library(pacman); p_load(lavaan, psych)

NP <- function(N, S = 2) {
  NP = 1-pnorm(qnorm(1-(N^(-6/5))/S))
  return(NP)}

CONGO <- function(F1, F2) {
  PHI = sum(F1*F2) / sqrt(sum(F1^2)*sum(F2^2))
  return(PHI)}

CRITR <- function(n, alpha = .05) {
  df <- n - 2; CRITT <- qt(alpha/2, df, lower.tail = F)
  CRITR <- sqrt((CRITT^2)/((CRITT^2) + df ))
  return(CRITR)}

FITM <- c("chisq", "df", "nPar", "cfi", "rmsea", "rmsea.ci.lower", "rmsea.ci.upper", "aic", "bic")

NP(c(134, 227))
## [1] 0.0014010197 0.0007442845
CRITR(c(134, 227)); CRITR(c(134, 227), c(0.0014, 0.00074))
## [1] 0.1696749 0.1302517
## [1] 0.2732637 0.2223778
lowerWEA951 <- '
1                                           
0.24    1                                       
0.26    0.05    1                                   
0.23    0.09    0.25    1                               
0.23    0.01    0.04    -0.01   1                           
0.25    0.05    0.22    0.21    0.06    1                       
0.14    0.03    0.5 0.13    0.07    0.28    1                   
-0.07   -0.01   0.07    0.4 -0.17   0.12    0.1 1               
0.1 -0.07   0.14    0.12    -0.17   0.12    0.21    0.09    1           
0.21    0.15    0.19    0.09    -0.06   0.19    0.21    0.12    0.49    1       
0.13    0.09    0.24    0.04    0.05    0.28    0.32    0.12    0.33    0.56    1   
0.02    0.04    0   0.23    -0.16   -0.01   0.17    0.24    0.25    0.46    0.44    1'

lowerWEA952 <- '
1                                                           
0.31    1                                                       
0.2 0.06    1                                                   
0.17    0.21    0.35    1                                               
0.13    0.16    0.19    0.16    1                                           
0.12    0.15    0.02    0.05    0.28    1                                       
0.11    0.02    0.37    0.15    0.15    0.11    1                                   
0.08    0.14    0.21    0.33    0.12    0.11    0.26    1                               
0.23    0.11    0.05    0.16    0.2 0.04    -0.01   0.13    1                           
0.25    0.34    0.05    0.07    0.3 0.25    0.15    0.13    0.12    1                       
0.08    0   0.44    0.21    0.09    0.01    0.55    0.28    0.1 0.1 1                   
0.03    0.18    0.07    0.51    0.06    0.07    0.16    0.56    0.16    0.06    0.27    1               
0.06    -0.03   0.01    0.06    0.09    -0.04   0.11    0.12    0.18    0.07    0.06    0.05    1           
0.17    0.11    0.09    0.08    0.1 0.2 0.03    0.06    0.07    0.16    0.09    0.04    0.24    1       
-0.03   0.08    0.22    0.13    0.13    0.09    0.28    0.1 0.11    0.05    0.35    0.18    0.13    0.14    1   
0.04    0.15    0.05    0.49    0.11    -0.02   0.1 0.24    0.16    0.02    0.14    0.5 0.12    0.07    0.37    1'

nWEA951 <- 134
nWEA952 <- 227

WEA951.cor = getCov(lowerWEA951, names = c("IQV", "IQNV", "IQSR", "IQOR", "SPV", "SPNV", "SPSR", "SPOR", "HIV", "HINV", "HISR", "HIOR"))
WEA952.cor = getCov(lowerWEA952, names = c("IQV", "IQNV", "IQSR", "IQOR", "SPV", "SPNV", "SPSR", "SPOR", "SIV", "SINV", "SISR", "SIOR", "SKV", "SKNV", "SKSR", "SKOR"))

Analysis

Exploratory

fa.parallel(WEA951.cor, n.obs = nWEA951)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
fa.parallel(WEA952.cor, n.obs = nWEA952)

## Parallel analysis suggests that the number of factors =  4  and the number of components =  3
FA1 <- fa(WEA951.cor, n.obs = nWEA951, nfactors = 4)
## Loading required namespace: GPArotation
FA2 <- fa(WEA952.cor, n.obs = nWEA952, nfactors = 4)

print(FA1$loadings, cutoff = 0.2)
## 
## Loadings:
##      MR1    MR4    MR3    MR2   
## IQV                        0.729
## IQNV                       0.274
## IQSR         0.594              
## IQOR                0.892       
## SPV                        0.345
## SPNV         0.284              
## SPSR         0.784              
## SPOR                0.481 -0.267
## HIV   0.480                     
## HINV  0.862                     
## HISR  0.618  0.225              
## HIOR  0.602         0.201       
## 
##                  MR1   MR4   MR3   MR2
## SS loadings    1.787 1.133 1.126 0.909
## Proportion Var 0.149 0.094 0.094 0.076
## Cumulative Var 0.149 0.243 0.337 0.413
print(FA2$loadings, cutoff = 0.2)
## 
## Loadings:
##      MR3    MR1    MR2    MR4   
## IQV                 0.469       
## IQNV                0.488       
## IQSR  0.536                     
## IQOR         0.512              
## SPV                 0.440       
## SPNV                0.397       
## SPSR  0.682                     
## SPOR  0.208  0.555              
## SIV                 0.260       
## SINV                0.604       
## SISR  0.778                     
## SIOR         0.839              
## SKV                        0.259
## SKNV                0.309  0.205
## SKSR  0.320                0.541
## SKOR         0.342         0.630
## 
##                  MR3   MR1   MR2   MR4
## SS loadings    1.549 1.493 1.394 0.885
## Proportion Var 0.097 0.093 0.087 0.055
## Cumulative Var 0.097 0.190 0.277 0.333

Their Models, Exactly

#Experiment 1

WEA951.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR
HI =~ HIV + HINV + HISR + HIOR

AI ~~ SP + HI
SP ~~ HI

VERBAL =~ IQV + SPV + HIV
NONVERBAL =~ IQNV + SPNV + HINV
SELFREP =~ IQSR + SPSR + HISR
OTHER =~ IQOR + SPOR + HIOR'

WEA951.fit <- cfa(WEA951.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T, orthogonal = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## [1] "\n"
summary(WEA951.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 59 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         39
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                48.782
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.136
## 
## Model Test Baseline Model:
## 
##   Test statistic                               331.949
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.963
##   Tucker-Lewis Index (TLI)                       0.938
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2134.047
##   Loglikelihood unrestricted model (H1)      -2109.656
##                                                       
##   Akaike (AIC)                                4346.094
##   Bayesian (BIC)                              4459.110
##   Sample-size adjusted Bayesian (BIC)         4335.743
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.043
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.078
##   P-value RMSEA <= 0.05                          0.588
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.579    0.111    5.215    0.000    0.579    0.582
##     IQNV              0.248    0.113    2.204    0.028    0.248    0.250
##     IQSR              0.494    0.106    4.660    0.000    0.494    0.493
##     IQOR              0.522    0.107    4.882    0.000    0.522    0.512
##   SP =~                                                                 
##     SPV              -0.039    0.112   -0.350    0.727   -0.039   -0.039
##     SPNV             -0.613    0.138   -4.439    0.000   -0.613   -0.615
##     SPSR             -0.424    0.109   -3.896    0.000   -0.424   -0.428
##     SPOR             -0.217    0.109   -1.986    0.047   -0.217   -0.216
##   HI =~                                                                 
##     HIV               0.529    0.088    6.028    0.000    0.529    0.534
##     HINV              0.848    0.085    9.932    0.000    0.848    0.853
##     HISR              0.670    0.085    7.868    0.000    0.670    0.677
##     HIOR              0.538    0.087    6.190    0.000    0.538    0.537
##   VERBAL =~                                                             
##     IQV               0.169    0.274    0.618    0.537    0.169    0.170
##     SPV               1.183    1.840    0.643    0.520    1.183    1.188
##     HIV              -0.126    0.209   -0.599    0.549   -0.126   -0.127
##   NONVERBAL =~                                                          
##     IQNV              0.263    0.250    1.050    0.294    0.263    0.264
##     SPNV             -0.201    0.225   -0.893    0.372   -0.201   -0.202
##     HINV              0.294    0.293    1.006    0.315    0.294    0.296
##   SELFREP =~                                                            
##     IQSR              0.568    0.175    3.241    0.001    0.568    0.568
##     SPSR              0.635    0.194    3.265    0.001    0.635    0.640
##     HISR              0.199    0.091    2.185    0.029    0.199    0.201
##   OTHER =~                                                              
##     IQOR              0.656    0.147    4.464    0.000    0.656    0.644
##     SPOR              0.551    0.135    4.092    0.000    0.551    0.550
##     HIOR              0.338    0.100    3.376    0.001    0.338    0.337
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP               -0.665    0.137   -4.844    0.000   -0.665   -0.665
##     HI                0.316    0.119    2.658    0.008    0.316    0.316
##   SP ~~                                                                 
##     HI               -0.517    0.133   -3.885    0.000   -0.517   -0.517
##   AI ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SP ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   HI ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   VERBAL ~~                                                             
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   NONVERBAL ~~                                                          
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SELFREP ~~                                                            
##     OTHER             0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.624    0.151    4.120    0.000    0.624    0.632
##    .IQNV              0.859    0.172    4.996    0.000    0.859    0.868
##    .IQSR              0.435    0.193    2.254    0.024    0.435    0.434
##    .IQOR              0.335    0.181    1.847    0.065    0.335    0.323
##    .SPV              -0.410    4.355   -0.094    0.925   -0.410   -0.413
##    .SPNV              0.577    0.194    2.970    0.003    0.577    0.581
##    .SPSR              0.401    0.232    1.725    0.085    0.401    0.407
##    .SPOR              0.654    0.143    4.569    0.000    0.654    0.651
##    .HIV               0.687    0.107    6.390    0.000    0.687    0.699
##    .HINV              0.183    0.198    0.923    0.356    0.183    0.185
##    .HISR              0.492    0.082    6.000    0.000    0.492    0.502
##    .HIOR              0.600    0.094    6.397    0.000    0.600    0.598
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
##     VERBAL            1.000                               1.000    1.000
##     NONVERBAL         1.000                               1.000    1.000
##     SELFREP           1.000                               1.000    1.000
##     OTHER             1.000                               1.000    1.000
resid(WEA951.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   HIV    HINV  
## IQV   0.000                                                               
## IQNV  0.095  0.000                                                        
## IQSR -0.027 -0.073  0.000                                                 
## IQOR -0.068 -0.038 -0.003  0.000                                          
## SPV   0.013  0.003  0.027 -0.023  0.000                                   
## SPNV  0.012  0.001  0.018  0.001  0.036  0.000                            
## SPSR -0.026 -0.041 -0.004 -0.016  0.053  0.017  0.000                     
## SPOR -0.154 -0.046 -0.001 -0.028 -0.179 -0.013  0.008  0.000              
## HIV   0.023 -0.112  0.057  0.034 -0.030 -0.050  0.092  0.030  0.000       
## HINV  0.053  0.005  0.057 -0.048 -0.077 -0.022  0.021  0.025  0.035  0.000
## HISR  0.006  0.037  0.021 -0.069  0.036  0.065  0.042  0.044 -0.031 -0.017
## HIOR -0.079 -0.002 -0.084 -0.074 -0.171 -0.181  0.051 -0.005 -0.037  0.002
##      HISR   HIOR  
## IQV               
## IQNV              
## IQSR              
## IQOR              
## SPV               
## SPNV              
## SPSR              
## SPOR              
## HIV               
## HINV              
## HISR  0.000       
## HIOR  0.077  0.000
WEA951M.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR
HI =~ HIV + HINV + HISR + HIOR

