1 Preparing Data

1.0.0.0.1 Loading Libraries and function using auxiliary file
source("funlibs.R")
1.0.0.0.2 Loading database
TDados <- read.spss(file = "Base Integrada - Servidores - Trabalho Remoto Covid-19 (dados completos)_27dez15h30.sav", to.data.frame = TRUE, use.value.labels = FALSE)
TDados<-as.data.frame(TDados)
#view(TDados)
# Criei um banco só com os itens de Suporte Gerencial
#Itens <- na.omit(TDados[c(194,196,198:202)])
1.0.0.0.3 Subsetting AEC itens
data<-data.matrix(TDados[,c(193:202)])
#data<-data.matrix(TDados[,c(194,196,198:202)])
#names(TDados)

2 Descriptive Statistics

2.0.0.0.1 Summary Statistics
psych::describe(data)
##           vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## Viv_Aut      1 7608 3.66 1.06      4    3.73 1.48   1   5     4 -0.53    -0.64
## Viv_AdmT     2 7608 4.28 0.85      4    4.43 1.48   1   5     4 -1.45     2.46
## Viv_Int      3 7608 4.11 0.90      4    4.25 1.48   1   5     4 -1.26     1.72
## Viv_PrInf    4 7608 4.28 0.78      4    4.41 1.48   1   5     4 -1.34     2.57
## Viv_DiG      5 7608 4.41 0.71      4    4.50 1.48   1   5     4 -1.52     3.85
## Viv_DiF      6 7608 4.41 0.74      5    4.53 0.00   1   5     4 -1.52     3.17
## Viv_Pla      7 7608 4.44 0.66      5    4.52 0.00   1   5     4 -1.25     2.71
## Viv_EvInt    8 7608 4.11 0.92      4    4.25 1.48   1   5     4 -1.13     1.06
## Viv_HabR     9 7608 4.27 0.83      4    4.40 1.48   1   5     4 -1.20     1.42
## Viv_HabRC   10 7608 4.43 0.67      5    4.52 0.00   1   5     4 -1.27     2.54
##             se
## Viv_Aut   0.01
## Viv_AdmT  0.01
## Viv_Int   0.01
## Viv_PrInf 0.01
## Viv_DiG   0.01
## Viv_DiF   0.01
## Viv_Pla   0.01
## Viv_EvInt 0.01
## Viv_HabR  0.01
## Viv_HabRC 0.01

2.1 Relative Frequencies

data<-as.matrix(data)
dsc<-descript(data)
porcentagem<-as.data.frame(round(dsc$perc,2)*100)
names(porcentagem)<-c("% lv1","% lv2","% lv3","% lv4","% lv5")
porcentagem
##           % lv1 % lv2 % lv3 % lv4 % lv5
## Viv_Aut       2    17    16    42    22
## Viv_AdmT      1     4     6    43    46
## Viv_Int       2     6     8    49    36
## Viv_PrInf     1     3     6    47    43
## Viv_DiG       1     2     4    44    50
## Viv_DiF       1     2     5    40    52
## Viv_Pla       0     1     4    43    51
## Viv_EvInt     1     7     9    45    38
## Viv_HabR      1     4    10    40    46
## Viv_HabRC     0     1     5    42    52
2.1.0.0.1 Plotting Itens as Likert
lbs <- c("lv1","lv2","lv3","lv4","lv5")
survey <- TDados[,c(193:202)] %>%
#survey <- TDados[,c(194,196,198:202)] %>%
  dplyr::mutate_if(is.numeric, factor, levels = 1:5, labels = lbs)
plot(likert(survey[,1:10]), ordered = T, wrap= 60)

2.1.0.0.2 Histogram
dta_long <- melt(as.data.frame(data))
colnames(dta_long) <- c("Item", "Response")
Histogram <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_histogram(bins = 5)+
facet_wrap(~Item)+
theme_default()
Histogram

2.1.0.0.3 Density Plot
DensityPlot <- ggplot(dta_long, aes(x = Response, fill = Item))+
geom_density()+
facet_wrap(~Item)+
theme_default()
DensityPlot 

2.1.0.0.4 Correlation Matrix
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
2.1.0.0.5 Plotting
corrplot(CorMat,order="hclust",type="upper",method="ellipse",
tl.pos = "lt",mar = c(2,2,2,2))
corrplot(CorMat,order="hclust",type="lower",method="number",
diag=FALSE,tl.pos="n", cl.pos="n",add=TRUE,mar = c(2,2,2,2))

2.1.0.0.6 Ggcorplot
#ggcorrplot(CorMat, hc.order = T,type = "lower", lab = TRUE,
#colors = c("#E46726", "white", "#6D9EC2"))

3 Splitting Data for Analysis

3.0.0.0.1 Random sampling training and test data for EFA and CFA
# Sorteio Aleatório
ss <- sample(1:2,size=nrow(TDados),replace=T,prob=c(0.3,0.7))
banco_EFA <- TDados[ss==1,]
banco_CFA <- TDados[ss==2,]
3.0.0.0.2 EFA of Criativity Auto-Efficacy
data<-as.data.frame(banco_EFA)
write.csv(data,"banco_EFA.csv")

3.0.0.1 Subsetting

data<-data[,c(193:202)]
#data<-data[,c(194,196,198:202)]
3.0.0.1.1 Polychoric Correlation
CorMat <- psych::polychoric(data, correct=T, smooth=T,global=T)$rho
3.0.0.1.2 Bartlett Sphericity
bartlett<-psych::cortest.bartlett(CorMat, n = nrow(data),diag=TRUE)
#bartlett
3.0.0.1.3 Kayser Meyer - Sample Adequacy
kmo <-psych::KMO(CorMat)
#kmo

It was observed that the six items of CAEFF grouped a latent factor, Bartlett’s chi-square test 14984.9; df= 45; p< 0 and KMO = 0.91

3.0.0.1.4 Parallel Analysis using unweighted least square
parallel<-pa.plot(CorMat,n.obs = nrow(data), fm="uls", cor="poly",n.iter=1000)
## Parallel analysis suggests that the number of factors =  4  and the number of components =  1
print(parallel)
## [[1]]

## 
## [[2]]
## [1] 4
#parallel[[2]][1]

Number of factor by parallel analysis is equal to 4

3.0.0.1.5 Numeric Rules - Very Simples Structure based on parallel number of factor plus one
NumericRule <- VSS(CorMat,n =parallel[[2]][1]+1, plot = F, n.obs =nrow(data),rotate="oblim",cor="poly", fm="uls")
## Specified rotation not found, rotate='none' used
## Specified rotation not found, rotate='none' used
## Specified rotation not found, rotate='none' used
## Specified rotation not found, rotate='none' used
temp1 <- data.frame(nFactor = row.names(NumericRule$vss.stats), 
VSS1 = NumericRule$cfit.1, VSS2 = NumericRule$cfit.2, 
MAP = NumericRule$map)
temp2 <- NumericRule$vss.stats[,c(6:8,11)]
NumericRule <- cbind(temp1,temp2)
NumericRule
##   nFactor   VSS1   VSS2     MAP   RMSEA     BIC    SABIC     SRMR
## 1       1 0.9244 0.0000 0.04806 0.17277 2189.59 2300.796 0.074089
## 2       2 0.9258 0.9508 0.04195 0.10772  524.98  607.587 0.033168
## 3       3 0.9263 0.9518 0.06859 0.08361  170.69  227.879 0.021301
## 4       4 0.9269 0.9559 0.10079 0.06603   37.12   72.073 0.012710
## 5       5 0.9272 0.9570 0.12372 0.03003  -23.28   -7.393 0.003222
3.0.0.1.6 Exploratory Graph Analysis (EGA)

3.0.0.2 EGA bootstraped using non-parametric and median typical structure with Glasso regularization - with leading eigenvector for community finding and unidimensionality test

boot.ega<-EGAnet::bootEGA(
  data=data,
  uni.method=c("LE"),
  iter=1000,
  type=c("resampling"),
  corr=c("cor_auto"),
  model=c("glasso"),
  algorithm=c("louvain"),
  typicalStructure=T,
  plot.typicalStructure=T,
  plot.type="GGally",
  ncore=c(parallel::detectCores()-1),
  plot.args = list(legend.names=c("d1","d2"))
  )
## 
## Bootstrap Exploratory Graph Analysis
##  • type = resampling
##  • iterations = 1000
## 
## Generating data...done
## Estimating EGA networks...
## Computing results...
## 
## Registered S3 method overwritten by 'statnet.common':
##   method          from  
##   sort.data.frame memisc
## Warning in EGAnet::bootEGA(data = data, uni.method = c("LE"), iter = 1000, :
## Previous versions of EGAnet (<= 0.9.8) checked unidimensionality using
## uni.method = "expand" as the default

3.0.0.3 Item Stability

# Estimate stability statistics
res <- dimensionStability(boot.ega)
## 
## Item Stability Analysis
## 
## Organizing data...done
## 
## Computing results...done

res$dimension.stability
## $structural.consistency
##     1 
## 0.801 
## 
## $average.item.stability
##     1 
## 0.901
res$item.stability$plot

# Changing plot features (ggplot2)
## Changing colors (ignore warnings)
### qgraph Defaults
res$item.stability$plot + 
    ggplot2::scale_color_manual(values = rainbow(length(
    res$dimension.stability$structural.consistency)))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.

