library(tidyverse)
library(here)
FedericoModel <-
"rel_ma_ma =~ i1 + i2
cal_esco =~ i3 + i4 + i5
rel_ma_al =~ i6 + i7
cal_esco =~ rel_ma_ma
rel_ma_al =~ cal_esco + rel_ma_ma"
Adquiriendo los datos
federico_raw <- read_csv(here("SEM lavaan/data_sem", "feder.csv"))
Análisis descriptivo

Análisis inferencial
Modelo de regresión lineal múltiple
Construimos el modelo
Revisamos el modelo
summary(federico_model_LM)
Call:
lm(formula = rel_ma_al ~ cal_esco + rel_ma_ma + factor(genero),
data = federico_LM)
Residuals:
Min 1Q Median 3Q Max
-1.81032 -0.41849 0.00157 0.37661 1.79397
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.37887 0.09591 14.376 < 2e-16 ***
cal_esco 0.12722 0.03910 3.254 0.00119 **
rel_ma_ma 0.41213 0.03587 11.491 < 2e-16 ***
factor(genero)m -0.01987 0.04323 -0.460 0.64595
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.5553 on 796 degrees of freedom
Multiple R-squared: 0.3058, Adjusted R-squared: 0.3031
F-statistic: 116.9 on 3 and 796 DF, p-value: < 2.2e-16
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmBgYAoKCmBgYHtyfQpGZWRlcmljb01vZGVsIDwtIAogICJyZWxfbWFfbWEgPX4gaTEgKyBpMiAKICAgY2FsX2VzY28gPX4gaTMgKyBpNCArIGk1CiAgIHJlbF9tYV9hbCA9fiBpNiArIGk3CiAgIGNhbF9lc2NvID1+IHJlbF9tYV9tYQogICByZWxfbWFfYWwgPX4gY2FsX2VzY28gKyByZWxfbWFfbWEiCmBgYAoKIyBBZHF1aXJpZW5kbyBsb3MgZGF0b3MgCgpgYGB7cn0KZmVkZXJpY29fcmF3IDwtIHJlYWRfY3N2KGhlcmUoIlNFTSBsYXZhYW4vZGF0YV9zZW0iLCAiZmVkZXIuY3N2IikpCmBgYAoKIyBPcmdhbml6YW5kbyBsb3MgZGF0b3MgCgpgYGB7cn0KZmVkZXJpY29fTE0gPC0gCiAgZmVkZXJpY29fcmF3ICU+JSAKICByb3d3aXNlKCkgJT4lIAogIG11dGF0ZShyZWxfbWFfbWEgPSBtZWFuKGMoaTEsIGkyKSksCiAgICAgICAgIGNhbF9lc2NvID0gbWVhbihjKGkzLCBpNCwgaTUpKSwKICAgICAgICAgcmVsX21hX2FsID0gbWVhbihjKGk2LCBpNykpKSAlPiUgCiAgc2VsZWN0KHJlbF9tYV9tYSwgY2FsX2VzY28sIHJlbF9tYV9hbCwgZ2VuZXJvKQoKaGVhZChqdWFuX0xNKQpgYGAKCiMgQW7DoWxpc2lzIGRlc2NyaXB0aXZvCgpgYGB7cn0KZmVkZXJpY29fTE0gJT4lCiAga2VlcChpcy5udW1lcmljKSAlPiUgCiAgZ2F0aGVyKCkgJT4lIAogIGdncGxvdChhZXModmFsdWUpKSArCiAgICBmYWNldF93cmFwKH4ga2V5LCBzY2FsZXMgPSAiZnJlZSIpICsKICAgIGdlb21faGlzdG9ncmFtKCkKYGBgCgojIEFuw6FsaXNpcyBpbmZlcmVuY2lhbCAKCiMjIE1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUKCkNvbnN0cnVpbW9zIGVsIG1vZGVsbwoKYGBge3J9CmZlZGVyaWNvX21vZGVsX0xNIDwtIAogIGxtKHJlbF9tYV9hbCB+IGNhbF9lc2NvICsgcmVsX21hX21hICsgZmFjdG9yKGdlbmVybyksIAogICAgIGRhdGEgPSBmZWRlcmljb19MTSkKYGBgCgpSZXZpc2Ftb3MgZWwgbW9kZWxvIAoKYGBge3J9CnN1bW1hcnkoZmVkZXJpY29fbW9kZWxfTE0pCmBgYAoKCgo=