/caoanjie/Desktop/projects/CCRR-CogSci/main/cogsci_data/tidy_main.csv'
## 8706 trial_info a double   RMTS '/Users/caoanjie/Desktop/projects/CCRR-CogSci/main/cogsci_data/tidy_main.csv'
## 8707 trial_info a double   RMTS '/Users/caoanjie/Desktop/projects/CCRR-CogSci/main/cogsci_data/tidy_main.csv'
## 8708 trial_info a double   RMTS '/Users/caoanjie/Desktop/projects/CCRR-CogSci/main/cogsci_data/tidy_main.csv'
## 8709 trial_info a double   RMTS '/Users/caoanjie/Desktop/projects/CCRR-CogSci/main/cogsci_data/tidy_main.csv'
## .... .......... ........ ...... .............................................................................
## See problems(...) for more details.
load(here("main/cogsci_data/bayesian_model_fit.RData"))

Ambiguous RMTS

summary(full_b_rmts_model)
##  Family: binomial 
##   Links: mu = logit 
## Formula: choice ~ culture + (1 | subject) 
##    Data: rmts_df (Number of observations: 1024) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 256) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.10      0.11     0.90     1.32 1.00     1278     1983
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     1.02      0.12     0.78     1.27 1.00     2303     2897
## cultureUS    -0.17      0.18    -0.52     0.17 1.00     2382     3029
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(full_b_rmts_model)

plot(conditional_effects(full_b_rmts_model))
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.

### bayes factor

BF_RMTS = bayes_factor(full_b_rmts_model, null_b_rmts_model)
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.

## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
## Iteration: 16
## Iteration: 17
## Iteration: 18
## Iteration: 19
## Iteration: 20
## Iteration: 21
## Iteration: 22
## Iteration: 23
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Iteration: 15
BF_RMTS$bf
## [1] 0.351067

Picture Free Description

first mention

BF_fd_firstmention = bayes_factor(full_b_fd_firstmention_model, null_b_fd_firstmention_model)
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Using the maximum response value as the number of trials.
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.

## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
## Iteration: 14
## Warning: Using 'binomial' families without specifying 'trials' on the left-hand
## side of the model formula is deprecated.
## Iteration: 1
## Iteration: 2
## Iteration: 3
## Iteration: 4
## Iteration: 5
## Iteration: 6
## Iteration: 7
## Iteration: 8
## Iteration: 9
## Iteration: 10
## Iteration: 11
## Iteration: 12
## Iteration: 13
BF_fd_firstmention$bf
## [1] 7.92654e+17
summary(full_b_fd_firstmention_model)
##  Family: binomial 
##   Links: mu = logit 
## Formula: first_mention ~ culture + (1 | subject) 
##    Data: mention_df (Number of observations: 2681) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~subject (Number of levels: 232) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     1.87      0.15     1.59     2.17 1.01     1001     1901
## 
## Population-Level Effects: 
##           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept     0.35      0.16     0.04     0.66 1.00      728     1526
## cultureUS     3.08      0.36     2.42     3.81 1.00     1232     2338
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(full_b_fd_firstmention_model)

imada

fd_imada <- d %>% 
  filter(task_name == "FD") %>%
  filter(grepl("imada", resp_type)) %>%
  mutate(description_num = as.numeric(resp),
         scene = trial_info,
         description_type = factor(resp_type)) %>% 
  select(-resp, -task_info, -resp_type, -trial_info)

Ebbinghaus Illusion

Horizon Collage

Symbolic Self Inflation

Uniqueness Preference

Causal Attribution

Raven’s Progressive Matrices