3.0.0.4 Factorial Exploratory Analysis

EFArst <- psych::fa(r=as.matrix(data),nfactors=2,n.obs=nrow(data), rotate = "promax",fm = "wls", n.iter =1000, alpha = T,correct = T,cor="poly")

The communalities were observed between 0.237 and 0.867, and the factor loadings between -0.14and 0.98 Table2. A factor was retained, with an eigenvalue of 3.57 that explained 0.36% of the variance.

3.0.0.4.1 Complete results from EFA
EFArst
## Factor Analysis with confidence intervals using method = psych::fa(r = as.matrix(data), nfactors = 2, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "wls", alpha = T, 
##     cor = "poly", correct = T)
## Factor Analysis using method =  wls
## Call: psych::fa(r = as.matrix(data), nfactors = 2, n.obs = nrow(data), 
##     n.iter = 1000, rotate = "promax", fm = "wls", alpha = T, 
##     cor = "poly", correct = T)
## Standardized loadings (pattern matrix) based upon correlation matrix
##            WLS1  WLS2   h2   u2 com
## Viv_Aut    0.14  0.37 0.23 0.77 1.3
## Viv_AdmT   0.91 -0.06 0.76 0.24 1.0
## Viv_Int    0.76 -0.01 0.56 0.44 1.0
## Viv_PrInf  0.22  0.61 0.61 0.39 1.3
## Viv_DiG    0.39  0.39 0.53 0.47 2.0
## Viv_DiF    0.81  0.02 0.69 0.31 1.0
## Viv_Pla    0.63  0.19 0.61 0.39 1.2
## Viv_EvInt  0.85 -0.05 0.67 0.33 1.0
## Viv_HabR  -0.14  0.92 0.68 0.32 1.0
## Viv_HabRC -0.08  0.98 0.86 0.14 1.0
## 
##                       WLS1 WLS2
## SS loadings           3.57 2.63
## Proportion Var        0.36 0.26
## Cumulative Var        0.36 0.62
## Proportion Explained  0.58 0.42
## Cumulative Proportion 0.58 1.00
## 
##  With factor correlations of 
##      WLS1 WLS2
## WLS1 1.00 0.74
## WLS2 0.74 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  45  and the objective function was  6.47 with Chi Square of  14985
## The degrees of freedom for the model are 26  and the objective function was  0.31 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic number of observations is  2322 with the empirical chi square  230.7  with prob <  0.0000000000000000000000000000000001 
## The total number of observations was  2322  with Likelihood Chi Square =  721.3  with prob <  2.4e-135 
## 
## Tucker Lewis Index of factoring reliability =  0.919
## RMSEA index =  0.107  and the 0 % confidence intervals are  NA 0.107
## BIC =  519.8
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                   WLS1 WLS2
## Correlation of (regression) scores with factors   0.96 0.96
## Multiple R square of scores with factors          0.92 0.92
## Minimum correlation of possible factor scores     0.84 0.85
## 
##  Coefficients and bootstrapped confidence intervals 
##             low  WLS1 upper   low  WLS2 upper
## Viv_Aut   -0.35  0.14  0.42  0.11  0.37  0.84
## Viv_AdmT   0.78  0.91  0.99 -0.22 -0.06  0.23
## Viv_Int    0.68  0.76  0.83 -0.14 -0.01  0.20
## Viv_PrInf  0.08  0.22  0.45  0.46  0.61  0.69
## Viv_DiG    0.22  0.39  0.69  0.23  0.39  0.48
## Viv_DiF    0.75  0.81  0.91 -0.07  0.02  0.17
## Viv_Pla    0.51  0.63  0.84  0.12  0.19  0.25
## Viv_EvInt  0.79  0.85  0.91 -0.16 -0.05  0.16
## Viv_HabR  -0.40 -0.14  0.29  0.51  0.92  1.17
## Viv_HabRC -0.35 -0.08  0.43  0.50  0.98  1.24
## 
##  Interfactor correlations and bootstrapped confidence intervals 
##           lower estimate upper
## WLS1-WLS2  0.67     0.74  0.77
3.0.0.4.2 Diagram
fa.diagram(EFArst,simple = F,cut = 0.33,sort = T,errors = F,e.size = 0.05)

3.0.0.4.3 Bootstrapping Factor Loadings
order <- rev(row.names(as.data.frame(printLoadings(EFArst$cis$means,sort = T,cutoff = 0.3)))) # define the order of the variable
## 
## Loadings:
##           WLS1  WLS2 
## Viv_AdmT   0.89      
## Viv_EvInt  0.85      
## Viv_DiF    0.83      
## Viv_Int    0.75      
## Viv_Pla    0.68      
## Viv_DiG    0.45  0.36
## Viv_HabRC        0.87
## Viv_HabR         0.84
## Viv_PrInf        0.58
## Viv_Aut          0.47
bargraph(EFArst,order = order,nf = 2,highcol = "firebrick",lowcol = "chartreuse4",ci = T)

3.0.0.4.4 Factor Loadings and Correlation Matrix
stackbar(CorMat,EFArst,order = order,highcol = "firebrick",lowcol = "chartreuse4")

3.0.0.5 Exploratory Fator Analysis using semTools and a Lavaan engine

#fa_mod1 <- efaUnrotate(data=data, nf = 1, estimator = "ULSMV",ordered=T,missing="pairwise",std.lv=T)
#fa_mod2 <- efaUnrotate(data, nf = 1, estimator = "MLR",ordered=F,missing="FIML")

4 Confirmatory Factor Analysis

4.0.0.1 Changing data - all cases

data<-banco_CFA

4.1 Structure Validity - Dimensionality (Leo)

4.1.0.1 Model - excluded Viv_DiG crossed factor loadings

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Int + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf + Viv_Aut 
'

4.1.0.2 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T)