AI ~~ SP + HI
SP ~~ HI

VERBAL =~ IQV + SPV + HIV
NONVERBAL =~ IQNV + SPNV + HINV
SELFREP =~ IQSR + SPSR + HISR
OTHER =~ IQOR + SPOR + HIOR

SPV ~~ 0*SPV
IQOR ~~ 0*IQOR'

WEA951M.fit <- cfa(WEA951M.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951M.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 329 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         55
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                28.427
##   Degrees of freedom                                23
##   P-value (Chi-square)                           0.200
## 
## Model Test Baseline Model:
## 
##   Test statistic                               331.949
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.980
##   Tucker-Lewis Index (TLI)                       0.941
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2123.869
##   Loglikelihood unrestricted model (H1)      -2109.656
##                                                       
##   Akaike (AIC)                                4357.739
##   Bayesian (BIC)                              4517.120
##   Sample-size adjusted Bayesian (BIC)         4343.142
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.087
##   P-value RMSEA <= 0.05                          0.569
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.035
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.611    0.244    2.507    0.012    0.611    0.613
##     IQNV              0.332    0.338    0.983    0.326    0.332    0.334
##     IQSR              1.350    1.938    0.697    0.486    1.350    1.355
##     IQOR              1.861    1.473    1.263    0.206    1.861    1.868
##   SP =~                                                                 
##     SPV              -0.109    1.121   -0.097    0.923   -0.109   -0.109
##     SPNV             -0.839    0.763   -1.100    0.271   -0.839   -0.842
##     SPSR             -0.945    1.120   -0.844    0.399   -0.945   -0.949
##     SPOR             -0.750    0.739   -1.015    0.310   -0.750   -0.753
##   HI =~                                                                 
##     HIV               0.508    0.315    1.612    0.107    0.508    0.510
##     HINV              0.976    0.415    2.354    0.019    0.976    0.980
##     HISR              0.824    0.324    2.546    0.011    0.824    0.827
##     HIOR              0.828    0.380    2.178    0.029    0.828    0.831
##   VERBAL =~                                                             
##     IQV              -0.161    0.267   -0.602    0.547   -0.161   -0.161
##     SPV               0.931    0.644    1.445    0.148    0.931    0.934
##     HIV              -0.346    0.240   -1.441    0.150   -0.346   -0.347
##   NONVERBAL =~                                                          
##     IQNV              0.113    0.373    0.302    0.763    0.113    0.113
##     SPNV              0.304    0.971    0.314    0.754    0.304    0.306
##     HINV              0.244    0.761    0.320    0.749    0.244    0.245
##   SELFREP =~                                                            
##     IQSR              1.163    1.571    0.740    0.459    1.163    1.168
##     SPSR              0.773    0.881    0.877    0.380    0.773    0.776
##     HISR              0.317    0.413    0.769    0.442    0.317    0.319
##   OTHER =~                                                              
##     IQOR              1.744    1.301    1.341    0.180    1.744    1.751
##     SPOR              0.889    0.637    1.395    0.163    0.889    0.892
##     HIOR              0.675    0.462    1.460    0.144    0.675    0.677
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP               -0.914    0.172   -5.306    0.000   -0.914   -0.914
##     HI                0.592    0.441    1.342    0.180    0.592    0.592
##   SP ~~                                                                 
##     HI               -0.721    0.269   -2.677    0.007   -0.721   -0.721
##   AI ~~                                                                 
##     VERBAL            0.575    0.702    0.819    0.413    0.575    0.575
##     NONVERBAL        -1.071    1.117   -0.958    0.338   -1.071   -1.071
##     SELFREP          -0.799    0.570   -1.400    0.161   -0.799   -0.799
##     OTHER            -0.849    0.238   -3.566    0.000   -0.849   -0.849
##   SP ~~                                                                 
##     VERBAL           -0.564    0.821   -0.687    0.492   -0.564   -0.564
##     NONVERBAL         1.068    1.062    1.006    0.314    1.068    1.068
##     SELFREP           0.675    0.797    0.847    0.397    0.675    0.675
##     OTHER             0.787    0.351    2.244    0.025    0.787    0.787
##   HI ~~                                                                 
##     VERBAL            0.284    0.897    0.317    0.751    0.284    0.284
##     NONVERBAL        -0.785    0.869   -0.903    0.367   -0.785   -0.785
##     SELFREP          -0.452    0.743   -0.609    0.543   -0.452   -0.452
##     OTHER            -0.547    0.473   -1.158    0.247   -0.547   -0.547
##   VERBAL ~~                                                             
##     NONVERBAL        -1.591    3.385   -0.470    0.638   -1.591   -1.591
##     SELFREP          -0.673    0.467   -1.443    0.149   -0.673   -0.673
##     OTHER            -0.642    0.540   -1.189    0.235   -0.642   -0.642
##   NONVERBAL ~~                                                          
##     SELFREP           0.873    0.651    1.341    0.180    0.873    0.873
##     OTHER             1.012    0.988    1.024    0.306    1.012    1.012
##   SELFREP ~~                                                            
##     OTHER             0.720    0.583    1.235    0.217    0.720    0.720
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SPV               0.000                               0.000    0.000
##    .IQOR              0.000                               0.000    0.000
##    .IQV               0.706    0.121    5.819    0.000    0.706    0.711
##    .IQNV              0.950    0.119    7.978    0.000    0.950    0.957
##    .IQSR              0.325    0.268    1.214    0.225    0.325    0.328
##    .SPNV              0.742    0.133    5.557    0.000    0.742    0.747
##    .SPSR              0.488    0.156    3.119    0.002    0.488    0.492
##    .SPOR              0.689    0.110    6.259    0.000    0.689    0.694
##    .HIV               0.715    0.098    7.305    0.000    0.715    0.720
##    .HINV              0.354    0.098    3.598    0.000    0.354    0.356
##    .HISR              0.449    0.081    5.545    0.000    0.449    0.452
##    .HIOR              0.463    0.101    4.604    0.000    0.463    0.467
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
##     VERBAL            1.000                               1.000    1.000
##     NONVERBAL         1.000                               1.000    1.000
##     SELFREP           1.000                               1.000    1.000
##     OTHER             1.000                               1.000    1.000
resid(WEA951M.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   HIV    HINV  
## IQV   0.000                                                               
## IQNV  0.112  0.000                                                        
## IQSR  0.000 -0.042  0.000                                                 
## IQOR -0.012 -0.011  0.003  0.000                                          
## SPV  -0.001 -0.021 -0.003  0.000  0.000                                   
## SPNV -0.023 -0.030 -0.028  0.001  0.014  0.000                            
## SPSR -0.010 -0.015  0.006 -0.004  0.012  0.025  0.000                     
## SPOR -0.051  0.002  0.007  0.005 -0.037  0.047 -0.052  0.000              
## HIV   0.005 -0.121 -0.002  0.028  0.000 -0.071  0.044  0.011  0.000       
## HINV -0.003  0.103  0.027  0.001 -0.005 -0.025 -0.034  0.042  0.050  0.000
## HISR -0.011  0.053 -0.014 -0.008 -0.011  0.072  0.001  0.032 -0.011 -0.019
## HIOR  0.039  0.064 -0.018 -0.004  0.019 -0.076  0.020 -0.008 -0.054  0.001
##      HISR   HIOR  
## IQV               
## IQNV              
## IQSR              
## IQOR              
## SPV               
## SPNV              
## SPSR              
## SPOR              
## HIV               
## HINV              
## HISR  0.000       
## HIOR  0.023  0.000

There were no violations of local independence.

#Experiment 2

WEA952.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR + SIV + SINV + SISR + SIOR
SK =~ SKV + SKNV + SKSR + SKOR

AI ~~ SP + SK
SP ~~ SK

VERBAL =~ IQV + SPV + SKV + SIV
NONVERBAL =~ IQNV + SPNV + SKNV + SINV
SELFREP =~ IQSR + SPSR + SKSR + SISR
OTHER =~ IQOR + SPOR + SKOR + SIOR'

WEA952.fit <- cfa(WEA952.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T, orthogonal = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## [1] "\n"
summary(WEA952.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 63 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         51
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               147.121
##   Degrees of freedom                                85
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               772.511
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.905
##   Tucker-Lewis Index (TLI)                       0.866
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4832.872
##   Loglikelihood unrestricted model (H1)      -4759.312
##                                                       
##   Akaike (AIC)                                9767.745
##   Bayesian (BIC)                              9942.417
##   Sample-size adjusted Bayesian (BIC)         9780.784
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.057
##   90 Percent confidence interval - lower         0.041
##   90 Percent confidence interval - upper         0.072
##   P-value RMSEA <= 0.05                          0.227
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.393    0.085    4.646    0.000    0.393    0.395
##     IQNV              0.314    0.084    3.764    0.000    0.314    0.315
##     IQSR              0.550    0.085    6.485    0.000    0.550    0.549
##     IQOR              0.583    0.085    6.878    0.000    0.583    0.578
##   SP =~                                                                 
##     SPV               0.518    0.095    5.474    0.000    0.518    0.520
##     SPNV              0.344    0.093    3.709    0.000    0.344    0.346
##     SPSR              0.391    0.088    4.433    0.000    0.391    0.391
##     SPOR              0.414    0.088    4.724    0.000    0.414    0.412
##     SIV               0.210    0.097    2.171    0.030    0.210    0.211
##     SINV              0.417    0.089    4.667    0.000    0.417    0.421
##     SISR              0.330    0.087    3.785    0.000    0.330    0.329
##     SIOR              0.310    0.084    3.704    0.000    0.310    0.308
##   SK =~                                                                 
##     SKV               0.241    0.089    2.714    0.007    0.241    0.242
##     SKNV              0.257    0.089    2.893    0.004    0.257    0.258
##     SKSR              0.573    0.103    5.556    0.000    0.573    0.573
##     SKOR              0.535    0.097    5.523    0.000    0.535    0.538
##   VERBAL =~                                                             
##     IQV               0.127    0.240    0.531    0.596    0.127    0.128
##     SPV               0.068    0.137    0.493    0.622    0.068    0.068
##     SKV               0.104    0.199    0.521    0.602    0.104    0.104
##     SIV               1.277    2.301    0.555    0.579    1.277    1.283
##   NONVERBAL =~                                                          
##     IQNV              0.439    0.145    3.023    0.003    0.439    0.440
##     SPNV              0.206    0.104    1.974    0.048    0.206    0.207
##     SKNV              0.187    0.101    1.843    0.065    0.187    0.187
##     SINV              0.543    0.169    3.219    0.001    0.543    0.548
##   SELFREP =~                                                            
##     IQSR              0.449    0.074    6.107    0.000    0.449    0.448
##     SPSR              0.554    0.079    7.004    0.000    0.554    0.554
##     SKSR              0.360    0.075    4.815    0.000    0.360    0.360
##     SISR              0.764    0.084    9.102    0.000    0.764    0.764
##   OTHER =~                                                              
##     IQOR              0.539    0.068    7.974    0.000    0.539    0.534
##     SPOR              0.492    0.073    6.777    0.000    0.492    0.489
##     SKOR              0.529    0.068    7.764    0.000    0.529    0.532
##     SIOR              0.843    0.072   11.750    0.000    0.843    0.836
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.569    0.095    6.019    0.000    0.569    0.569
##     SK                0.359    0.111    3.225    0.001    0.359    0.359
##   SP ~~                                                                 
##     SK                0.400    0.114    3.516    0.000    0.400    0.400
##   AI ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SP ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SK ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   VERBAL ~~                                                             
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   NONVERBAL ~~                                                          
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SELFREP ~~                                                            
##     OTHER             0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.821    0.101    8.085    0.000    0.821    0.828
##    .IQNV              0.703    0.132    5.325    0.000    0.703    0.707
##    .IQSR              0.498    0.078    6.368    0.000    0.498    0.497
##    .IQOR              0.388    0.076    5.134    0.000    0.388    0.380
##    .SPV               0.722    0.099    7.288    0.000    0.722    0.725
##    .SPNV              0.830    0.088    9.404    0.000    0.830    0.838
##    .SPSR              0.540    0.071    7.606    0.000    0.540    0.540
##    .SPOR              0.598    0.068    8.805    0.000    0.598    0.591
##    .SIV              -0.685    5.878   -0.117    0.907   -0.685   -0.692
##    .SINV              0.513    0.171    3.004    0.003    0.513    0.523
##    .SISR              0.308    0.094    3.285    0.001    0.308    0.308
##    .SIOR              0.209    0.078    2.680    0.007    0.209    0.206
##    .SKV               0.922    0.097    9.467    0.000    0.922    0.931
##    .SKNV              0.895    0.092    9.702    0.000    0.895    0.899
##    .SKSR              0.542    0.105    5.160    0.000    0.542    0.542
##    .SKOR              0.424    0.089    4.786    0.000    0.424    0.428
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
##     VERBAL            1.000                               1.000    1.000
##     NONVERBAL         1.000                               1.000    1.000
##     SELFREP           1.000                               1.000    1.000
##     OTHER             1.000                               1.000    1.000
resid(WEA952.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   SIV    SINV  
## IQV   0.000                                                               
## IQNV  0.185  0.000                                                        
## IQSR -0.017 -0.113  0.000                                                 
## IQOR -0.058  0.028  0.033  0.000                                          
## SPV   0.004  0.067  0.028 -0.011  0.000                                   
## SPNV  0.042 -0.003 -0.088 -0.064  0.100  0.000                            
## SPSR  0.022 -0.050 -0.001  0.021 -0.053 -0.025  0.000                     
## SPOR -0.013  0.066  0.081 -0.067 -0.094 -0.032  0.099  0.000              
## SIV   0.019  0.072 -0.016  0.091  0.003 -0.033 -0.092  0.043  0.000       
## SINV  0.155  0.023 -0.082 -0.068  0.081 -0.009 -0.014 -0.043  0.031  0.000
## SISR  0.006 -0.059 -0.006  0.102 -0.081 -0.104 -0.002  0.144  0.031 -0.039
## SIOR -0.039  0.125 -0.026 -0.038 -0.100 -0.037  0.040  0.024  0.095 -0.070
## SKV   0.012 -0.057 -0.038  0.010  0.033 -0.073  0.072  0.080  0.026  0.029
## SKNV  0.133 -0.001  0.039  0.027  0.046  0.126 -0.010  0.018  0.048  0.014
## SKSR -0.111  0.015 -0.054  0.011  0.011  0.011 -0.009  0.006  0.062 -0.046
## SKOR -0.036  0.089 -0.056  0.095 -0.002 -0.094  0.016 -0.108  0.115 -0.070
##      SISR   SIOR   SKV    SKNV   SKSR   SKOR  
## IQV                                           
## IQNV                                          
## IQSR                                          
## IQOR                                          
## SPV                                           
## SPNV                                          
## SPSR                                          
## SPOR                                          
## SIV                                           
## SINV                                          
## SISR  0.000                                   
## SIOR  0.169  0.000                            
## SKV   0.028  0.020  0.000                     
## SKNV  0.056  0.008  0.178  0.000              
## SKSR  0.000  0.109 -0.009 -0.008  0.000       
## SKOR  0.069 -0.011 -0.010 -0.069  0.062  0.000
WEA952M.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR + SIV + SINV + SISR + SIOR
SK =~ SKV + SKNV + SKSR + SKOR

