library(ggtree)
## Bioconductor version '3.11' is out-of-date; the current release version '3.12'
##   is available with R version '4.0'; see https://bioconductor.org/install
## Registered S3 method overwritten by 'treeio':
##   method     from
##   root.phylo ape
## ggtree v2.2.4  For help: https://yulab-smu.github.io/treedata-book/
## 
## If you use ggtree in published research, please cite the most appropriate paper(s):
## 
## - Guangchuang Yu. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioinformatics, 2020, 69:e96. doi:10.1002/cpbi.96
## - Guangchuang Yu, Tommy Tsan-Yuk Lam, Huachen Zhu, Yi Guan. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Molecular Biology and Evolution 2018, 35(12):3041-3043. doi:10.1093/molbev/msy194
## - Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 2017, 8(1):28-36. doi:10.1111/2041-210X.12628
library(ggplot2)
hc <- hclust(dist(mtcars))
data_1 <- mtcars
d <- data.frame(label = hc$labels[hc$order], group = c(rep(LETTERS[1:2],10),rep("c",12)))
p1 <- ggtree(hc, branch.length = "none", ladderize = F, color= "gray70") + 
  geom_tiplab() +
  geom_point(data = d, 
             mapping = aes(x = 10, y = 1:length(hc$labels), color = group), 
             size = 1) +
  theme(legend.position = "top",
        plot.margin=margin(l=0.5,unit="cm"),
        legend.justification = c(0.5,0.8)) +
  guides(fill = guide_colourbar(title.position = "left",
                                title.hjust = 1,
                                title.vjust = 0.8,
                                label.position = "bottom"))
p1

##########heatmap
data_1 <- mtcars
library(reshape2)
data_1$group <- row.names(data_1)
data_2 <- melt(data_1, id = "group")
head(data_2)
##               group variable value
## 1         Mazda RX4      mpg  21.0
## 2     Mazda RX4 Wag      mpg  21.0
## 3        Datsun 710      mpg  22.8
## 4    Hornet 4 Drive      mpg  21.4
## 5 Hornet Sportabout      mpg  18.7
## 6           Valiant      mpg  18.1
#####################heatmap
data_2$group <- factor(data_2$group, levels = hc$labels[hc$order])
p2 <- ggplot() + geom_tile(data = data_2,aes( x = variable, 
                   y= group,height = 1,fill = value,width = 1),
                           size= 0.5,colour = "gray80") +  
  ylab("") + xlab("") + 
  theme(legend.justification = 0.5,
    legend.position = "top", 
          axis.text = element_blank(),
          axis.ticks = element_blank(), 
          panel.background = element_blank()#,
          #plot.margin=margin(l=-0.5,unit="cm")
                              ) +
  scale_y_discrete(expand = c(0, 0),position = "right")+
  scale_x_discrete(expand = c(0, 0)) +
  scale_fill_gradient2(low="darkgreen", high="darkred", 
                       guide="colorbar", name = "Curve rank") +
  guides(fill = guide_colourbar(title.position = "left",
                                title.hjust = 1,
                                title.vjust = 0.8,
                                label.position = "bottom"))
  

p2

library(cowplot)
plot_grid(p1, p2, align = 'h',nrow = 1, rel_widths = c(3, 5))

#ggsave(filename = paste0(Sys.Date(),"-","pp.tif"), 
#       plot = last_plot(), device = "tiff", path = dir_path,
#       width = 15, height = 15, units = "cm",
#       dpi = 300, limitsize = TRUE,compression = "lzw")
#ref   https://github.com/wilkelab/cowplot/issues/31
#ref   https://yulab-smu.top/treedata-book/chapter12.html
#ref   https://guangchuangyu.github.io/ggtree-book/chapter-ggtree.html
#ref   https://rpubs.com/TX-YXL/716828
#ref   https://stackoverflow.com/questions/48167369/r-getting-subtrees-from-dendrogram-based-on-cutree-labels