4.1.0.3 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 22 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        46
##                                                       
##   Number of observations                          5286
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               402.542    1248.007
##   Degrees of freedom                                26          26
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.324
##   Shift parameter                                            4.489
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             58795.315   42545.682
##   Degrees of freedom                                36          36
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.383
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.994       0.971
##   Tucker-Lewis Index (TLI)                       0.991       0.960
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.052       0.094
##   90 Percent confidence interval - lower         0.048       0.090
##   90 Percent confidence interval - upper         0.057       0.099
##   P-value RMSEA <= 0.05                          0.189       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.041       0.041
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          0.867    0.005  159.080    0.000    0.867    0.867
##     Viv_EvInt         0.810    0.006  128.728    0.000    0.810    0.810
##     Viv_DiF           0.836    0.007  126.523    0.000    0.836    0.836
##     Viv_Int           0.757    0.007  103.050    0.000    0.757    0.757
##     Viv_Pla           0.834    0.007  123.747    0.000    0.834    0.834
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.851    0.007  118.413    0.000    0.851    0.851
##     Viv_HabR          0.753    0.008   89.566    0.000    0.753    0.753
##     Viv_PrInf         0.811    0.008  101.777    0.000    0.811    0.811
##     Viv_Aut           0.544    0.012   46.461    0.000    0.544    0.544
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.785    0.008   98.584    0.000    0.785    0.785
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -2.213    0.046  -48.134    0.000   -2.213   -2.213
##     Viv_AdmT|t2      -1.598    0.028  -56.693    0.000   -1.598   -1.598
##     Viv_AdmT|t3      -1.202    0.023  -53.130    0.000   -1.202   -1.202
##     Viv_AdmT|t4       0.101    0.017    5.830    0.000    0.101    0.101
##     Viv_EvInt|t1     -2.242    0.047  -47.447    0.000   -2.242   -2.242
##     Viv_EvInt|t2     -1.386    0.025  -55.801    0.000   -1.386   -1.386
##     Viv_EvInt|t3     -0.935    0.020  -46.095    0.000   -0.935   -0.935
##     Viv_EvInt|t4      0.298    0.018   17.001    0.000    0.298    0.298
##     Viv_DiF|t1       -2.568    0.067  -38.601    0.000   -2.568   -2.568
##     Viv_DiF|t2       -1.877    0.034  -54.591    0.000   -1.877   -1.877
##     Viv_DiF|t3       -1.439    0.026  -56.238    0.000   -1.439   -1.439
##     Viv_DiF|t4       -0.057    0.017   -3.301    0.001   -0.057   -0.057
##     Viv_Int|t1       -2.089    0.041  -50.922    0.000   -2.089   -2.089
##     Viv_Int|t2       -1.423    0.025  -56.122    0.000   -1.423   -1.423
##     Viv_Int|t3       -1.013    0.021  -48.533    0.000   -1.013   -1.013
##     Viv_Int|t4        0.353    0.018   20.009    0.000    0.353    0.353
##     Viv_Pla|t1       -2.639    0.072  -36.576    0.000   -2.639   -2.639
##     Viv_Pla|t2       -2.162    0.044  -49.345    0.000   -2.162   -2.162
##     Viv_Pla|t3       -1.583    0.028  -56.704    0.000   -1.583   -1.583
##     Viv_Pla|t4       -0.041    0.017   -2.393    0.017   -0.041   -0.041
##     Viv_HabRC|t1     -2.688    0.076  -35.148    0.000   -2.688   -2.688
##     Viv_HabRC|t2     -2.102    0.041  -50.654    0.000   -2.102   -2.102
##     Viv_HabRC|t3     -1.503    0.027  -56.576    0.000   -1.503   -1.503
##     Viv_HabRC|t4     -0.033    0.017   -1.925    0.054   -0.033   -0.033
##     Viv_HabR|t1      -2.448    0.058  -42.020    0.000   -2.448   -2.448
##     Viv_HabR|t2      -1.685    0.030  -56.411    0.000   -1.685   -1.685
##     Viv_HabR|t3      -1.069    0.021  -50.071    0.000   -1.069   -1.069
##     Viv_HabR|t4       0.112    0.017    6.463    0.000    0.112    0.112
##     Viv_PrInf|t1     -2.370    0.054  -44.142    0.000   -2.370   -2.370
##     Viv_PrInf|t2     -1.745    0.031  -56.013    0.000   -1.745   -1.745
##     Viv_PrInf|t3     -1.274    0.023  -54.379    0.000   -1.274   -1.274
##     Viv_PrInf|t4      0.188    0.017   10.859    0.000    0.188    0.188
##     Viv_Aut|t1       -2.053    0.040  -51.657    0.000   -2.053   -2.053
##     Viv_Aut|t2       -0.870    0.020  -43.882    0.000   -0.870   -0.870
##     Viv_Aut|t3       -0.384    0.018  -21.701    0.000   -0.384   -0.384
##     Viv_Aut|t4        0.752    0.019   39.296    0.000    0.752    0.752
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.249                               0.249    0.249
##    .Viv_EvInt         0.344                               0.344    0.344
##    .Viv_DiF           0.302                               0.302    0.302
##    .Viv_Int           0.427                               0.427    0.427
##    .Viv_Pla           0.305                               0.305    0.305
##    .Viv_HabRC         0.276                               0.276    0.276
##    .Viv_HabR          0.433                               0.433    0.433
##    .Viv_PrInf         0.342                               0.342    0.342
##    .Viv_Aut           0.704                               0.704    0.704
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          1.000                               1.000    1.000
##     Viv_EvInt         1.000                               1.000    1.000
##     Viv_DiF           1.000                               1.000    1.000
##     Viv_Int           1.000                               1.000    1.000
##     Viv_Pla           1.000                               1.000    1.000
##     Viv_HabRC         1.000                               1.000    1.000
##     Viv_HabR          1.000                               1.000    1.000
##     Viv_PrInf         1.000                               1.000    1.000
##     Viv_Aut           1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.751
##     Viv_EvInt         0.656
##     Viv_DiF           0.698
##     Viv_Int           0.573
##     Viv_Pla           0.695
##     Viv_HabRC         0.724
##     Viv_HabR          0.567
##     Viv_PrInf         0.658
##     Viv_Aut           0.296

4.1.0.4 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##              1248.007                26.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.041                 0.971                 0.960 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.094                 0.090                 0.099

4.1.0.5 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##        lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 1 Viv_Soft =~  Viv_AdmT   0.867 0.005 159.08      0    0.856    0.877
## 2 Viv_Soft =~ Viv_EvInt   0.810 0.006 128.73      0    0.797    0.822
## 3 Viv_Soft =~   Viv_DiF   0.836 0.007 126.52      0    0.823    0.849
## 4 Viv_Soft =~   Viv_Int   0.757 0.007 103.05      0    0.742    0.771
## 5 Viv_Soft =~   Viv_Pla   0.834 0.007 123.75      0    0.821    0.847
## 6 Viv_Hard =~ Viv_HabRC   0.851 0.007 118.41      0    0.837    0.865
## 7 Viv_Hard =~  Viv_HabR   0.753 0.008  89.57      0    0.737    0.770
## 8 Viv_Hard =~ Viv_PrInf   0.811 0.008 101.78      0    0.796    0.827
## 9 Viv_Hard =~   Viv_Aut   0.544 0.012  46.46      0    0.521    0.567

4.1.0.6 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T,maximum.number = 10)
##           lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 117 Viv_HabRC ~~  Viv_HabR 156.27  0.224   0.224    0.648    0.648
## 89   Viv_AdmT ~~   Viv_Int 113.54  0.179   0.179    0.549    0.549
## 80   Viv_Soft =~ Viv_PrInf  50.13  0.293   0.293    0.293    0.293
## 79   Viv_Soft =~  Viv_HabR  45.61 -0.261  -0.261   -0.261   -0.261
## 86   Viv_Hard =~   Viv_Pla  45.04  0.235   0.235    0.235    0.235
## 95  Viv_EvInt ~~   Viv_DiF  31.35  0.095   0.095    0.294    0.294
## 94   Viv_AdmT ~~   Viv_Aut  29.50  0.083   0.083    0.197    0.197
## 113   Viv_Pla ~~ Viv_HabRC  28.39  0.086   0.086    0.296    0.296
## 110   Viv_Int ~~  Viv_HabR  22.17 -0.073  -0.073   -0.169   -0.169
## 92   Viv_AdmT ~~  Viv_HabR  21.09 -0.073  -0.073   -0.222   -0.222

4.1.0.7 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##           Viv_Soft Viv_Hard
## alpha       0.8542   0.7243
## alpha.ord   0.9115   0.8244
## omega       0.8615   0.7438
## omega2      0.8615   0.7438
## omega3      0.8573   0.7474
## avevar      0.6747   0.5613

4.1.0.8 Discriminant Validity (faild if discriminant validity is false)

semMediation::discriminantValidityTable(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##          Viv_Soft Viv_Hard   AVE sqrt(AVE) discriminantValidity
## Viv_Soft    1.000    0.785 0.857     0.675                FALSE
## Viv_Hard    0.785    1.000 0.857     0.675                FALSE

4.1.0.9 Discriminant Validity Robust Test (p<0.05 model tested is different from model with .90 correlation and discriminant validity is accepted)

semTools::discriminantValidity(fit,cutoff =0.9)
##        lhs op      rhs    est ci.lower ci.upper Df AIC BIC Chisq Chisq diff
## 1 Viv_Soft ~~ Viv_Hard 0.7852   0.7696   0.8008 27  NA  NA   642      216.9
##   Df diff                                             Pr(>Chisq)
## 1       1 0.0000000000000000000000000000000000000000000000004353

4.1.0.10 Modified Model - after two iteration by MI searching for lower relationship between X2/df

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Int + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf + Viv_Aut 
Viv_HabRC   ~~  Viv_HabR
Viv_AdmT    ~~  Viv_Int
'

4.1.0.11 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T,orthogonal=F)