AI ~~ SP + SK
SP ~~ SK

VERBAL =~ IQV + SPV + SKV + SIV
NONVERBAL =~ IQNV + SPNV + SKNV + SINV
SELFREP =~ IQSR + SPSR + SKSR + SISR
OTHER =~ IQOR + SPOR + SKOR + SIOR

SIV ~~ 0*SIV'

WEA952M.fit <- cfa(WEA952M.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T, orthogonal = T)

summary(WEA952M.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         50
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               147.155
##   Degrees of freedom                                86
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               772.511
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.906
##   Tucker-Lewis Index (TLI)                       0.869
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4832.889
##   Loglikelihood unrestricted model (H1)      -4759.312
##                                                       
##   Akaike (AIC)                                9765.778
##   Bayesian (BIC)                              9937.025
##   Sample-size adjusted Bayesian (BIC)         9778.561
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.056
##   90 Percent confidence interval - lower         0.040
##   90 Percent confidence interval - upper         0.071
##   P-value RMSEA <= 0.05                          0.251
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.390    0.084    4.642    0.000    0.390    0.392
##     IQNV              0.314    0.084    3.753    0.000    0.314    0.314
##     IQSR              0.551    0.085    6.478    0.000    0.551    0.550
##     IQOR              0.585    0.085    6.880    0.000    0.585    0.580
##   SP =~                                                                 
##     SPV               0.516    0.095    5.455    0.000    0.516    0.518
##     SPNV              0.343    0.093    3.694    0.000    0.343    0.345
##     SPSR              0.390    0.088    4.414    0.000    0.390    0.390
##     SPOR              0.415    0.088    4.721    0.000    0.415    0.413
##     SIV               0.214    0.096    2.215    0.027    0.214    0.215
##     SINV              0.415    0.089    4.639    0.000    0.415    0.419
##     SISR              0.331    0.087    3.791    0.000    0.331    0.331
##     SIOR              0.312    0.084    3.713    0.000    0.312    0.309
##   SK =~                                                                 
##     SKV               0.238    0.088    2.703    0.007    0.238    0.240
##     SKNV              0.255    0.089    2.876    0.004    0.255    0.256
##     SKSR              0.575    0.104    5.551    0.000    0.575    0.575
##     SKOR              0.536    0.097    5.515    0.000    0.536    0.539
##   VERBAL =~                                                             
##     IQV               0.167    0.064    2.606    0.009    0.167    0.168
##     SPV               0.085    0.071    1.200    0.230    0.085    0.085
##     SKV               0.139    0.066    2.120    0.034    0.139    0.140
##     SIV               0.972    0.048   20.106    0.000    0.972    0.977
##   NONVERBAL =~                                                          
##     IQNV              0.439    0.144    3.043    0.002    0.439    0.440
##     SPNV              0.208    0.104    1.993    0.046    0.208    0.209
##     SKNV              0.188    0.101    1.861    0.063    0.188    0.189
##     SINV              0.544    0.168    3.245    0.001    0.544    0.549
##   SELFREP =~                                                            
##     IQSR              0.449    0.074    6.095    0.000    0.449    0.448
##     SPSR              0.554    0.079    6.993    0.000    0.554    0.554
##     SKSR              0.359    0.075    4.797    0.000    0.359    0.359
##     SISR              0.763    0.084    9.080    0.000    0.763    0.763
##   OTHER =~                                                              
##     IQOR              0.538    0.068    7.947    0.000    0.538    0.533
##     SPOR              0.491    0.073    6.748    0.000    0.491    0.488
##     SKOR              0.528    0.068    7.741    0.000    0.528    0.531
##     SIOR              0.842    0.072   11.714    0.000    0.842    0.836
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.569    0.095    6.017    0.000    0.569    0.569
##     SK                0.358    0.111    3.228    0.001    0.358    0.358
##   SP ~~                                                                 
##     SK                0.401    0.114    3.526    0.000    0.401    0.401
##   AI ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SP ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SK ~~                                                                 
##     VERBAL            0.000                               0.000    0.000
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   VERBAL ~~                                                             
##     NONVERBAL         0.000                               0.000    0.000
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   NONVERBAL ~~                                                          
##     SELFREP           0.000                               0.000    0.000
##     OTHER             0.000                               0.000    0.000
##   SELFREP ~~                                                            
##     OTHER             0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SIV               0.000                               0.000    0.000
##    .IQV               0.811    0.087    9.367    0.000    0.811    0.818
##    .IQNV              0.704    0.131    5.367    0.000    0.704    0.708
##    .IQSR              0.498    0.078    6.355    0.000    0.498    0.497
##    .IQOR              0.386    0.076    5.098    0.000    0.386    0.379
##    .SPV               0.721    0.098    7.363    0.000    0.721    0.725
##    .SPNV              0.830    0.088    9.402    0.000    0.830    0.838
##    .SPSR              0.540    0.071    7.604    0.000    0.540    0.541
##    .SPOR              0.598    0.068    8.802    0.000    0.598    0.591
##    .SINV              0.513    0.170    3.012    0.003    0.513    0.523
##    .SISR              0.309    0.094    3.288    0.001    0.309    0.308
##    .SIOR              0.209    0.078    2.674    0.007    0.209    0.206
##    .SKV               0.915    0.090   10.147    0.000    0.915    0.923
##    .SKNV              0.895    0.092    9.705    0.000    0.895    0.899
##    .SKSR              0.541    0.106    5.121    0.000    0.541    0.541
##    .SKOR              0.424    0.089    4.768    0.000    0.424    0.428
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
##     VERBAL            1.000                               1.000    1.000
##     NONVERBAL         1.000                               1.000    1.000
##     SELFREP           1.000                               1.000    1.000
##     OTHER             1.000                               1.000    1.000
resid(WEA952M.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   SIV    SINV  
## IQV   0.000                                                               
## IQNV  0.187  0.000                                                        
## IQSR -0.016 -0.113  0.000                                                 
## IQOR -0.057  0.028  0.031  0.000                                          
## SPV   0.000  0.067  0.028 -0.011  0.000                                   
## SPNV  0.043 -0.003 -0.088 -0.064  0.102  0.000                            
## SPSR  0.023 -0.050  0.000  0.021 -0.052 -0.024  0.000                     
## SPOR -0.012  0.066  0.081 -0.066 -0.094 -0.032  0.099  0.000              
## SIV   0.018  0.072 -0.017  0.089  0.005 -0.034 -0.094  0.041  0.000       
## SINV  0.157  0.024 -0.081 -0.068  0.083 -0.009 -0.013 -0.043  0.030  0.000
## SISR  0.006 -0.059 -0.005  0.101 -0.081 -0.104 -0.002  0.144  0.029 -0.038
## SIOR -0.039  0.125 -0.027 -0.038 -0.100 -0.037  0.039  0.024  0.094 -0.070
## SKV   0.003 -0.057 -0.037  0.010  0.028 -0.073  0.073  0.080  0.023  0.030
## SKNV  0.134 -0.002  0.040  0.027  0.047  0.125 -0.010  0.018  0.048  0.013
## SKSR -0.111  0.015 -0.054  0.011  0.011  0.011 -0.009  0.005  0.061 -0.046
## SKOR -0.036  0.089 -0.056  0.095 -0.002 -0.094  0.016 -0.108  0.114 -0.070
##      SISR   SIOR   SKV    SKNV   SKSR   SKOR  
## IQV                                           
## IQNV                                          
## IQSR                                          
## IQOR                                          
## SPV                                           
## SPNV                                          
## SPSR                                          
## SPOR                                          
## SIV                                           
## SINV                                          
## SISR  0.000                                   
## SIOR  0.168  0.000                            
## SKV   0.028  0.020  0.000                     
## SKNV  0.056  0.008  0.179  0.000              
## SKSR  0.000  0.109 -0.008 -0.007  0.000       
## SKOR  0.069 -0.010 -0.009 -0.068  0.060  0.000

There were six violations of local independence.

