Data
Search for Best Configuration
M1 <- 1
M2 <- 100
Xsum <- numeric(0)
Values_mat <- numeric(0)
for(k in M1:M2){
set.seed(k)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
}
colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
cor(Values_mat) %>%
round(4)
## X1 X2 X3 X4 X5 X6
## X1 1.0000 -0.0999 -0.0414 0.2330 -0.0677 -0.0991
## X2 -0.0999 1.0000 0.0662 -0.0221 -0.0283 0.0398
## X3 -0.0414 0.0662 1.0000 -0.0194 0.1696 -0.0446
## X4 0.2330 -0.0221 -0.0194 1.0000 -0.2342 0.1000
## X5 -0.0677 -0.0283 0.1696 -0.2342 1.0000 -0.0037
## X6 -0.0991 0.0398 -0.0446 0.1000 -0.0037 1.0000
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.88 15.94 19.54 20.64 24.80 38.07
Xsum %>%
sd %>%
round(2)
## [1] 6.41
Xsum %>%
`<=`(10) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 40 51
## 7.88 7.89
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "40"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(class_roll)
## $Values
## [1] 2.068895955 0.008232683 0.000000000 0.015766423 5.038687084 0.751190939
##
## $Xsum
## [1] 7.882773
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2015, "2015", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2015 이전", 2016:2021))
tbl1 %>%
pander
Red |
16 |
32 |
31 |
33 |
18 |
69 |
44 |
Black |
16 |
36 |
33 |
41 |
17 |
63 |
37 |
X1min <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1min
## X-squared
## 2.068896
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
119 |
124 |
Black |
120 |
123 |
X2min <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2min
## X-squared
## 0.008232683
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3min <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3min
## X-squared
## 0
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4min <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4min
## X-squared
## 0.01576642
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
26 |
20 |
20 |
24 |
29 |
24 |
19 |
30 |
25 |
26 |
Black |
15 |
23 |
25 |
29 |
30 |
20 |
23 |
28 |
24 |
26 |
X5min <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5min
## X-squared
## 5.038687
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
46 |
38 |
16 |
143 |
Black |
46 |
45 |
15 |
137 |
X6min <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6min
## X-squared
## 0.7511909
Sum of Chi_Squares
Xsum_min <- X1min + X2min + X3min + X4min + X5min + X6min
Xsum_min
## X-squared
## 7.882773