4.1.0.12 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 22 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        48
##                                                       
##   Number of observations                          5286
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               134.863     442.280
##   Degrees of freedom                                24          24
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.308
##   Shift parameter                                            3.821
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             58795.315   42545.682
##   Degrees of freedom                                36          36
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.383
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.990
##   Tucker-Lewis Index (TLI)                       0.997       0.985
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.030       0.057
##   90 Percent confidence interval - lower         0.025       0.053
##   90 Percent confidence interval - upper         0.035       0.062
##   P-value RMSEA <= 0.05                          1.000       0.004
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.024       0.024
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          0.833    0.006  129.298    0.000    0.833    0.833
##     Viv_EvInt         0.815    0.006  129.172    0.000    0.815    0.815
##     Viv_DiF           0.842    0.007  127.206    0.000    0.842    0.842
##     Viv_Int           0.721    0.008   85.152    0.000    0.721    0.721
##     Viv_Pla           0.840    0.007  124.166    0.000    0.840    0.840
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.796    0.009   87.692    0.000    0.796    0.796
##     Viv_HabR          0.697    0.011   66.287    0.000    0.697    0.697
##     Viv_PrInf         0.811    0.008  100.506    0.000    0.811    0.811
##     Viv_Aut           0.544    0.012   46.285    0.000    0.544    0.544
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.218    0.011   19.104    0.000    0.218    0.502
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.175    0.008   21.918    0.000    0.175    0.458
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.828    0.008   99.755    0.000    0.828    0.828
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -2.213    0.046  -48.134    0.000   -2.213   -2.213
##     Viv_AdmT|t2      -1.598    0.028  -56.693    0.000   -1.598   -1.598
##     Viv_AdmT|t3      -1.202    0.023  -53.130    0.000   -1.202   -1.202
##     Viv_AdmT|t4       0.101    0.017    5.830    0.000    0.101    0.101
##     Viv_EvInt|t1     -2.242    0.047  -47.447    0.000   -2.242   -2.242
##     Viv_EvInt|t2     -1.386    0.025  -55.801    0.000   -1.386   -1.386
##     Viv_EvInt|t3     -0.935    0.020  -46.095    0.000   -0.935   -0.935
##     Viv_EvInt|t4      0.298    0.018   17.001    0.000    0.298    0.298
##     Viv_DiF|t1       -2.568    0.067  -38.601    0.000   -2.568   -2.568
##     Viv_DiF|t2       -1.877    0.034  -54.591    0.000   -1.877   -1.877
##     Viv_DiF|t3       -1.439    0.026  -56.238    0.000   -1.439   -1.439
##     Viv_DiF|t4       -0.057    0.017   -3.301    0.001   -0.057   -0.057
##     Viv_Int|t1       -2.089    0.041  -50.922    0.000   -2.089   -2.089
##     Viv_Int|t2       -1.423    0.025  -56.122    0.000   -1.423   -1.423
##     Viv_Int|t3       -1.013    0.021  -48.533    0.000   -1.013   -1.013
##     Viv_Int|t4        0.353    0.018   20.009    0.000    0.353    0.353
##     Viv_Pla|t1       -2.639    0.072  -36.576    0.000   -2.639   -2.639
##     Viv_Pla|t2       -2.162    0.044  -49.345    0.000   -2.162   -2.162
##     Viv_Pla|t3       -1.583    0.028  -56.704    0.000   -1.583   -1.583
##     Viv_Pla|t4       -0.041    0.017   -2.393    0.017   -0.041   -0.041
##     Viv_HabRC|t1     -2.688    0.076  -35.148    0.000   -2.688   -2.688
##     Viv_HabRC|t2     -2.102    0.041  -50.654    0.000   -2.102   -2.102
##     Viv_HabRC|t3     -1.503    0.027  -56.576    0.000   -1.503   -1.503
##     Viv_HabRC|t4     -0.033    0.017   -1.925    0.054   -0.033   -0.033
##     Viv_HabR|t1      -2.448    0.058  -42.020    0.000   -2.448   -2.448
##     Viv_HabR|t2      -1.685    0.030  -56.411    0.000   -1.685   -1.685
##     Viv_HabR|t3      -1.069    0.021  -50.071    0.000   -1.069   -1.069
##     Viv_HabR|t4       0.112    0.017    6.463    0.000    0.112    0.112
##     Viv_PrInf|t1     -2.370    0.054  -44.142    0.000   -2.370   -2.370
##     Viv_PrInf|t2     -1.745    0.031  -56.013    0.000   -1.745   -1.745
##     Viv_PrInf|t3     -1.274    0.023  -54.379    0.000   -1.274   -1.274
##     Viv_PrInf|t4      0.188    0.017   10.859    0.000    0.188    0.188
##     Viv_Aut|t1       -2.053    0.040  -51.657    0.000   -2.053   -2.053
##     Viv_Aut|t2       -0.870    0.020  -43.882    0.000   -0.870   -0.870
##     Viv_Aut|t3       -0.384    0.018  -21.701    0.000   -0.384   -0.384
##     Viv_Aut|t4        0.752    0.019   39.296    0.000    0.752    0.752
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.306                               0.306    0.306
##    .Viv_EvInt         0.336                               0.336    0.336
##    .Viv_DiF           0.291                               0.291    0.291
##    .Viv_Int           0.481                               0.481    0.481
##    .Viv_Pla           0.294                               0.294    0.294
##    .Viv_HabRC         0.366                               0.366    0.366
##    .Viv_HabR          0.514                               0.514    0.514
##    .Viv_PrInf         0.341                               0.341    0.341
##    .Viv_Aut           0.704                               0.704    0.704
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          1.000                               1.000    1.000
##     Viv_EvInt         1.000                               1.000    1.000
##     Viv_DiF           1.000                               1.000    1.000
##     Viv_Int           1.000                               1.000    1.000
##     Viv_Pla           1.000                               1.000    1.000
##     Viv_HabRC         1.000                               1.000    1.000
##     Viv_HabR          1.000                               1.000    1.000
##     Viv_PrInf         1.000                               1.000    1.000
##     Viv_Aut           1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.694
##     Viv_EvInt         0.664
##     Viv_DiF           0.709
##     Viv_Int           0.519
##     Viv_Pla           0.706
##     Viv_HabRC         0.634
##     Viv_HabR          0.486
##     Viv_PrInf         0.659
##     Viv_Aut           0.296

4.1.0.13 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               442.280                24.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.024                 0.990                 0.985 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.057                 0.053                 0.062

4.1.0.14 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##        lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 1 Viv_Soft =~  Viv_AdmT   0.833 0.006 129.30      0    0.821    0.846
## 2 Viv_Soft =~ Viv_EvInt   0.815 0.006 129.17      0    0.802    0.827
## 3 Viv_Soft =~   Viv_DiF   0.842 0.007 127.21      0    0.829    0.855
## 4 Viv_Soft =~   Viv_Int   0.721 0.008  85.15      0    0.704    0.737
## 5 Viv_Soft =~   Viv_Pla   0.840 0.007 124.17      0    0.827    0.853
## 6 Viv_Hard =~ Viv_HabRC   0.796 0.009  87.69      0    0.778    0.814
## 7 Viv_Hard =~  Viv_HabR   0.697 0.011  66.29      0    0.676    0.718
## 8 Viv_Hard =~ Viv_PrInf   0.811 0.008 100.51      0    0.796    0.827
## 9 Viv_Hard =~   Viv_Aut   0.544 0.012  46.28      0    0.521    0.567

4.1.0.15 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T,maximum.number = 10)
##           lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 85   Viv_Hard =~ Viv_EvInt 39.198 -0.283  -0.283   -0.283   -0.283
## 114   Viv_Pla ~~ Viv_HabRC 32.448  0.093   0.093    0.283    0.283
## 95   Viv_AdmT ~~   Viv_Aut 25.979  0.078   0.078    0.169    0.169
## 96  Viv_EvInt ~~   Viv_DiF 23.307  0.083   0.083    0.264    0.264
## 88   Viv_Hard =~   Viv_Pla 21.319  0.212   0.212    0.212    0.212
## 101 Viv_EvInt ~~ Viv_PrInf 18.568 -0.070  -0.070   -0.207   -0.207
## 112   Viv_Int ~~ Viv_PrInf 12.253  0.056   0.056    0.138    0.138
## 108   Viv_DiF ~~   Viv_Aut  8.884 -0.046  -0.046   -0.101   -0.101
## 102 Viv_EvInt ~~   Viv_Aut  6.668 -0.040  -0.040   -0.081   -0.081
## 115   Viv_Pla ~~  Viv_HabR  5.632  0.038   0.038    0.097    0.097

4.1.0.16 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##           Viv_Soft Viv_Hard
## alpha       0.8542   0.7243
## alpha.ord   0.9115   0.8244
## omega       0.8323   0.6937
## omega2      0.8323   0.6937
## omega3      0.8303   0.6929
## avevar      0.6584   0.5185

4.1.0.17 Discriminant Validity

semMediation::discriminantValidityTable(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##          Viv_Soft Viv_Hard  AVE sqrt(AVE) discriminantValidity
## Viv_Soft    1.000    0.828 0.83     0.658                FALSE
## Viv_Hard    0.828    1.000 0.83     0.658                FALSE

4.1.0.18 Discriminant Validity Robust Test

semTools::discriminantValidity(fit)
##        lhs op      rhs    est ci.lower ci.upper Df AIC BIC Chisq Chisq diff
## 1 Viv_Soft ~~ Viv_Hard 0.8275   0.8113   0.8438 25  NA  NA 210.1      76.61
##   Df diff              Pr(>Chisq)
## 1       1 0.000000000000000002083