Their Models, Without Method Factors

#Experiment 1

WEA951.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR
HI =~ HIV + HINV + HISR + HIOR'

WEA951.fit <- cfa(WEA951.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T)

summary(WEA951.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         27
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               114.891
##   Degrees of freedom                                51
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               331.949
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.760
##   Tucker-Lewis Index (TLI)                       0.689
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2167.101
##   Loglikelihood unrestricted model (H1)      -2109.656
##                                                       
##   Akaike (AIC)                                4388.203
##   Bayesian (BIC)                              4466.445
##   Sample-size adjusted Bayesian (BIC)         4381.037
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.097
##   90 Percent confidence interval - lower         0.073
##   90 Percent confidence interval - upper         0.120
##   P-value RMSEA <= 0.05                          0.001
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.085
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.386    0.101    3.808    0.000    0.386    0.388
##     IQNV              0.135    0.104    1.305    0.192    0.135    0.136
##     IQSR              0.699    0.110    6.343    0.000    0.699    0.702
##     IQOR              0.387    0.101    3.819    0.000    0.387    0.389
##   SP =~                                                                 
##     SPV              -0.059    0.102   -0.576    0.564   -0.059   -0.059
##     SPNV             -0.429    0.100   -4.284    0.000   -0.429   -0.431
##     SPSR             -0.631    0.111   -5.694    0.000   -0.631   -0.633
##     SPOR             -0.212    0.101   -2.095    0.036   -0.212   -0.213
##   HI =~                                                                 
##     HIV               0.541    0.089    6.065    0.000    0.541    0.543
##     HINV              0.809    0.084    9.609    0.000    0.809    0.812
##     HISR              0.707    0.086    8.255    0.000    0.707    0.710
##     HIOR              0.558    0.089    6.285    0.000    0.558    0.560
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP               -0.946    0.152   -6.237    0.000   -0.946   -0.946
##     HI                0.374    0.120    3.112    0.002    0.374    0.374
##   SP ~~                                                                 
##     HI               -0.543    0.127   -4.289    0.000   -0.543   -0.543
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.843    0.113    7.494    0.000    0.843    0.850
##    .IQNV              0.974    0.120    8.114    0.000    0.974    0.982
##    .IQSR              0.504    0.129    3.905    0.000    0.504    0.507
##    .IQOR              0.843    0.113    7.489    0.000    0.843    0.849
##    .SPV               0.989    0.121    8.174    0.000    0.989    0.997
##    .SPNV              0.808    0.110    7.320    0.000    0.808    0.814
##    .SPSR              0.595    0.124    4.797    0.000    0.595    0.599
##    .SPOR              0.948    0.118    8.026    0.000    0.948    0.955
##    .HIV               0.700    0.096    7.289    0.000    0.700    0.705
##    .HINV              0.338    0.085    3.965    0.000    0.338    0.341
##    .HISR              0.492    0.085    5.797    0.000    0.492    0.496
##    .HIOR              0.682    0.095    7.201    0.000    0.682    0.687
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
resid(WEA951.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   HIV    HINV  
## IQV   0.000                                                               
## IQNV  0.187  0.000                                                        
## IQSR -0.012 -0.045  0.000                                                 
## IQOR  0.079  0.037 -0.023  0.000                                          
## SPV   0.208  0.002  0.001 -0.032  0.000                                   
## SPNV  0.092 -0.005 -0.066  0.052  0.035  0.000                            
## SPSR -0.092 -0.051  0.080 -0.103  0.033  0.007  0.000                     
## SPOR -0.148 -0.037 -0.071  0.322 -0.183  0.028 -0.035  0.000              
## HIV   0.021 -0.098 -0.002  0.041 -0.187 -0.007  0.024  0.027  0.000       
## HINV  0.092  0.109 -0.023 -0.028 -0.086  0.000 -0.069  0.026  0.049  0.000
## HISR  0.027  0.054  0.054 -0.063  0.027  0.114  0.076  0.038 -0.055 -0.016
## HIOR -0.061  0.012 -0.147  0.149 -0.178 -0.141 -0.022  0.175 -0.054  0.005
##      HISR   HIOR  
## IQV               
## IQNV              
## IQSR              
## IQOR              
## SPV               
## SPNV              
## SPSR              
## SPOR              
## HIV               
## HINV              
## HISR  0.000       
## HIOR  0.043  0.000

There were five violations of local independence.

#Experiment 2

WEA952.model <- '
AI =~ IQV + IQNV + IQSR + IQOR
SP =~ SPV + SPNV + SPSR + SPOR + SIV + SINV + SISR + SIOR
SK =~ SKV + SKNV + SKSR + SKOR'

WEA952.fit <- cfa(WEA952.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T)

summary(WEA952.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         35
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               394.271
##   Degrees of freedom                               101
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               772.511
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.551
##   Tucker-Lewis Index (TLI)                       0.466
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4956.447
##   Loglikelihood unrestricted model (H1)      -4759.312
##                                                       
##   Akaike (AIC)                                9982.894
##   Bayesian (BIC)                             10102.767
##   Sample-size adjusted Bayesian (BIC)         9991.842
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.113
##   90 Percent confidence interval - lower         0.101
##   90 Percent confidence interval - upper         0.125
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.103
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.223    0.074    3.019    0.003    0.223    0.223
##     IQNV              0.271    0.074    3.678    0.000    0.271    0.271
##     IQSR              0.394    0.073    5.382    0.000    0.394    0.394
##     IQOR              0.858    0.085   10.146    0.000    0.858    0.860
##   SP =~                                                                 
##     SPV               0.210    0.074    2.833    0.005    0.210    0.210
##     SPNV              0.137    0.075    1.840    0.066    0.137    0.138
##     SPSR              0.356    0.073    4.905    0.000    0.356    0.357
##     SPOR              0.657    0.067    9.737    0.000    0.657    0.658
##     SIV               0.234    0.074    3.170    0.002    0.234    0.235
##     SINV              0.177    0.074    2.381    0.017    0.177    0.177
##     SISR              0.434    0.071    6.081    0.000    0.434    0.435
##     SIOR              0.770    0.066   11.645    0.000    0.770    0.771
##   SK =~                                                                 
##     SKV               0.169    0.076    2.230    0.026    0.169    0.170
##     SKNV              0.135    0.076    1.774    0.076    0.135    0.135
##     SKSR              0.438    0.076    5.763    0.000    0.438    0.439
##     SKOR              0.828    0.093    8.891    0.000    0.828    0.830
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.690    0.075    9.242    0.000    0.690    0.690
##     SK                0.622    0.090    6.936    0.000    0.622    0.622
##   SP ~~                                                                 
##     SK                0.625    0.082    7.597    0.000    0.625    0.625
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.946    0.090   10.501    0.000    0.946    0.950
##    .IQNV              0.922    0.089   10.415    0.000    0.922    0.926
##    .IQSR              0.841    0.084   10.024    0.000    0.841    0.844
##    .IQOR              0.259    0.116    2.225    0.026    0.259    0.260
##    .SPV               0.952    0.090   10.515    0.000    0.952    0.956
##    .SPNV              0.977    0.092   10.596    0.000    0.977    0.981
##    .SPSR              0.869    0.085   10.213    0.000    0.869    0.873
##    .SPOR              0.564    0.069    8.205    0.000    0.564    0.567
##    .SIV               0.941    0.090   10.478    0.000    0.941    0.945
##    .SINV              0.964    0.091   10.556    0.000    0.964    0.969
##    .SISR              0.807    0.081    9.942    0.000    0.807    0.811
##    .SIOR              0.403    0.067    6.028    0.000    0.403    0.405
##    .SKV               0.967    0.092   10.548    0.000    0.967    0.971
##    .SKNV              0.977    0.092   10.589    0.000    0.977    0.982
##    .SKSR              0.804    0.084    9.557    0.000    0.804    0.808
##    .SKOR              0.310    0.129    2.394    0.017    0.310    0.311
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
resid(WEA952.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   SIV    SINV  
## IQV   0.000                                                               
## IQNV  0.249  0.000                                                        
## IQSR  0.112 -0.047  0.000                                                 
## IQOR -0.022 -0.023  0.011  0.000                                          
## SPV   0.098  0.121  0.133  0.035  0.000                                   
## SPNV  0.099  0.124 -0.017 -0.032  0.251  0.000                            
## SPSR  0.055 -0.047  0.273 -0.062  0.075  0.061  0.000                     
## SPOR -0.021  0.017  0.031 -0.061 -0.019  0.019  0.025  0.000              
## SIV   0.194  0.066 -0.014  0.021  0.151  0.008 -0.094 -0.025  0.000       
## SINV  0.223  0.307  0.002 -0.035  0.263  0.226  0.087  0.013  0.078  0.000
## SISR  0.013 -0.081  0.322 -0.048 -0.002 -0.050  0.395 -0.006 -0.002  0.023
## SIOR -0.089  0.036 -0.140  0.052 -0.102 -0.036 -0.115  0.052 -0.021 -0.077
## SKV   0.036 -0.059 -0.032 -0.031  0.068 -0.055  0.072  0.050  0.155  0.051
## SKNV  0.151  0.087  0.057  0.008  0.082  0.188  0.000  0.004  0.050  0.145
## SKSR -0.091  0.006  0.112 -0.105  0.072  0.052  0.182 -0.081  0.046  0.001
## SKOR -0.075  0.010 -0.154  0.046  0.001 -0.091 -0.085 -0.102  0.038 -0.072
##      SISR   SIOR   SKV    SKNV   SKSR   SKOR  
## IQV                                           
## IQNV                                          
## IQSR                                          
## IQOR                                          
## SPV                                           
## SPNV                                          
## SPSR                                          
## SPOR                                          
## SIV                                           
## SINV                                          
## SISR  0.000                                   
## SIOR -0.066  0.000                            
## SKV   0.014 -0.032  0.000                     
## SKNV  0.053 -0.025  0.217  0.000              
## SKSR  0.231 -0.032  0.056  0.081  0.000       
## SKOR -0.086  0.100 -0.021 -0.042  0.006  0.000

There were nineteen violations of local independence.

Assessing Objective and Subjective Relationships

#Experiment 1 - Objective

WEA951O.model <- '
AI =~ IQV + IQNV
SP =~ SPV + SPNV
HI =~ HIV + HINV'

WEA951O.fit <- cfa(WEA951O.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951O.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         15
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                14.259
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.027
## 
## Model Test Baseline Model:
## 
##   Test statistic                                81.341
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.876
##   Tucker-Lewis Index (TLI)                       0.689
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1104.274
##   Loglikelihood unrestricted model (H1)      -1097.145
##                                                       
##   Akaike (AIC)                                2238.549
##   Bayesian (BIC)                              2282.017
##   Sample-size adjusted Bayesian (BIC)         2234.568
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.101
##   90 Percent confidence interval - lower         0.032
##   90 Percent confidence interval - upper         0.170
##   P-value RMSEA <= 0.05                          0.094
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.067
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.852    0.286    2.982    0.003    0.852    0.855
##     IQNV              0.280    0.124    2.253    0.024    0.280    0.281
##   SP =~                                                                 
##     SPV               0.216    0.170    1.274    0.203    0.216    0.217
##     SPNV              0.275    0.205    1.342    0.179    0.275    0.276
##   HI =~                                                                 
##     HIV               0.416    0.212    1.960    0.050    0.416    0.417
##     HINV              1.169    0.552    2.118    0.034    1.169    1.174
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                1.105    0.825    1.340    0.180    1.105    1.105
##     HI                0.214    0.154    1.394    0.163    0.214    0.214
##   SP ~~                                                                 
##     HI                0.299    0.324    0.922    0.356    0.299    0.299
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.266    0.474    0.562    0.574    0.266    0.268
##    .IQNV              0.914    0.123    7.449    0.000    0.914    0.921
##    .SPV               0.946    0.132    7.174    0.000    0.946    0.953
##    .SPNV              0.917    0.152    6.024    0.000    0.917    0.924
##    .HIV               0.820    0.191    4.290    0.000    0.820    0.826
##    .HINV             -0.375    1.287   -0.291    0.771   -0.375   -0.378
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
resid(WEA951O.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   SPV    SPNV   HIV    HINV  
## IQV   0.000                                   
## IQNV  0.000  0.000                            
## SPV   0.025 -0.057  0.000                     
## SPNV -0.011 -0.036  0.000  0.000              
## HIV   0.023 -0.095 -0.197  0.086  0.000       
## HINV -0.005  0.079 -0.136  0.093  0.000  0.000
WEA951OM.model <- '
AI =~ IQV + IQNV
SP =~ SPV + SPNV
HI =~ HIV + HINV

