library(tidyverse)
library(here)
CarlosModel <- 
  "agres_fisica =~ i1 + i2 + i3 + i4 + i5 + i6 + i7
   agres_verbal =~ i8 + i9 + i10 + i11
   ira =~ i12 + i13 + i14 + i15
   hostilidad =~ i16 + i17 + i18 + i19 + i20
   var_1 =~ i21 + i22 + i23
   var_2 =~ i24 + i25 + i26
   var_3 =~ i27 + i28 + i29
   adapta_conduc =~ var_1 + var_2 + var_3
   cond_violenta =~ agres_fisica + agres_verbal + ira + hostilidad
   cond_violenta =~ adapta_conduc"

Adquiriendo los datos

carlos_raw <- read_csv(here("SEM lavaan/data_sem", 
                            "carlos_2.csv"))

── Column specification ───────────────────────────────────────────────────────────────────────────────────────────
cols(
  .default = col_double(),
  genero = col_character()
)
ℹ Use `spec()` for the full column specifications.

Organizando los datos

Análisis descriptivo

Análisis inferencial

Modelo de regresión lineal múltiple

Construimos el modelo

carlos_model_LM <- 
  lm(prac_pedago ~ cond_violenta + adata_conduc + intervencion, 
     data = carlos_LM)
Error in eval(predvars, data, env) : object 'prac_pedago' not found

Revisamos el modelo

summary(carlos_model_LM)

Call:
lm(formula = cond_violenta ~ adata_conduc + factor(intervencion), 
    data = carlos_LM)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.01486 -0.48764 -0.01965  0.45993  1.54917 

Coefficients:
                      Estimate Std. Error t value Pr(>|t|)    
(Intercept)            2.85958    0.07720  37.039   <2e-16 ***
adata_conduc           0.06403    0.02718   2.356   0.0186 *  
factor(intervencion)2 -0.06883    0.04008  -1.717   0.0862 .  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6146 on 1097 degrees of freedom
Multiple R-squared:  0.005753,  Adjusted R-squared:  0.00394 
F-statistic: 3.174 on 2 and 1097 DF,  p-value: 0.04224

Que por cada unidad incrementada en asimilador el desempeño aumentará en un 2.40 unidades.

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGhlcmUpCmBgYAoKCmBgYHtyfQpDYXJsb3NNb2RlbCA8LSAKICAiYWdyZXNfZmlzaWNhID1+IGkxICsgaTIgKyBpMyArIGk0ICsgaTUgKyBpNiArIGk3CiAgIGFncmVzX3ZlcmJhbCA9fiBpOCArIGk5ICsgaTEwICsgaTExCiAgIGlyYSA9fiBpMTIgKyBpMTMgKyBpMTQgKyBpMTUKICAgaG9zdGlsaWRhZCA9fiBpMTYgKyBpMTcgKyBpMTggKyBpMTkgKyBpMjAKICAgdmFyXzEgPX4gaTIxICsgaTIyICsgaTIzCiAgIHZhcl8yID1+IGkyNCArIGkyNSArIGkyNgogICB2YXJfMyA9fiBpMjcgKyBpMjggKyBpMjkKICAgYWRhcHRhX2NvbmR1YyA9fiB2YXJfMSArIHZhcl8yICsgdmFyXzMKICAgY29uZF92aW9sZW50YSA9fiBhZ3Jlc19maXNpY2EgKyBhZ3Jlc192ZXJiYWwgKyBpcmEgKyBob3N0aWxpZGFkCiAgIGNvbmRfdmlvbGVudGEgPX4gYWRhcHRhX2NvbmR1YyIKYGBgCgojIEFkcXVpcmllbmRvIGxvcyBkYXRvcyAKCmBgYHtyfQpjYXJsb3NfcmF3IDwtIHJlYWRfY3N2KGhlcmUoIlNFTSBsYXZhYW4vZGF0YV9zZW0iLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICJjYXJsb3NfMi5jc3YiKSkKYGBgCgojIE9yZ2FuaXphbmRvIGxvcyBkYXRvcyAKCmBgYHtyfQpjYXJsb3NfTE0gPC0gCiAgY2FybG9zX3JhdyAlPiUgCiAgcm93d2lzZSgpICU+JSAKICBtdXRhdGUoY29uZF92aW9sZW50YSA9IG1lYW4oaTE6aTIwKSwKICAgICAgICAgYWRhdGFfY29uZHVjID0gbWVhbihjKGkyMSwgaTI5KSksCiAgICAgICAgIGludGVydmVuY2lvbiA9IGkzMCkgJT4lIAogIHNlbGVjdChjb25kX3Zpb2xlbnRhLCBhZGF0YV9jb25kdWMsIGludGVydmVuY2lvbikKCmhlYWQoY2FybG9zX0xNKQpgYGAKCiMgQW7DoWxpc2lzIGRlc2NyaXB0aXZvCgpgYGB7cn0KY2FybG9zX0xNICU+JQogIGtlZXAoaXMubnVtZXJpYykgJT4lIAogIGdhdGhlcigpICU+JSAKICBnZ3Bsb3QoYWVzKHZhbHVlKSkgKwogIGZhY2V0X3dyYXAofiBrZXksIHNjYWxlcyA9ICJmcmVlIikgKwogIGdlb21faGlzdG9ncmFtKCkKYGBgCgojIEFuw6FsaXNpcyBpbmZlcmVuY2lhbCAKCiMjIE1vZGVsbyBkZSByZWdyZXNpw7NuIGxpbmVhbCBtw7psdGlwbGUKCkNvbnN0cnVpbW9zIGVsIG1vZGVsbwoKYGBge3J9CmNhcmxvc19tb2RlbF9MTSA8LSAKICBsbShjb25kX3Zpb2xlbnRhIH4gYWRhdGFfY29uZHVjICsgZmFjdG9yKGludGVydmVuY2lvbiksIAogICAgIGRhdGEgPSBjYXJsb3NfTE0pCmBgYAoKUmV2aXNhbW9zIGVsIG1vZGVsbyAKCmBgYHtyfQpzdW1tYXJ5KGNhcmxvc19tb2RlbF9MTSkKYGBgCgpRdWUgcG9yIGNhZGEgdW5pZGFkIGluY3JlbWVudGFkYSBlbiBhc2ltaWxhZG9yIGVsIGRlc2VtcGXDsW8gYXVtZW50YXLDoSBlbiB1biAyLjQwIHVuaWRhZGVzLgoKYGBge3J9CmNoZWNrX21vZGVsKGNhcmxvc19tb2RlbF9MTSkKYGBgCgo=