4.1.0.19 Graphical Representation

semPaths(object=fit,whatLabels ="stand",residuals = F, thresholds = F,ThreshAtSide=F, cardinal = c("exogenous covariances", border.color = ("black")), intercept=F, edge.label.cex = 1,curve=2,nCharNodes=0)

4.1.1 Internal Validity

4.1.1.1 Using all data

data<-TDados

4.1.1.2 Organizing Sex

data$Gen<-car::recode(data$Gen,"0=NA")
data$SexoR<-as.factor(data$Gen)
#dataSexoR1<-data[data$SexoR=="1",]
#dataSexoR2<-data[data$SexoR=="2",]

4.1.1.3 Sex Invariance Model

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Int + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf + Viv_Aut 
Viv_HabRC   ~~  Viv_HabR
Viv_AdmT    ~~  Viv_Int
'

4.1.1.4 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group ="SexoR",parameterization = "theta", estimator = "ULSMV",ordered =T,missing="pairwise",std.lv=T)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                Df AIC BIC Chisq Chisq diff Df diff          Pr(>Chisq)    
## fit.configural 48           202                                           
## fit.loadings   55           309       19.9       7              0.0058 ** 
## fit.thresholds 80           509       49.5      25              0.0024 ** 
## fit.means      82          1186       81.7       2 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.990        0.057               NA                 NA
## fit.loadings        0.997        0.030            0.007              0.028
## fit.thresholds      0.997        0.023            0.000              0.007
## fit.means           0.993        0.036            0.004              0.013
4.1.1.4.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 182 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    11
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               201.634     646.736
##   Degrees of freedom                                48          48
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.316
##   Shift parameter for each group:                                 
##       2                                                      3.322
##       1                                                      4.839
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           93.861     300.580
##     1                                          107.773     346.156
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83443.089   60114.774
##   Degrees of freedom                                72          72
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.389
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.990
##   Tucker-Lewis Index (TLI)                       0.997       0.985
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.029       0.057
##   90 Percent confidence interval - lower         0.025       0.053
##   90 Percent confidence interval - upper         0.033       0.061
##   P-value RMSEA <= 0.05                          1.000       0.001
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.024       0.024
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.478    0.048   30.946    0.000    1.478    0.828
##     Viv_EvInt         1.399    0.040   34.563    0.000    1.399    0.814
##     Viv_DiF           1.589    0.055   28.794    0.000    1.589    0.846
##     Viv_Int           1.023    0.032   31.761    0.000    1.023    0.715
##     Viv_Pla           1.625    0.059   27.635    0.000    1.625    0.852
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.493    0.062   24.085    0.000    1.493    0.831
##     Viv_HabR          1.058    0.039   27.459    0.000    1.058    0.727
##     Viv_PrInf         1.586    0.063   24.988    0.000    1.586    0.846
##     Viv_Aut           0.693    0.027   26.057    0.000    0.693    0.569
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.549    0.019   29.291    0.000    0.549    0.549
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.364    0.018   20.703    0.000    0.364    0.364
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.825    0.010   80.940    0.000    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.347    0.130  -33.412    0.000   -4.347   -2.436
##     Viv_AdmT|t2      -3.097    0.080  -38.800    0.000   -3.097   -1.735
##     Viv_AdmT|t3      -2.257    0.065  -34.872    0.000   -2.257   -1.264
##     Viv_AdmT|t4       0.070    0.040    1.756    0.079    0.070    0.039
##     Viv_EvInt|t1     -4.042    0.109  -37.174    0.000   -4.042   -2.351
##     Viv_EvInt|t2     -2.645    0.063  -41.712    0.000   -2.645   -1.538
##     Viv_EvInt|t3     -1.773    0.052  -33.966    0.000   -1.773   -1.031
##     Viv_EvInt|t4      0.427    0.038   11.190    0.000    0.427    0.248
##     Viv_DiF|t1       -4.737    0.152  -31.155    0.000   -4.737   -2.523
##     Viv_DiF|t2       -3.613    0.098  -37.008    0.000   -3.613   -1.925
##     Viv_DiF|t3       -2.801    0.081  -34.483    0.000   -2.801   -1.492
##     Viv_DiF|t4       -0.188    0.044   -4.310    0.000   -0.188   -0.100
##     Viv_Int|t1       -3.309    0.089  -37.204    0.000   -3.309   -2.314
##     Viv_Int|t2       -2.388    0.055  -43.111    0.000   -2.388   -1.670
##     Viv_Int|t3       -1.691    0.045  -37.740    0.000   -1.691   -1.182
##     Viv_Int|t4        0.355    0.032   11.115    0.000    0.355    0.248
##     Viv_Pla|t1       -5.030    0.166  -30.343    0.000   -5.030   -2.636
##     Viv_Pla|t2       -4.116    0.115  -35.659    0.000   -4.116   -2.157
##     Viv_Pla|t3       -2.925    0.087  -33.477    0.000   -2.925   -1.533
##     Viv_Pla|t4       -0.072    0.043   -1.655    0.098   -0.072   -0.038
##     Viv_HabRC|t1     -4.784    0.182  -26.313    0.000   -4.784   -2.663
##     Viv_HabRC|t2     -3.738    0.119  -31.420    0.000   -3.738   -2.080
##     Viv_HabRC|t3     -2.827    0.092  -30.764    0.000   -2.827   -1.573
##     Viv_HabRC|t4     -0.187    0.042   -4.470    0.000   -0.187   -0.104
##     Viv_HabR|t1      -3.618    0.116  -31.288    0.000   -3.618   -2.486
##     Viv_HabR|t2      -2.547    0.066  -38.706    0.000   -2.547   -1.750
##     Viv_HabR|t3      -1.658    0.048  -34.723    0.000   -1.658   -1.139
##     Viv_HabR|t4       0.004    0.033    0.126    0.900    0.004    0.003
##     Viv_PrInf|t1     -4.628    0.165  -27.976    0.000   -4.628   -2.468
##     Viv_PrInf|t2     -3.490    0.111  -31.444    0.000   -3.490   -1.861
##     Viv_PrInf|t3     -2.608    0.087  -30.083    0.000   -2.608   -1.391
##     Viv_PrInf|t4      0.036    0.042    0.849    0.396    0.036    0.019
##     Viv_Aut|t1       -2.699    0.074  -36.333    0.000   -2.699   -2.219
##     Viv_Aut|t2       -1.223    0.034  -35.847    0.000   -1.223   -1.005
##     Viv_Aut|t3       -0.599    0.029  -20.466    0.000   -0.599   -0.493
##     Viv_Aut|t4        0.757    0.029   25.823    0.000    0.757    0.622
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.314
##    .Viv_EvInt         1.000                               1.000    0.338
##    .Viv_DiF           1.000                               1.000    0.284
##    .Viv_Int           1.000                               1.000    0.489
##    .Viv_Pla           1.000                               1.000    0.275
##    .Viv_HabRC         1.000                               1.000    0.310
##    .Viv_HabR          1.000                               1.000    0.472
##    .Viv_PrInf         1.000                               1.000    0.285
##    .Viv_Aut           1.000                               1.000    0.676
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.560                               0.560    1.000
##     Viv_EvInt         0.582                               0.582    1.000
##     Viv_DiF           0.533                               0.533    1.000
##     Viv_Int           0.699                               0.699    1.000
##     Viv_Pla           0.524                               0.524    1.000
##     Viv_HabRC         0.557                               0.557    1.000
##     Viv_HabR          0.687                               0.687    1.000
##     Viv_PrInf         0.533                               0.533    1.000
##     Viv_Aut           0.822                               0.822    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.686
##     Viv_EvInt         0.662
##     Viv_DiF           0.716
##     Viv_Int           0.511
##     Viv_Pla           0.725
##     Viv_HabRC         0.690
##     Viv_HabR          0.528
##     Viv_PrInf         0.715
##     Viv_Aut           0.324
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.697    0.202    8.391    0.000    1.697    0.833