HINV ~~ 0*HINV
AI ~~ 1*SP'

WEA951OM.fit <- cfa(WEA951OM.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951OM.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         13
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                14.393
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.072
## 
## Model Test Baseline Model:
## 
##   Test statistic                                81.341
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.904
##   Tucker-Lewis Index (TLI)                       0.819
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1104.342
##   Loglikelihood unrestricted model (H1)      -1097.145
##                                                       
##   Akaike (AIC)                                2234.683
##   Bayesian (BIC)                              2272.355
##   Sample-size adjusted Bayesian (BIC)         2231.233
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.077
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.140
##   P-value RMSEA <= 0.05                          0.211
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.068
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.913    0.298    3.060    0.002    0.913    0.917
##     IQNV              0.261    0.120    2.176    0.030    0.261    0.262
##   SP =~                                                                 
##     SPV               0.228    0.115    1.989    0.047    0.228    0.229
##     SPNV              0.285    0.126    2.266    0.023    0.285    0.286
##   HI =~                                                                 
##     HIV               0.488    0.081    6.047    0.000    0.488    0.490
##     HINV              0.996    0.061   16.371    0.000    0.996    1.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                1.000                               1.000    1.000
##     HI                0.234    0.115    2.032    0.042    0.234    0.234
##   SP ~~                                                                 
##     HI                0.310    0.254    1.224    0.221    0.310    0.310
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HINV              0.000                               0.000    0.000
##    .IQV               0.159    0.532    0.298    0.765    0.159    0.160
##    .IQNV              0.924    0.121    7.616    0.000    0.924    0.931
##    .SPV               0.941    0.120    7.830    0.000    0.941    0.948
##    .SPNV              0.911    0.123    7.385    0.000    0.911    0.918
##    .HIV               0.754    0.092    8.185    0.000    0.754    0.760
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
resid(WEA951OM.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   SPV    SPNV   HIV    HINV  
## IQV   0.000                                   
## IQNV  0.000  0.000                            
## SPV   0.020 -0.050  0.000                     
## SPNV -0.012 -0.025 -0.005  0.000              
## HIV  -0.005 -0.100 -0.205  0.076  0.000       
## HINV -0.004  0.089 -0.131  0.101  0.000  0.000

There was one violation of local independence.

#Experiment 1 - Subjective

WEA951O.model <- '
AI =~ IQSR + IQOR
SP =~ SPSR + SPOR
HI =~ HISR + HIOR'

WEA951O.fit <- cfa(WEA951O.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951O.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         15
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                39.368
##   Degrees of freedom                                 6
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               133.801
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.719
##   Tucker-Lewis Index (TLI)                       0.298
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1090.599
##   Loglikelihood unrestricted model (H1)      -1070.915
##                                                       
##   Akaike (AIC)                                2211.198
##   Bayesian (BIC)                              2254.665
##   Sample-size adjusted Bayesian (BIC)         2207.217
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.204
##   90 Percent confidence interval - lower         0.146
##   90 Percent confidence interval - upper         0.266
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.098
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQSR              0.744    0.154    4.848    0.000    0.744    0.747
##     IQOR              0.333    0.103    3.230    0.001    0.333    0.335
##   SP =~                                                                 
##     SPSR              0.533    0.207    2.579    0.010    0.533    0.535
##     SPOR              0.186    0.108    1.721    0.085    0.186    0.187
##   HI =~                                                                 
##     HISR              0.848    0.168    5.040    0.000    0.848    0.852
##     HIOR              0.515    0.123    4.188    0.000    0.515    0.517
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                1.190    0.471    2.523    0.012    1.190    1.190
##     HI                0.327    0.140    2.335    0.020    0.327    0.327
##   SP ~~                                                                 
##     HI                0.715    0.304    2.349    0.019    0.715    0.715
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQSR              0.438    0.208    2.106    0.035    0.438    0.442
##    .IQOR              0.881    0.115    7.666    0.000    0.881    0.888
##    .SPSR              0.709    0.221    3.210    0.001    0.709    0.714
##    .SPOR              0.958    0.120    8.007    0.000    0.958    0.965
##    .HISR              0.273    0.263    1.038    0.299    0.273    0.275
##    .HIOR              0.728    0.131    5.562    0.000    0.728    0.733
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
resid(WEA951O.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQSR   IQOR   SPSR   SPOR   HISR   HIOR  
## IQSR  0.000                                   
## IQOR  0.000  0.000                            
## SPSR  0.025 -0.083  0.000                     
## SPOR -0.096  0.326  0.000  0.000              
## HISR  0.032 -0.053 -0.005  0.006  0.000       
## HIOR -0.126  0.173 -0.027  0.171  0.000  0.000
WEA951OM.model <- '
AI =~ IQSR + IQOR
SP =~ SPSR + SPOR
HI =~ HISR + HIOR

AI ~~ 1*SP'

WEA951OM.fit <- cfa(WEA951OM.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951OM.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         14
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                39.464
##   Degrees of freedom                                 7
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               133.801
##   Degrees of freedom                                15
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.727
##   Tucker-Lewis Index (TLI)                       0.414
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1090.647
##   Loglikelihood unrestricted model (H1)      -1070.915
##                                                       
##   Akaike (AIC)                                2209.294
##   Bayesian (BIC)                              2249.864
##   Sample-size adjusted Bayesian (BIC)         2205.578
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.186
##   90 Percent confidence interval - lower         0.132
##   90 Percent confidence interval - upper         0.245
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.101
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQSR              0.798    0.155    5.154    0.000    0.798    0.801
##     IQOR              0.314    0.103    3.044    0.002    0.314    0.315
##   SP =~                                                                 
##     SPSR              0.602    0.129    4.675    0.000    0.602    0.604
##     SPOR              0.183    0.097    1.890    0.059    0.183    0.183
##   HI =~                                                                 
##     HISR              0.880    0.182    4.833    0.000    0.880    0.883
##     HIOR              0.497    0.125    3.976    0.000    0.497    0.499
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                1.000                               1.000    1.000
##     HI                0.306    0.130    2.350    0.019    0.306    0.306
##   SP ~~                                                                 
##     HI                0.616    0.196    3.143    0.002    0.616    0.616
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQSR              0.355    0.224    1.586    0.113    0.355    0.358
##    .IQOR              0.894    0.116    7.738    0.000    0.894    0.901
##    .SPSR              0.630    0.146    4.331    0.000    0.630    0.635
##    .SPOR              0.959    0.118    8.104    0.000    0.959    0.966
##    .HISR              0.219    0.299    0.734    0.463    0.219    0.221
##    .HIOR              0.746    0.132    5.670    0.000    0.746    0.751
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     HI                1.000                               1.000    1.000
resid(WEA951OM.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQSR   IQOR   SPSR   SPOR   HISR   HIOR  
## IQSR  0.000                                   
## IQOR -0.002  0.000                            
## SPSR  0.016 -0.060  0.000                     
## SPOR -0.077  0.342 -0.011  0.000              
## HISR  0.023 -0.045 -0.009  0.020  0.000       
## HIOR -0.122  0.182 -0.016  0.184  0.000  0.000

There were three violations of local independence.

#Experiment 2 - Objective

WEA952O.model <- '
AI =~ IQV + IQNV
SP =~ SPV + SPNV + SIV + SINV
SK =~ SKV + SKNV'

WEA952O.fit <- cfa(WEA952O.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T)

summary(WEA952O.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         19
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                31.343
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.018
## 
## Model Test Baseline Model:
## 
##   Test statistic                               168.074
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.898
##   Tucker-Lewis Index (TLI)                       0.831
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2504.418
##   Loglikelihood unrestricted model (H1)      -2488.747
##                                                       
##   Akaike (AIC)                                5046.836
##   Bayesian (BIC)                              5111.910
##   Sample-size adjusted Bayesian (BIC)         5051.693
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061
##   90 Percent confidence interval - lower         0.025
##   90 Percent confidence interval - upper         0.094
##   P-value RMSEA <= 0.05                          0.267
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.052
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.524    0.090    5.814    0.000    0.524    0.525
##     IQNV              0.589    0.095    6.171    0.000    0.589    0.590
##   SP =~                                                                 
##     SPV               0.481    0.082    5.858    0.000    0.481    0.482
##     SPNV              0.418    0.082    5.106    0.000    0.418    0.419
##     SIV               0.269    0.083    3.253    0.001    0.269    0.269
##     SINV              0.631    0.085    7.391    0.000    0.631    0.633
##   SK =~                                                                 
##     SKV               0.285    0.132    2.155    0.031    0.285    0.286
##     SKNV              0.838    0.343    2.443    0.015    0.838    0.840
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.742    0.114    6.514    0.000    0.742    0.742
##     SK                0.282    0.153    1.841    0.066    0.282    0.282
##   SP ~~                                                                 
##     SK                0.338    0.161    2.096    0.036    0.338    0.338
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.721    0.097    7.454    0.000    0.721    0.724
##    .IQNV              0.649    0.106    6.098    0.000    0.649    0.652
##    .SPV               0.765    0.088    8.664    0.000    0.765    0.768
##    .SPNV              0.821    0.089    9.271    0.000    0.821    0.824
##    .SIV               0.923    0.091   10.157    0.000    0.923    0.927
##    .SINV              0.597    0.096    6.229    0.000    0.597    0.600
##    .SKV               0.914    0.108    8.456    0.000    0.914    0.918
##    .SKNV              0.294    0.568    0.516    0.606    0.294    0.295
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
resid(WEA952O.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   SPV    SPNV   SIV    SINV   SKV    SKNV  
## IQV   0.000                                                 
## IQNV  0.000  0.000                                          
## SPV  -0.058 -0.051  0.000                                   
## SPNV -0.043 -0.034  0.078  0.000                            
## SIV   0.125 -0.008  0.070 -0.073  0.000                     
## SINV  0.003  0.063 -0.005 -0.015 -0.050  0.000              
## SKV   0.018 -0.078  0.043 -0.081  0.154  0.009  0.000       
## SKNV  0.046 -0.030 -0.037  0.081 -0.006 -0.020  0.000  0.000

There was one violation of local independence.