##     Viv_EvInt         1.520    0.155    9.811    0.000    1.520    0.812
##     Viv_DiF           1.584    0.146   10.816    0.000    1.584    0.836
##     Viv_Int           1.182    0.115   10.239    0.000    1.182    0.714
##     Viv_Pla           1.488    0.136   10.928    0.000    1.488    0.824
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.359    0.284    4.794    0.000    1.359    0.785
##     Viv_HabR          1.010    0.179    5.636    0.000    1.010    0.679
##     Viv_PrInf         1.590    0.341    4.663    0.000    1.590    0.794
##     Viv_Aut           0.704    0.114    6.170    0.000    0.704    0.510
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.540    0.211    2.556    0.011    0.540    0.461
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.634    0.134    4.732    0.000    0.634    0.486
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.818    0.010   85.688    0.000    0.818    0.818
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.034    0.233    0.144    0.885    0.034    0.034
##     Viv_Hard          0.065    0.592    0.110    0.913    0.065    0.065
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.347    0.130  -33.412    0.000   -4.347   -2.134
##     Viv_AdmT|t2      -3.097    0.080  -38.800    0.000   -3.097   -1.520
##     Viv_AdmT|t3      -2.312    0.140  -16.459    0.000   -2.312   -1.135
##     Viv_AdmT|t4       0.348    0.434    0.801    0.423    0.348    0.171
##     Viv_EvInt|t1     -4.042    0.109  -37.174    0.000   -4.042   -2.158
##     Viv_EvInt|t2     -2.407    0.149  -16.124    0.000   -2.407   -1.285
##     Viv_EvInt|t3     -1.597    0.210   -7.610    0.000   -1.597   -0.853
##     Viv_EvInt|t4      0.735    0.424    1.733    0.083    0.735    0.393
##     Viv_DiF|t1       -4.737    0.152  -31.155    0.000   -4.737   -2.498
##     Viv_DiF|t2       -3.432    0.168  -20.463    0.000   -3.432   -1.810
##     Viv_DiF|t3       -2.596    0.192  -13.512    0.000   -2.596   -1.369
##     Viv_DiF|t4        0.014    0.370    0.038    0.970    0.014    0.007
##     Viv_Int|t1       -3.309    0.089  -37.204    0.000   -3.309   -1.999
##     Viv_Int|t2       -2.130    0.109  -19.565    0.000   -2.130   -1.287
##     Viv_Int|t3       -1.494    0.150   -9.958    0.000   -1.494   -0.903
##     Viv_Int|t4        0.785    0.346    2.265    0.023    0.785    0.474
##     Viv_Pla|t1       -5.030    0.166  -30.343    0.000   -5.030   -2.787
##     Viv_Pla|t2       -4.012    0.187  -21.406    0.000   -4.012   -2.223
##     Viv_Pla|t3       -2.908    0.187  -15.569    0.000   -2.908   -1.612
##     Viv_Pla|t4       -0.007    0.346   -0.021    0.983   -0.007   -0.004
##     Viv_HabRC|t1     -4.784    0.182  -26.313    0.000   -4.784   -2.764
##     Viv_HabRC|t2     -3.738    0.119  -31.420    0.000   -3.738   -2.160
##     Viv_HabRC|t3     -2.517    0.303   -8.300    0.000   -2.517   -1.455
##     Viv_HabRC|t4      0.102    0.825    0.123    0.902    0.102    0.059
##     Viv_HabR|t1      -3.618    0.116  -31.288    0.000   -3.618   -2.431
##     Viv_HabR|t2      -2.416    0.205  -11.786    0.000   -2.416   -1.624
##     Viv_HabR|t3      -1.474    0.349   -4.226    0.000   -1.474   -0.991
##     Viv_HabR|t4       0.318    0.652    0.488    0.626    0.318    0.214
##     Viv_PrInf|t1     -4.628    0.165  -27.976    0.000   -4.628   -2.310
##     Viv_PrInf|t2     -3.311    0.283  -11.697    0.000   -3.311   -1.653
##     Viv_PrInf|t3     -2.316    0.467   -4.961    0.000   -2.316   -1.156
##     Viv_PrInf|t4      0.674    1.082    0.623    0.533    0.674    0.337
##     Viv_Aut|t1       -2.699    0.074  -36.333    0.000   -2.699   -1.957
##     Viv_Aut|t2       -1.045    0.257   -4.069    0.000   -1.045   -0.758
##     Viv_Aut|t3       -0.370    0.360   -1.029    0.303   -0.370   -0.268
##     Viv_Aut|t4        1.231    0.610    2.019    0.043    1.231    0.893
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.269    0.296    4.292    0.000    1.269    0.306
##    .Viv_EvInt         1.196    0.240    4.994    0.000    1.196    0.341
##    .Viv_DiF           1.085    0.199    5.465    0.000    1.085    0.302
##    .Viv_Int           1.341    0.254    5.290    0.000    1.341    0.490
##    .Viv_Pla           1.043    0.185    5.627    0.000    1.043    0.320
##    .Viv_HabRC         1.148    0.474    2.420    0.016    1.148    0.383
##    .Viv_HabR          1.195    0.424    2.818    0.005    1.195    0.539
##    .Viv_PrInf         1.486    0.636    2.337    0.019    1.486    0.370
##    .Viv_Aut           1.407    0.448    3.142    0.002    1.407    0.740
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.491                               0.491    1.000
##     Viv_EvInt         0.534                               0.534    1.000
##     Viv_DiF           0.527                               0.527    1.000
##     Viv_Int           0.604                               0.604    1.000
##     Viv_Pla           0.554                               0.554    1.000
##     Viv_HabRC         0.578                               0.578    1.000
##     Viv_HabR          0.672                               0.672    1.000
##     Viv_PrInf         0.499                               0.499    1.000
##     Viv_Aut           0.725                               0.725    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.694
##     Viv_EvInt         0.659
##     Viv_DiF           0.698
##     Viv_Int           0.510
##     Viv_Pla           0.680
##     Viv_HabRC         0.617
##     Viv_HabR          0.461
##     Viv_PrInf         0.630
##     Viv_Aut           0.260
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               646.736                48.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.024                 0.990                 0.985 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.057                 0.053                 0.061
modificationindices(invariance$fit.configural, sort.=T,maximum.number = 10)
##           lhs op       rhs block group level    mi    epc sepc.lv sepc.all
## 185  Viv_AdmT ~~   Viv_Aut     1     1     1 38.03  0.269   0.269    0.269
## 218  Viv_Hard =~ Viv_EvInt     2     2     1 37.95 -0.547  -0.547   -0.292
## 221  Viv_Hard =~   Viv_Pla     2     2     1 30.30  0.475   0.475    0.263
## 247   Viv_Pla ~~ Viv_HabRC     2     2     1 25.40  0.277   0.277    0.253
## 229 Viv_EvInt ~~   Viv_DiF     2     2     1 22.91  0.317   0.317    0.278
## 204   Viv_Pla ~~ Viv_HabRC     1     1     1 18.19  0.313   0.313    0.313
## 234 Viv_EvInt ~~ Viv_PrInf     2     2     1 16.49 -0.269  -0.269   -0.202
## 175  Viv_Hard =~ Viv_EvInt     1     1     1 15.30 -0.382  -0.382   -0.222
## 186 Viv_EvInt ~~   Viv_DiF     1     1     1 15.28  0.280   0.280    0.280
## 248   Viv_Pla ~~  Viv_HabR     2     2     1 10.87  0.152   0.152    0.136
##     sepc.nox
## 185    0.269
## 218   -0.292
## 221    0.263
## 247    0.253
## 229    0.278
## 204    0.313
## 234   -0.202
## 175   -0.222
## 186    0.280
## 248    0.136
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8523   0.7517
## alpha.ord   0.9108   0.8480
## omega       0.8380   0.7211
## omega2      0.8380   0.7211
## omega3      0.8369   0.7217
## avevar      0.6744   0.6132
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8504   0.7031
## alpha.ord   0.9082   0.8067
## omega       0.8266   0.6761
## omega2      0.8266   0.6761
## omega3      0.8239   0.6738
## avevar      0.6559   0.5294
4.1.1.4.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 184 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       109
##   Number of equality constraints                    20
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               308.962     240.339
##   Degrees of freedom                                55          55
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.415
##   Shift parameter for each group:                                 
##       2                                                      8.921
##       1                                                     12.993
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          159.444     121.642
##     1                                          149.518     118.697
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83443.089   60114.774
##   Degrees of freedom                                72          72
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.389
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.997
##   Tucker-Lewis Index (TLI)                       0.996       0.996
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.035       0.030
##   90 Percent confidence interval - lower         0.031       0.026
##   90 Percent confidence interval - upper         0.039       0.034
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.028       0.028
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.662    0.086   19.325    0.000    1.662    0.857
##     Viv_EvInt         1.458    0.059   24.757    0.000    1.458    0.825
##     Viv_DiF           1.494    0.081   18.413    0.000    1.494    0.831
##     Viv_Int           1.136    0.044   25.758    0.000    1.136    0.751
##     Viv_Pla           1.368    0.072   19.056    0.000    1.368    0.807
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.362    0.073   18.695    0.000    1.362    0.806
##     Viv_HabR          1.038    0.044   23.526    0.000    1.038    0.720
##     Viv_PrInf         1.665    0.086   19.372    0.000    1.665    0.857
##     Viv_Aut           0.711    0.029   24.950    0.000    0.711    0.580
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.568    0.021   26.736    0.000    0.568    0.568
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.270    0.036    7.570    0.000    0.270    0.270
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.825    0.010   79.425    0.000    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.646    0.237  -19.585    0.000   -4.646   -2.395
##     Viv_AdmT|t2      -3.416    0.151  -22.652    0.000   -3.416   -1.761
##     Viv_AdmT|t3      -2.453    0.106  -23.233    0.000   -2.453   -1.264
##     Viv_AdmT|t4       0.076    0.043    1.755    0.079    0.076    0.039
##     Viv_EvInt|t1     -4.129    0.166  -24.885    0.000   -4.129   -2.335
##     Viv_EvInt|t2     -2.719    0.093  -29.246    0.000   -2.719   -1.538
##     Viv_EvInt|t3     -1.824    0.068  -26.851    0.000   -1.824   -1.031
##     Viv_EvInt|t4      0.439    0.040   10.951    0.000    0.439    0.248
##     Viv_DiF|t1       -4.564    0.238  -19.183    0.000   -4.564   -2.539
##     Viv_DiF|t2       -3.460    0.155  -22.291    0.000   -3.460   -1.925
##     Viv_DiF|t3       -2.683    0.116  -23.209    0.000   -2.683   -1.492
##     Viv_DiF|t4       -0.180    0.042   -4.296    0.000   -0.180   -0.100
##     Viv_Int|t1       -3.456    0.124  -27.808    0.000   -3.456   -2.284
##     Viv_Int|t2       -2.527    0.078  -32.248    0.000   -2.527   -1.670
##     Viv_Int|t3       -1.789    0.058  -30.901    0.000   -1.789   -1.182
##     Viv_Int|t4        0.376    0.034   10.985    0.000    0.376    0.248
##     Viv_Pla|t1       -4.541    0.227  -19.965    0.000   -4.541   -2.680
##     Viv_Pla|t2       -3.655    0.163  -22.407    0.000   -3.655   -2.157
##     Viv_Pla|t3       -2.597    0.105  -24.662    0.000   -2.597   -1.533
##     Viv_Pla|t4       -0.064    0.039   -1.658    0.097   -0.064   -0.038
##     Viv_HabRC|t1     -4.523    0.227  -19.887    0.000   -4.523   -2.677
##     Viv_HabRC|t2     -3.522    0.153  -23.053    0.000   -3.522   -2.084
##     Viv_HabRC|t3     -2.658    0.109  -24.462    0.000   -2.658   -1.573
##     Viv_HabRC|t4     -0.176    0.039   -4.492    0.000   -0.176   -0.104
##     Viv_HabR|t1      -3.584    0.135  -26.553    0.000   -3.584   -2.487
##     Viv_HabR|t2      -2.522    0.078  -32.159    0.000   -2.522   -1.750
##     Viv_HabR|t3      -1.642    0.053  -30.695    0.000   -1.642   -1.139
##     Viv_HabR|t4       0.004    0.032    0.126    0.900    0.004    0.003
##     Viv_PrInf|t1     -4.771    0.241  -19.836    0.000   -4.771   -2.456
##     Viv_PrInf|t2     -3.615    0.155  -23.327    0.000   -3.615   -1.861
##     Viv_PrInf|t3     -2.702    0.114  -23.641    0.000   -2.702   -1.391
##     Viv_PrInf|t4      0.037    0.044    0.848    0.396    0.037    0.019
##     Viv_Aut|t1       -2.712    0.078  -34.568    0.000   -2.712   -2.210
##     Viv_Aut|t2       -1.234    0.036  -33.923    0.000   -1.234   -1.005
##     Viv_Aut|t3       -0.605    0.030  -20.139    0.000   -0.605   -0.493
##     Viv_Aut|t4        0.764    0.030   25.468    0.000    0.764    0.622
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.266
##    .Viv_EvInt         1.000                               1.000    0.320
##    .Viv_DiF           1.000                               1.000    0.309
##    .Viv_Int           1.000                               1.000    0.437
##    .Viv_Pla           1.000                               1.000    0.348
##    .Viv_HabRC         1.000                               1.000    0.350
##    .Viv_HabR          1.000                               1.000    0.481
##    .Viv_PrInf         1.000                               1.000    0.265
##    .Viv_Aut           1.000                               1.000    0.664
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.515                               0.515    1.000
##     Viv_EvInt         0.566                               0.566    1.000
##     Viv_DiF           0.556                               0.556    1.000
##     Viv_Int           0.661                               0.661    1.000
##     Viv_Pla           0.590                               0.590    1.000
##     Viv_HabRC         0.592                               0.592    1.000
##     Viv_HabR          0.694                               0.694    1.000
##     Viv_PrInf         0.515                               0.515    1.000
##     Viv_Aut           0.815                               0.815    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.734
##     Viv_EvInt         0.680
##     Viv_DiF           0.691
##     Viv_Int           0.563
##     Viv_Pla           0.652
##     Viv_HabRC         0.650
##     Viv_HabR          0.519
##     Viv_PrInf         0.735
##     Viv_Aut           0.336
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.662    0.086   19.325    0.000    1.521    0.813
##     Viv_EvInt         1.458    0.059   24.757    0.000    1.334    0.804
##     Viv_DiF           1.494    0.081   18.413    0.000    1.367    0.846
##     Viv_Int           1.136    0.044   25.758    0.000    1.039    0.690
##     Viv_Pla           1.368    0.072   19.056    0.000    1.251    0.854
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.362    0.073   18.695    0.000    1.351    0.805
##     Viv_HabR          1.038    0.044   23.526    0.000    1.030    0.684
##     Viv_PrInf         1.665    0.086   19.372    0.000    1.652    0.784
##     Viv_Aut           0.711    0.029   24.950    0.000    0.706    0.502
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.485    0.164    2.958    0.003    0.485    0.443
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.627    0.132    4.741    0.000    0.627    0.528
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.742    0.141    5.252    0.000    0.817    0.817
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft         -0.332    0.189   -1.757    0.079   -0.363   -0.363
##     Viv_Hard          0.136    0.449    0.303    0.762    0.137    0.137
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.646    0.237  -19.585    0.000   -4.646   -2.484
##     Viv_AdmT|t2      -3.416    0.151  -22.652    0.000   -3.416   -1.826
##     Viv_AdmT|t3      -2.726    0.149  -18.276    0.000   -2.726   -1.458
##     Viv_AdmT|t4      -0.285    0.334   -0.853    0.394   -0.285   -0.152
##     Viv_EvInt|t1     -4.129    0.166  -24.885    0.000   -4.129   -2.487
##     Viv_EvInt|t2     -2.662    0.153  -17.392    0.000   -2.662   -1.604
##     Viv_EvInt|t3     -1.945    0.180  -10.803    0.000   -1.945   -1.172
##     Viv_EvInt|t4      0.123    0.327    0.375    0.708    0.123    0.074
##     Viv_DiF|t1       -4.564    0.238  -19.183    0.000   -4.564   -2.823
##     Viv_DiF|t2       -3.467    0.219  -15.814    0.000   -3.467   -2.144
##     Viv_DiF|t3       -2.755    0.212  -13.009    0.000   -2.755   -1.704
##     Viv_DiF|t4       -0.529    0.289   -1.833    0.067   -0.529   -0.327
##     Viv_Int|t1       -3.456    0.124  -27.808    0.000   -3.456   -2.294
##     Viv_Int|t2       -2.352    0.108  -21.773    0.000   -2.352   -1.561
##     Viv_Int|t3       -1.773    0.127  -13.978    0.000   -1.773   -1.177
##     Viv_Int|t4        0.301    0.271    1.113    0.266    0.301    0.200
##     Viv_Pla|t1       -4.541    0.227  -19.965    0.000   -4.541   -3.098
##     Viv_Pla|t2       -3.753    0.217  -17.286    0.000   -3.753   -2.560
##     Viv_Pla|t3       -2.857    0.176  -16.243    0.000   -2.857   -1.949
##     Viv_Pla|t4       -0.500    0.255   -1.965    0.049   -0.500   -0.341
##     Viv_HabRC|t1     -4.523    0.227  -19.887    0.000   -4.523   -2.694
##     Viv_HabRC|t2     -3.522    0.153  -23.053    0.000   -3.522   -2.098
##     Viv_HabRC|t3     -2.342    0.219  -10.685    0.000   -2.342   -1.395
##     Viv_HabRC|t4      0.198    0.618    0.321    0.748    0.198    0.118
##     Viv_HabR|t1      -3.584    0.135  -26.553    0.000   -3.584   -2.381
##     Viv_HabR|t2      -2.369    0.172  -13.733    0.000   -2.369   -1.574
##     Viv_HabR|t3      -1.416    0.268   -5.279    0.000   -1.416   -0.941
##     Viv_HabR|t4       0.397    0.499    0.796    0.426    0.397    0.264
##     Viv_PrInf|t1     -4.771    0.241  -19.836    0.000   -4.771   -2.263
##     Viv_PrInf|t2     -3.367    0.265  -12.708    0.000   -3.367   -1.597
##     Viv_PrInf|t3     -2.320    0.377   -6.159    0.000   -2.320   -1.100
##     Viv_PrInf|t4      0.828    0.846    0.978    0.328    0.828    0.393
##     Viv_Aut|t1       -2.712    0.078  -34.568    0.000   -2.712   -1.928
##     Viv_Aut|t2       -1.016    0.192   -5.291    0.000   -1.016   -0.722
##     Viv_Aut|t3       -0.327    0.269   -1.214    0.225   -0.327   -0.233
##     Viv_Aut|t4        1.306    0.463    2.822    0.005    1.306    0.928
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.185    0.295    4.019    0.000    1.185    0.339