#Experiment 2 - Subjective

WEA952O.model <- '
AI =~ IQSR + IQOR
SP =~ SPSR + SPOR + SISR + SIOR
SK =~ SKSR + SKOR'

WEA952O.fit <- cfa(WEA952O.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## [1] "\n"
summary(WEA952O.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 50 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         19
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               182.052
##   Degrees of freedom                                17
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               521.714
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.666
##   Tucker-Lewis Index (TLI)                       0.449
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2402.952
##   Loglikelihood unrestricted model (H1)      -2311.926
##                                                       
##   Akaike (AIC)                                4843.905
##   Bayesian (BIC)                              4908.979
##   Sample-size adjusted Bayesian (BIC)         4848.763
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.207
##   90 Percent confidence interval - lower         0.180
##   90 Percent confidence interval - upper         0.234
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.147
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQSR              0.235    0.096    2.464    0.014    0.235    0.236
##     IQOR              1.481    0.438    3.380    0.001    1.481    1.484
##   SP =~                                                                 
##     SPSR              0.220    0.070    3.119    0.002    0.220    0.220
##     SPOR              0.608    0.068    8.979    0.000    0.608    0.609
##     SISR              0.318    0.070    4.560    0.000    0.318    0.319
##     SIOR              0.916    0.068   13.425    0.000    0.916    0.918
##   SK =~                                                                 
##     SKSR              0.323    0.082    3.924    0.000    0.323    0.324
##     SKOR              1.139    0.185    6.161    0.000    1.139    1.142
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.368    0.124    2.978    0.003    0.368    0.368
##     SK                0.296    0.111    2.660    0.008    0.296    0.296
##   SP ~~                                                                 
##     SK                0.456    0.092    4.933    0.000    0.456    0.456
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQSR              0.940    0.094    9.986    0.000    0.940    0.944
##    .IQOR             -1.197    1.304   -0.918    0.359   -1.197   -1.202
##    .SPSR              0.947    0.090   10.567    0.000    0.947    0.952
##    .SPOR              0.626    0.070    8.903    0.000    0.626    0.629
##    .SISR              0.894    0.086   10.443    0.000    0.894    0.898
##    .SIOR              0.157    0.085    1.842    0.065    0.157    0.158
##    .SKSR              0.891    0.090    9.904    0.000    0.891    0.895
##    .SKOR             -0.303    0.413   -0.733    0.463   -0.303   -0.304
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
resid(WEA952O.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQSR   IQOR   SPSR   SPOR   SISR   SIOR   SKSR   SKOR  
## IQSR  0.000                                                 
## IQOR  0.000  0.000                                          
## SPSR  0.351  0.030  0.000                                   
## SPOR  0.157 -0.003  0.126  0.000                            
## SISR  0.412  0.036  0.480  0.086  0.000                     
## SIOR -0.010  0.008 -0.042  0.001 -0.023  0.000              
## SKSR  0.197 -0.012  0.247  0.010  0.303  0.044  0.000       
## SKOR -0.030 -0.011 -0.015 -0.077 -0.026  0.022  0.000  0.000
WEA952OM.model <- '
AI =~ IQSR + IQOR
SP =~ SPSR + SPOR + SISR + SIOR
SK =~ SKSR + SKOR

IQOR ~~ 0*IQOR
SKOR ~~ 0*SKOR'

WEA952OM.fit <- cfa(WEA952OM.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T)

summary(WEA952OM.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         17
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               185.405
##   Degrees of freedom                                19
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               521.714
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.663
##   Tucker-Lewis Index (TLI)                       0.503
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2404.629
##   Loglikelihood unrestricted model (H1)      -2311.926
##                                                       
##   Akaike (AIC)                                4843.258
##   Bayesian (BIC)                              4901.482
##   Sample-size adjusted Bayesian (BIC)         4847.604
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.196
##   90 Percent confidence interval - lower         0.171
##   90 Percent confidence interval - upper         0.223
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.136
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQSR              0.349    0.064    5.443    0.000    0.349    0.350
##     IQOR              0.998    0.047   21.307    0.000    0.998    1.000
##   SP =~                                                                 
##     SPSR              0.269    0.072    3.740    0.000    0.269    0.269
##     SPOR              0.634    0.067    9.397    0.000    0.634    0.635
##     SISR              0.362    0.071    5.108    0.000    0.362    0.363
##     SIOR              0.865    0.067   12.954    0.000    0.865    0.867
##   SK =~                                                                 
##     SKSR              0.369    0.064    5.776    0.000    0.369    0.370
##     SKOR              0.998    0.047   21.307    0.000    0.998    1.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                0.575    0.055   10.425    0.000    0.575    0.575
##     SK                0.490    0.050    9.715    0.000    0.490    0.490
##   SP ~~                                                                 
##     SK                0.531    0.058    9.171    0.000    0.531    0.531
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQOR              0.000                               0.000    0.000
##    .SKOR              0.000                               0.000    0.000
##    .IQSR              0.874    0.082   10.654    0.000    0.874    0.878
##    .SPSR              0.923    0.088   10.468    0.000    0.923    0.928
##    .SPOR              0.594    0.069    8.584    0.000    0.594    0.597
##    .SISR              0.865    0.084   10.281    0.000    0.865    0.868
##    .SIOR              0.247    0.075    3.277    0.001    0.247    0.248
##    .SKSR              0.859    0.081   10.654    0.000    0.859    0.863
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
resid(WEA952OM.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQSR   IQOR   SPSR   SPOR   SISR   SIOR   SKSR   SKOR  
## IQSR  0.000                                                 
## IQOR  0.000  0.000                                          
## SPSR  0.316 -0.005  0.000                                   
## SPOR  0.082 -0.035  0.089  0.000                            
## SISR  0.367  0.001  0.452  0.050  0.000                     
## SIOR -0.105  0.011 -0.073  0.009 -0.045  0.000              
## SKSR  0.157 -0.051  0.227 -0.025  0.279  0.010  0.000       
## SKOR -0.121  0.000 -0.043 -0.097 -0.053  0.040  0.000  0.000

There were six violations of local independence.

Objective versus Subjective

#Experiment 1

WEA951.model <- '
AIO =~ IQV + IQNV 
AIS =~ IQSR + IQOR
SPO =~ SPV + SPNV 
SPS =~ SPSR + SPOR
HIO =~ HIV + HINV 
HIS =~ HISR + HIOR'

WEA951.fit <- cfa(WEA951.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 71 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         39
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                87.580
##   Degrees of freedom                                39
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               331.949
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.817
##   Tucker-Lewis Index (TLI)                       0.691
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2153.446
##   Loglikelihood unrestricted model (H1)      -2109.656
##                                                       
##   Akaike (AIC)                                4384.892
##   Bayesian (BIC)                              4497.908
##   Sample-size adjusted Bayesian (BIC)         4374.542
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.096
##   90 Percent confidence interval - lower         0.069
##   90 Percent confidence interval - upper         0.123
##   P-value RMSEA <= 0.05                          0.004
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.077
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO =~                                                                
##     IQV               0.923    0.302    3.058    0.002    0.923    0.926
##     IQNV              0.258    0.118    2.185    0.029    0.258    0.259
##   AIS =~                                                                
##     IQSR              0.618    0.118    5.236    0.000    0.618    0.620
##     IQOR              0.401    0.101    3.982    0.000    0.401    0.403
##   SPO =~                                                                
##     SPV               0.151    0.131    1.150    0.250    0.151    0.151
##     SPNV              0.395    0.273    1.448    0.148    0.395    0.397
##   SPS =~                                                                
##     SPSR              0.441    0.178    2.473    0.013    0.441    0.443
##     SPOR              0.225    0.117    1.917    0.055    0.225    0.226
##   HIO =~                                                                
##     HIV               0.529    0.091    5.814    0.000    0.529    0.531
##     HINV              0.920    0.100    9.199    0.000    0.920    0.924
##   HIS =~                                                                
##     HISR              0.753    0.092    8.214    0.000    0.753    0.756
##     HIOR              0.580    0.089    6.486    0.000    0.580    0.582
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO ~~                                                                
##     AIS               0.491    0.203    2.418    0.016    0.491    0.491
##     SPO               0.784    0.588    1.333    0.182    0.784    0.784
##     SPS               0.219    0.217    1.009    0.313    0.219    0.219
##     HIO               0.247    0.124    1.992    0.046    0.247    0.247
##     HIS               0.148    0.123    1.198    0.231    0.148    0.148
##   AIS ~~                                                                
##     SPO               0.915    0.652    1.402    0.161    0.915    0.915
##     SPS               1.536    0.601    2.557    0.011    1.536    1.536
##     HIO               0.320    0.138    2.318    0.020    0.320    0.320
##     HIS               0.369    0.157    2.352    0.019    0.369    0.369
##   SPO ~~                                                                
##     SPS               1.371    1.067    1.285    0.199    1.371    1.371
##     HIO               0.404    0.336    1.202    0.229    0.404    0.404
##     HIS               0.568    0.435    1.304    0.192    0.568    0.568
##   SPS ~~                                                                
##     HIO               0.546    0.262    2.085    0.037    0.546    0.546
##     HIS               0.899    0.364    2.467    0.014    0.899    0.899
##   HIO ~~                                                                
##     HIS               0.817    0.095    8.612    0.000    0.817    0.817
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.141    0.544    0.260    0.795    0.141    0.142
##    .IQNV              0.926    0.121    7.661    0.000    0.926    0.933
##    .IQSR              0.610    0.133    4.585    0.000    0.610    0.615
##    .IQOR              0.831    0.112    7.443    0.000    0.831    0.838
##    .SPV               0.970    0.122    7.936    0.000    0.970    0.977
##    .SPNV              0.836    0.229    3.645    0.000    0.836    0.843
##    .SPSR              0.798    0.171    4.675    0.000    0.798    0.804
##    .SPOR              0.942    0.121    7.805    0.000    0.942    0.949
##    .HIV               0.713    0.099    7.236    0.000    0.713    0.719
##    .HINV              0.146    0.141    1.035    0.301    0.146    0.147
##    .HISR              0.426    0.099    4.309    0.000    0.426    0.429
##    .HIOR              0.656    0.094    6.951    0.000    0.656    0.661
##     AIO               1.000                               1.000    1.000
##     AIS               1.000                               1.000    1.000
##     SPO               1.000                               1.000    1.000
##     SPS               1.000                               1.000    1.000
##     HIO               1.000                               1.000    1.000
##     HIS               1.000                               1.000    1.000
resid(WEA951.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   HIV    HINV  
## IQV   0.000                                                               
## IQNV  0.000  0.000                                                        
## IQSR -0.022 -0.029  0.000                                                 
## IQOR  0.047  0.039  0.000  0.000                                          
## SPV   0.120 -0.021 -0.046 -0.066  0.000                                   
## SPNV -0.038 -0.031 -0.005  0.064  0.000  0.000                            
## SPSR  0.050  0.005  0.078 -0.144 -0.022  0.039  0.000                     
## SPOR -0.116 -0.023 -0.145  0.260 -0.217 -0.003  0.000  0.000              
## HIV  -0.021 -0.104  0.035  0.052 -0.202  0.035  0.082  0.025  0.000       
## HINV -0.001  0.091  0.007 -0.029 -0.116  0.042 -0.013  0.006  0.000  0.000
## HISR  0.027  0.061  0.067 -0.072 -0.015  0.110  0.019 -0.033  0.002 -0.010
## HIOR -0.060  0.018 -0.133  0.143 -0.210 -0.141 -0.062  0.122 -0.002  0.021
##      HISR   HIOR  
## IQV               
## IQNV              
## IQSR              
## IQOR              
## SPV               
## SPNV              
## SPSR              
## SPOR              
## HIV               
## HINV              
## HISR  0.000       
## HIOR  0.000  0.000
WEA951OM.model <- '
AIO =~ IQV + IQNV 
AIS =~ IQSR + IQOR
SPO =~ SPV + SPNV 
SPS =~ SPSR + SPOR
HIO =~ HIV + HINV 
HIS =~ HISR + HIOR

SPS ~~ 1*AIS + 1*SPO'

WEA951OM.fit <- cfa(WEA951OM.model, sample.cov = WEA951.cor, sample.nobs = nWEA951, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA951OM.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         37
##                                                       
##   Number of observations                           134
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                89.181
##   Degrees of freedom                                41
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               331.949
##   Degrees of freedom                                66
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.819
##   Tucker-Lewis Index (TLI)                       0.708
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2154.247
##   Loglikelihood unrestricted model (H1)      -2109.656
##                                                       
##   Akaike (AIC)                                4382.493
##   Bayesian (BIC)                              4489.713
##   Sample-size adjusted Bayesian (BIC)         4372.673
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.094
##   90 Percent confidence interval - lower         0.067
##   90 Percent confidence interval - upper         0.120
##   P-value RMSEA <= 0.05                          0.005
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.079
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO =~                                                                
##     IQV               0.946    0.326    2.905    0.004    0.946    0.948
##     IQNV              0.252    0.120    2.101    0.036    0.252    0.253
##   AIS =~                                                                
##     IQSR              0.716    0.120    5.991    0.000    0.716    0.719
##     IQOR              0.375    0.100    3.749    0.000    0.375    0.376
##   SPO =~                                                                
##     SPV               0.175    0.098    1.779    0.075    0.175    0.175
##     SPNV              0.399    0.126    3.156    0.002    0.399    0.400
##   SPS =~                                                                
##     SPSR              0.621    0.113    5.513    0.000    0.621    0.623
##     SPOR              0.245    0.097    2.530    0.011    0.245    0.246
##   HIO =~                                                                
##     HIV               0.529    0.091    5.822    0.000    0.529    0.531
##     HINV              0.919    0.100    9.198    0.000    0.919    0.923
##   HIS =~                                                                
##     HISR              0.761    0.092    8.274    0.000    0.761    0.763
##     HIOR              0.576    0.089    6.432    0.000    0.576    0.577
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIS ~~                                                                
##     SPS               1.000                               1.000    1.000
##   SPO ~~                                                                
##     SPS               1.000                               1.000    1.000
##   AIO ~~                                                                
##     AIS               0.421    0.183    2.298    0.022    0.421    0.421
##     SPO               0.762    0.373    2.042    0.041    0.762    0.762
##     SPS               0.176    0.150    1.177    0.239    0.176    0.176
##     HIO               0.239    0.124    1.930    0.054    0.239    0.239
##     HIS               0.141    0.121    1.172    0.241    0.141    0.141
##   AIS ~~                                                                
##     SPO               0.757    0.293    2.586    0.010    0.757    0.757
##     HIO               0.288    0.124    2.323    0.020    0.288    0.288
##     HIS               0.323    0.139    2.315    0.021    0.323    0.323
##   SPO ~~                                                                
##     HIO               0.378    0.221    1.708    0.088    0.378    0.378
##     HIS               0.549    0.249    2.208    0.027    0.549    0.549
##   SPS ~~                                                                
##     HIO               0.401    0.145    2.766    0.006    0.401    0.401
##     HIS               0.660    0.166    3.980    0.000    0.660    0.660
##   HIO ~~                                                                
##     HIS               0.814    0.095    8.588    0.000    0.814    0.814
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.100    0.604    0.166    0.868    0.100    0.101
##    .IQNV              0.929    0.121    7.654    0.000    0.929    0.936
##    .IQSR              0.480    0.146    3.276    0.001    0.480    0.483
##    .IQOR              0.852    0.112    7.594    0.000    0.852    0.858
##    .SPV               0.962    0.119    8.103    0.000    0.962    0.969
##    .SPNV              0.834    0.127    6.558    0.000    0.834    0.840
##    .SPSR              0.607    0.126    4.824    0.000    0.607    0.612
##    .SPOR              0.933    0.116    8.024    0.000    0.933    0.940
##    .HIV               0.713    0.099    7.233    0.000    0.713    0.718
##    .HINV              0.148    0.140    1.051    0.293    0.148    0.149
##    .HISR              0.415    0.100    4.154    0.000    0.415    0.418
##    .HIOR              0.662    0.095    6.991    0.000    0.662    0.666
##     AIO               1.000                               1.000    1.000
##     AIS               1.000                               1.000    1.000
##     SPO               1.000                               1.000    1.000
##     SPS               1.000                               1.000    1.000
##     HIO               1.000                               1.000    1.000
##     HIS               1.000                               1.000    1.000
resid(WEA951OM.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SPSR   SPOR   HIV    HINV  
## IQV   0.000                                                               
## IQNV  0.000  0.000                                                        
## IQSR -0.027 -0.027  0.000                                                 
## IQOR  0.080  0.050 -0.020  0.000                                          
## SPV   0.103 -0.024 -0.055 -0.060  0.000                                   
## SPNV -0.039 -0.027  0.002  0.096 -0.010  0.000                            
## SPSR  0.036  0.002  0.052 -0.104 -0.039  0.031  0.000                     
## SPOR -0.111 -0.021 -0.107  0.307 -0.213  0.022 -0.053  0.000              
## HIV  -0.020 -0.102  0.030  0.062 -0.205  0.040  0.077  0.038  0.000       
## HINV  0.001  0.094 -0.001 -0.010 -0.121  0.050 -0.021  0.029  0.000  0.000
## HISR  0.028  0.063  0.063 -0.053 -0.023  0.112  0.006 -0.004  0.000 -0.013
## HIOR -0.057  0.019 -0.134  0.160 -0.216 -0.137 -0.067  0.146  0.000  0.026
##      HISR   HIOR  
## IQV               
## IQNV              
## IQSR              
## IQOR              
## SPV               
## SPNV              
## SPSR              
## SPOR              
## HIV               
## HINV              
## HISR  0.000       
## HIOR -0.001  0.000

There were three violations of local independence but none with scaling.

#Experiment 2

WEA952.model <- '
AIO =~ IQV + IQNV 
AIS =~ IQSR + IQOR
SPO =~ SPV + SPNV + SIV + SINV
SPS =~ SPSR + SPOR + SISR + SIOR
SKO =~ SKV + SKNV 
SKS =~ SKSR + SKOR'

WEA952.fit <- cfa(WEA952.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
## [1] "\n"
summary(WEA952.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         47
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               281.169
##   Degrees of freedom                                89
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               772.511
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.705
##   Tucker-Lewis Index (TLI)                       0.603
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4899.896
##   Loglikelihood unrestricted model (H1)      -4759.312
##                                                       
##   Akaike (AIC)                                9893.792
##   Bayesian (BIC)                             10054.765
##   Sample-size adjusted Bayesian (BIC)         9905.809
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.098
##   90 Percent confidence interval - lower         0.085
##   90 Percent confidence interval - upper         0.110
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.090
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO =~                                                                
##     IQV               0.509    0.086    5.940    0.000    0.509    0.510
##     IQNV              0.606    0.093    6.541    0.000    0.606    0.607
##   AIS =~                                                                
##     IQSR              0.290    0.082    3.524    0.000    0.290    0.291
##     IQOR              1.200    0.213    5.632    0.000    1.200    1.203
##   SPO =~                                                                
##     SPV               0.481    0.082    5.894    0.000    0.481    0.482
##     SPNV              0.420    0.082    5.145    0.000    0.420    0.421
##     SIV               0.281    0.082    3.420    0.001    0.281    0.282
##     SINV              0.623    0.084    7.389    0.000    0.623    0.624
##   SPS =~                                                                
##     SPSR              0.259    0.072    3.612    0.000    0.259    0.259
##     SPOR              0.632    0.067    9.374    0.000    0.632    0.633
##     SISR              0.350    0.071    4.943    0.000    0.350    0.350
##     SIOR              0.874    0.067   13.082    0.000    0.874    0.876
##   SKO =~                                                                
##     SKV               0.334    0.120    2.780    0.005    0.334    0.335
##     SKNV              0.715    0.225    3.183    0.001    0.715    0.717
##   SKS =~                                                                
##     SKSR              0.346    0.080    4.321    0.000    0.346    0.347
##     SKOR              1.063    0.154    6.918    0.000    1.063    1.066
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO ~~                                                                
##     AIS               0.271    0.091    2.966    0.003    0.271    0.271
##     SPO               0.740    0.114    6.490    0.000    0.740    0.740
##     SPS               0.250    0.104    2.404    0.016    0.250    0.250
##     SKO               0.301    0.146    2.065    0.039    0.301    0.301
##     SKS               0.172    0.092    1.879    0.060    0.172    0.172
##   AIS ~~                                                                
##     SPO               0.154    0.078    1.978    0.048    0.154    0.154
##     SPS               0.472    0.100    4.706    0.000    0.472    0.472
##     SKO               0.090    0.079    1.141    0.254    0.090    0.090
##     SKS               0.391    0.101    3.878    0.000    0.391    0.391
##   SPO ~~                                                                
##     SPS               0.226    0.097    2.339    0.019    0.226    0.226
##     SKO               0.393    0.148    2.650    0.008    0.393    0.393
##     SKS               0.090    0.084    1.073    0.283    0.090    0.090
##   SPS ~~                                                                
##     SKO               0.105    0.103    1.022    0.307    0.105    0.105
##     SKS               0.495    0.090    5.509    0.000    0.495    0.495
##   SKO ~~                                                                
##     SKS               0.109    0.089    1.226    0.220    0.109    0.109
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.736    0.092    8.012    0.000    0.736    0.739
##    .IQNV              0.628    0.104    6.037    0.000    0.628    0.631
##    .IQSR              0.911    0.090   10.070    0.000    0.911    0.915
##    .IQOR             -0.445    0.506   -0.879    0.380   -0.445   -0.447
##    .SPV               0.764    0.088    8.701    0.000    0.764    0.768
##    .SPNV              0.819    0.088    9.285    0.000    0.819    0.823
##    .SIV               0.916    0.091   10.114    0.000    0.916    0.920
##    .SINV              0.607    0.094    6.472    0.000    0.607    0.610
##    .SPSR              0.929    0.089   10.490    0.000    0.929    0.933
##    .SPOR              0.597    0.069    8.629    0.000    0.597    0.599
##    .SISR              0.873    0.085   10.325    0.000    0.873    0.877
##    .SIOR              0.232    0.076    3.029    0.002    0.232    0.233
##    .SKV               0.884    0.107    8.246    0.000    0.884    0.888
##    .SKNV              0.484    0.314    1.543    0.123    0.484    0.487
##    .SKSR              0.876    0.089    9.875    0.000    0.876    0.879
##    .SKOR             -0.135    0.314   -0.431    0.666   -0.135   -0.136
##     AIO               1.000                               1.000    1.000
##     AIS               1.000                               1.000    1.000
##     SPO               1.000                               1.000    1.000
##     SPS               1.000                               1.000    1.000
##     SKO               1.000                               1.000    1.000
##     SKS               1.000                               1.000    1.000
resid(WEA952.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SIV    SINV   SPSR   SPOR  
## IQV   0.000                                                               
## IQNV  0.000  0.000                                                        
## IQSR  0.160  0.012  0.000                                                 
## IQOR  0.004  0.012  0.000  0.000                                          
## SPV  -0.052 -0.057  0.168  0.071  0.000                                   
## SPNV -0.039 -0.039  0.001 -0.028  0.077  0.000                            
## SIV   0.123 -0.017  0.037  0.108  0.064 -0.079  0.000                     
## SINV  0.014  0.059  0.022 -0.046 -0.001 -0.013 -0.056  0.000              
## SPSR  0.077 -0.019  0.334  0.003  0.122  0.085 -0.027  0.113  0.000       
## SPOR -0.001  0.044  0.123 -0.029  0.051  0.050  0.090  0.041  0.096  0.000
## SISR  0.035 -0.053  0.392  0.011  0.052 -0.023  0.078  0.050  0.459  0.058
## SIOR -0.082  0.047 -0.050  0.013 -0.036 -0.013  0.104 -0.064 -0.067  0.006
## SKV   0.009 -0.091  0.001  0.024  0.027 -0.095  0.143 -0.012  0.101  0.098
## SKNV  0.060 -0.021  0.071  0.002 -0.036  0.082 -0.009 -0.016  0.010  0.012
## SKSR -0.061  0.044  0.181 -0.033  0.115  0.077  0.101  0.030  0.235 -0.009
## SKOR -0.054  0.039 -0.071 -0.011  0.064 -0.060  0.133 -0.040 -0.037 -0.094
##      SISR   SIOR   SKV    SKNV   SKSR   SKOR  
## IQV                                           
## IQNV                                          
## IQSR                                          
## IQOR                                          
## SPV                                           
## SPNV                                          
## SIV                                           
## SINV                                          
## SPSR                                          
## SPOR                                          
## SISR  0.000                                   
## SIOR -0.037  0.000                            
## SKV   0.048  0.019  0.000                     
## SKNV  0.064 -0.026  0.000  0.000              
## SKSR  0.290  0.029  0.117  0.113  0.000       
## SKOR -0.045  0.038  0.081 -0.014  0.000  0.000
WEA952OM.model <- '
AIO =~ IQV + IQNV 
AIS =~ IQSR + IQOR
SPO =~ SPV + SPNV + SIV + SINV
SPS =~ SPSR + SPOR + SISR + SIOR
SKO =~ SKV + SKNV 
SKS =~ SKSR + SKOR

IQOR ~~ 0*IQOR
SKOR ~~ 0*SKOR'

WEA952OM.fit <- cfa(WEA952OM.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T)

summary(WEA952OM.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 44 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         45
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               282.248
##   Degrees of freedom                                91
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               772.511
##   Degrees of freedom                               120
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.707
##   Tucker-Lewis Index (TLI)                       0.613
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4900.436
##   Loglikelihood unrestricted model (H1)      -4759.312
##                                                       
##   Akaike (AIC)                                9890.871
##   Bayesian (BIC)                             10044.994
##   Sample-size adjusted Bayesian (BIC)         9902.376
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.096
##   90 Percent confidence interval - lower         0.084
##   90 Percent confidence interval - upper         0.109
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.087
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO =~                                                                
##     IQV               0.517    0.086    6.019    0.000    0.517    0.518
##     IQNV              0.597    0.092    6.521    0.000    0.597    0.598
##   AIS =~                                                                
##     IQSR              0.349    0.064    5.443    0.000    0.349    0.350
##     IQOR              0.998    0.047   21.307    0.000    0.998    1.000
##   SPO =~                                                                
##     SPV               0.482    0.082    5.914    0.000    0.482    0.483
##     SPNV              0.419    0.082    5.134    0.000    0.419    0.420
##     SIV               0.285    0.082    3.460    0.001    0.285    0.285
##     SINV              0.621    0.084    7.377    0.000    0.621    0.622
##   SPS =~                                                                
##     SPSR              0.287    0.072    3.984    0.000    0.287    0.288
##     SPOR              0.644    0.067    9.567    0.000    0.644    0.646
##     SISR              0.375    0.071    5.277    0.000    0.375    0.376
##     SIOR              0.847    0.066   12.744    0.000    0.847    0.849
##   SKO =~                                                                
##     SKV               0.339    0.119    2.854    0.004    0.339    0.340
##     SKNV              0.704    0.215    3.271    0.001    0.704    0.706
##   SKS =~                                                                
##     SKSR              0.369    0.064    5.776    0.000    0.369    0.370
##     SKOR              0.998    0.047   21.307    0.000    0.998    1.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AIO ~~                                                                
##     AIS               0.342    0.091    3.750    0.000    0.342    0.342
##     SPO               0.743    0.114    6.512    0.000    0.743    0.743
##     SPS               0.255    0.106    2.405    0.016    0.255    0.255
##     SKO               0.307    0.146    2.100    0.036    0.307    0.307
##     SKS               0.182    0.094    1.925    0.054    0.182    0.182
##   AIS ~~                                                                
##     SPO               0.199    0.087    2.292    0.022    0.199    0.199
##     SPS               0.579    0.055   10.468    0.000    0.579    0.579
##     SKO               0.121    0.095    1.277    0.202    0.121    0.121
##     SKS               0.490    0.050    9.715    0.000    0.490    0.490
##   SPO ~~                                                                
##     SPS               0.245    0.098    2.496    0.013    0.245    0.245
##     SKO               0.398    0.147    2.706    0.007    0.398    0.398
##     SKS               0.104    0.089    1.176    0.239    0.104    0.104
##   SPS ~~                                                                
##     SKO               0.117    0.106    1.103    0.270    0.117    0.117
##     SKS               0.529    0.058    9.052    0.000    0.529    0.529
##   SKO ~~                                                                
##     SKS               0.129    0.095    1.355    0.175    0.129    0.129
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQOR              0.000                               0.000    0.000
##    .SKOR              0.000                               0.000    0.000
##    .IQV               0.728    0.092    7.894    0.000    0.728    0.731
##    .IQNV              0.639    0.102    6.269    0.000    0.639    0.642
##    .IQSR              0.874    0.082   10.654    0.000    0.874    0.877
##    .SPV               0.763    0.088    8.689    0.000    0.763    0.766
##    .SPNV              0.820    0.088    9.295    0.000    0.820    0.824
##    .SIV               0.915    0.091   10.101    0.000    0.915    0.919
##    .SINV              0.610    0.094    6.523    0.000    0.610    0.613
##    .SPSR              0.913    0.088   10.422    0.000    0.913    0.917
##    .SPOR              0.581    0.069    8.443    0.000    0.581    0.583
##    .SISR              0.855    0.084   10.223    0.000    0.855    0.859
##    .SIOR              0.279    0.073    3.830    0.000    0.279    0.280
##    .SKV               0.881    0.107    8.236    0.000    0.881    0.884
##    .SKNV              0.499    0.296    1.687    0.092    0.499    0.502
##    .SKSR              0.859    0.081   10.654    0.000    0.859    0.863
##     AIO               1.000                               1.000    1.000
##     AIS               1.000                               1.000    1.000
##     SPO               1.000                               1.000    1.000
##     SPS               1.000                               1.000    1.000
##     SKO               1.000                               1.000    1.000
##     SKS               1.000                               1.000    1.000
resid(WEA952OM.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   IQSR   IQOR   SPV    SPNV   SIV    SINV   SPSR   SPOR  
## IQV   0.000                                                               
## IQNV  0.000  0.000                                                        
## IQSR  0.138 -0.012  0.000                                                 
## IQOR -0.007  0.005  0.000  0.000                                          
## SPV  -0.056 -0.055  0.156  0.064  0.000                                   
## SPNV -0.042 -0.036 -0.009 -0.034  0.077  0.000                            
## SIV   0.120 -0.017  0.030  0.103  0.062 -0.080  0.000                     
## SINV  0.011  0.064  0.007 -0.054 -0.001 -0.011 -0.057  0.000              
## SPSR  0.072 -0.024  0.312 -0.017  0.116  0.080 -0.030  0.106  0.000       
## SPOR -0.005  0.042  0.079 -0.044  0.044  0.044  0.085  0.032  0.074  0.000
## SISR  0.030 -0.057  0.364 -0.008  0.046 -0.029  0.074  0.043  0.442  0.037
## SIOR -0.082  0.051 -0.102  0.019 -0.040 -0.017  0.101 -0.069 -0.084  0.012
## SKV   0.006 -0.092 -0.004  0.019  0.025 -0.097  0.141 -0.014  0.099  0.094
## SKNV  0.058 -0.020  0.060 -0.005 -0.036  0.082 -0.010 -0.015  0.006  0.007
## SKSR -0.065  0.040  0.157 -0.051  0.111  0.074  0.099  0.026  0.224 -0.026
## SKOR -0.054  0.041 -0.122  0.000  0.060 -0.064  0.130 -0.045 -0.052 -0.102
##      SISR   SIOR   SKV    SKNV   SKSR   SKOR  
## IQV                                           
## IQNV                                          
## IQSR                                          
## IQOR                                          
## SPV                                           
## SPNV                                          
## SIV                                           
## SINV                                          
## SPSR                                          
## SPOR                                          
## SISR  0.000                                   
## SIOR -0.049  0.000                            
## SKV   0.045  0.016  0.000                     
## SKNV  0.059 -0.030  0.000  0.000              
## SKSR  0.276  0.014  0.114  0.106  0.000       
## SKOR -0.059  0.051  0.076 -0.021  0.000  0.000

There were eight violations of local independence but scaling reduced them to three.

Just One g for Objective Measurements?

#Experiment 2 - Objective

WEA952O.model <- '
AI =~ IQV + IQNV
SP =~ SPV + SPNV + SIV + SINV
SK =~ SKV + SKNV

AI ~~ 1*SP'

WEA952O.fit <- cfa(WEA952O.model, sample.cov = WEA952.cor, sample.nobs = nWEA952, std.lv = T); "\n"
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## [1] "\n"
summary(WEA952O.fit, stand = T, fit = T)
## lavaan 0.6-7 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         18
##                                                       
##   Number of observations                           227
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                35.730
##   Degrees of freedom                                18
##   P-value (Chi-square)                           0.008
## 
## Model Test Baseline Model:
## 
##   Test statistic                               168.074
##   Degrees of freedom                                28
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.873
##   Tucker-Lewis Index (TLI)                       0.803
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -2506.611
##   Loglikelihood unrestricted model (H1)      -2488.747
##                                                       
##   Akaike (AIC)                                5049.223
##   Bayesian (BIC)                              5110.872
##   Sample-size adjusted Bayesian (BIC)         5053.825
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.066
##   90 Percent confidence interval - lower         0.033
##   90 Percent confidence interval - upper         0.097
##   P-value RMSEA <= 0.05                          0.187
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI =~                                                                 
##     IQV               0.454    0.081    5.621    0.000    0.454    0.455
##     IQNV              0.500    0.081    6.182    0.000    0.500    0.501
##   SP =~                                                                 
##     SPV               0.447    0.080    5.579    0.000    0.447    0.448
##     SPNV              0.395    0.081    4.903    0.000    0.395    0.396
##     SIV               0.278    0.081    3.422    0.001    0.278    0.279
##     SINV              0.612    0.081    7.535    0.000    0.612    0.614
##   SK =~                                                                 
##     SKV               0.290    0.131    2.221    0.026    0.290    0.291
##     SKNV              0.824    0.327    2.523    0.012    0.824    0.826
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AI ~~                                                                 
##     SP                1.000                               1.000    1.000
##     SK                0.338    0.174    1.940    0.052    0.338    0.338
##   SP ~~                                                                 
##     SK                0.357    0.165    2.170    0.030    0.357    0.357
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .IQV               0.789    0.087    9.037    0.000    0.789    0.793
##    .IQNV              0.745    0.087    8.548    0.000    0.745    0.749
##    .SPV               0.795    0.087    9.143    0.000    0.795    0.799
##    .SPNV              0.840    0.088    9.549    0.000    0.840    0.843
##    .SIV               0.918    0.090   10.157    0.000    0.918    0.922
##    .SINV              0.621    0.089    6.954    0.000    0.621    0.623
##    .SKV               0.912    0.108    8.449    0.000    0.912    0.916
##    .SKNV              0.316    0.532    0.595    0.552    0.316    0.318
##     AI                1.000                               1.000    1.000
##     SP                1.000                               1.000    1.000
##     SK                1.000                               1.000    1.000
resid(WEA952O.fit, "cor")
## $type
## [1] "cor.bollen"
## 
## $cov
##      IQV    IQNV   SPV    SPNV   SIV    SINV   SKV    SKNV  
## IQV   0.000                                                 
## IQNV  0.082  0.000                                          
## SPV  -0.074 -0.065  0.000                                   
## SPNV -0.060 -0.048  0.103  0.000                            
## SIV   0.103 -0.030  0.075 -0.070  0.000                     
## SINV -0.029  0.032  0.025  0.007 -0.051  0.000              
## SKV   0.015 -0.079  0.043 -0.081  0.151  0.006  0.000       
## SKNV  0.043 -0.030 -0.032  0.083 -0.012 -0.021  0.000  0.000
pchisq(c(35.730-31.343), 1, lower.tail = F)
## [1] 0.03621398

A model with AI and SP modeled as identical constructs does not fit meaningfully worse (AIC/BIC) than one in which they are freely related; with a scaled p-value, the model does not fit meaningfully worse in terms of \(\chi^2\) exact fit either.

Conclusion

Though measurement was obviously poor and fit was frequently dubious, it appears that objective academic and social perception measures were strongly related (r = 0.762, 0.743 in experiments 1 and 2 respectively, at baseline, with both consistent with 1 in these data).

References

Wong, C.-M. T., Day, J. D., Maxwell, S. E., & Meara, N. M. (1995). A multitrait-multimethod study of academic and social intelligence in college students. Journal of Educational Psychology, 87(1), 117–133. https://doi.org/10.1037/0022-0663.87.1.117