##    .Viv_EvInt         0.975    0.193    5.066    0.000    0.975    0.354
##    .Viv_DiF           0.745    0.154    4.848    0.000    0.745    0.285
##    .Viv_Int           1.190    0.213    5.574    0.000    1.190    0.524
##    .Viv_Pla           0.583    0.145    4.006    0.000    0.583    0.271
##    .Viv_HabRC         0.992    0.383    2.589    0.010    0.992    0.352
##    .Viv_HabR          1.205    0.337    3.571    0.000    1.205    0.532
##    .Viv_PrInf         1.714    0.598    2.865    0.004    1.714    0.386
##    .Viv_Aut           1.480    0.354    4.185    0.000    1.480    0.748
##     Viv_Soft          0.837    0.152    5.519    0.000    1.000    1.000
##     Viv_Hard          0.985    0.294    3.348    0.001    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.535                               0.535    1.000
##     Viv_EvInt         0.602                               0.602    1.000
##     Viv_DiF           0.619                               0.619    1.000
##     Viv_Int           0.664                               0.664    1.000
##     Viv_Pla           0.682                               0.682    1.000
##     Viv_HabRC         0.596                               0.596    1.000
##     Viv_HabR          0.664                               0.664    1.000
##     Viv_PrInf         0.474                               0.474    1.000
##     Viv_Aut           0.711                               0.711    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.661
##     Viv_EvInt         0.646
##     Viv_DiF           0.715
##     Viv_Int           0.476
##     Viv_Pla           0.729
##     Viv_HabRC         0.648
##     Viv_HabR          0.468
##     Viv_PrInf         0.614
##     Viv_Aut           0.252
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               240.339                55.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.028                 0.997                 0.996 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.030                 0.026                 0.034
modificationindices(invariance$fit.loadings, sort.=T,maximum.number = 10)
##          lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 187 Viv_Hard  =~   Viv_Pla     1     1     1 63.14  0.212   0.212    0.125
## 152  Viv_Pla  ~1               2     2     1 56.29  0.692   0.692    0.472
## 64   Viv_Pla ~*~   Viv_Pla     1     1     1 56.29 -0.090  -0.090   -1.000
## 143  Viv_Pla ~*~   Viv_Pla     2     2     1 56.28  0.116   0.116    1.000
## 73   Viv_Pla  ~1               1     1     1 56.28 -0.692  -0.692   -0.408
## 213  Viv_Pla  ~~ Viv_HabRC     1     1     1 46.36  0.386   0.386    0.386
## 229 Viv_Hard  =~   Viv_Int     2     2     1 24.90  0.127   0.126    0.084
## 230 Viv_Hard  =~   Viv_Pla     2     2     1 23.41 -0.133  -0.132   -0.090
## 194 Viv_AdmT  ~~   Viv_Aut     1     1     1 22.29  0.219   0.219    0.219
## 142  Viv_Int ~*~   Viv_Int     2     2     1 21.80 -0.076  -0.076   -1.000
##     sepc.nox
## 187    0.125
## 152    0.472
## 64    -1.000
## 143    1.000
## 73    -0.408
## 213    0.386
## 229    0.084
## 230   -0.090
## 194    0.219
## 142   -1.000
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8523   0.7517
## alpha.ord   0.9108   0.8480
## omega       0.8476   0.7178
## omega2      0.8476   0.7178
## omega3      0.8489   0.7197
## avevar      0.6729   0.6082
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8504   0.7031
## alpha.ord   0.9082   0.8067
## omega       0.8061   0.6814
## omega2      0.8061   0.6814
## omega3      0.7997   0.6779
## avevar      0.6479   0.5315
4.1.1.4.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 141 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       109
##   Number of equality constraints                    45
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               508.936     237.794
##   Degrees of freedom                                80          80
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  2.453
##   Shift parameter for each group:                                 
##       2                                                     12.340
##       1                                                     17.973
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          283.974     128.109
##     1                                          224.961     109.685
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83443.089   60114.774
##   Degrees of freedom                                72          72
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.389
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.997
##   Tucker-Lewis Index (TLI)                       0.995       0.998
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.038       0.023
##   90 Percent confidence interval - lower         0.034       0.019
##   90 Percent confidence interval - upper         0.041       0.026
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.030       0.030
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.654    0.073   22.634    0.000    1.654    0.856
##     Viv_EvInt         1.490    0.055   26.989    0.000    1.490    0.830
##     Viv_DiF           1.495    0.065   22.862    0.000    1.495    0.831
##     Viv_Int           1.175    0.042   28.073    0.000    1.175    0.761
##     Viv_Pla           1.306    0.056   23.425    0.000    1.306    0.794
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.330    0.061   21.720    0.000    1.330    0.799
##     Viv_HabR          1.039    0.039   26.664    0.000    1.039    0.720
##     Viv_PrInf         1.650    0.080   20.620    0.000    1.650    0.855
##     Viv_Aut           0.725    0.025   28.876    0.000    0.725    0.587
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.570    0.020   28.015    0.000    0.570    0.570
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.248    0.034    7.403    0.000    0.248    0.248
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.826    0.010   79.463    0.000    0.826    0.826
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.633    0.194  -23.876    0.000   -4.633   -2.397
##     Viv_AdmT|t2      -3.351    0.134  -24.969    0.000   -3.351   -1.734
##     Viv_AdmT|t3      -2.521    0.103  -24.582    0.000   -2.521   -1.304
##     Viv_AdmT|t4       0.054    0.041    1.302    0.193    0.054    0.028
##     Viv_EvInt|t1     -4.228    0.145  -29.079    0.000   -4.228   -2.356
##     Viv_EvInt|t2     -2.685    0.091  -29.531    0.000   -2.685   -1.496
##     Viv_EvInt|t3     -1.844    0.067  -27.534    0.000   -1.844   -1.027
##     Viv_EvInt|t4      0.446    0.041   10.888    0.000    0.446    0.249
##     Viv_DiF|t1       -4.588    0.190  -24.187    0.000   -4.588   -2.552
##     Viv_DiF|t2       -3.438    0.139  -24.721    0.000   -3.438   -1.912
##     Viv_DiF|t3       -2.667    0.109  -24.485    0.000   -2.667   -1.483
##     Viv_DiF|t4       -0.229    0.039   -5.945    0.000   -0.229   -0.127
##     Viv_Int|t1       -3.583    0.113  -31.580    0.000   -3.583   -2.323
##     Viv_Int|t2       -2.475    0.075  -33.133    0.000   -2.475   -1.604
##     Viv_Int|t3       -1.779    0.056  -31.846    0.000   -1.779   -1.153
##     Viv_Int|t4        0.493    0.034   14.309    0.000    0.493    0.320
##     Viv_Pla|t1       -4.376    0.175  -25.004    0.000   -4.376   -2.660
##     Viv_Pla|t2       -3.553    0.144  -24.746    0.000   -3.553   -2.160
##     Viv_Pla|t3       -2.599    0.105  -24.751    0.000   -2.599   -1.580
##     Viv_Pla|t4       -0.178    0.034   -5.280    0.000   -0.178   -0.108
##     Viv_HabRC|t1     -4.437    0.185  -24.042    0.000   -4.437   -2.666
##     Viv_HabRC|t2     -3.530    0.145  -24.260    0.000   -3.530   -2.121
##     Viv_HabRC|t3     -2.569    0.109  -23.578    0.000   -2.569   -1.544
##     Viv_HabRC|t4     -0.291    0.036   -8.041    0.000   -0.291   -0.175
##     Viv_HabR|t1      -3.584    0.116  -30.999    0.000   -3.584   -2.486
##     Viv_HabR|t2      -2.513    0.077  -32.668    0.000   -2.513   -1.743
##     Viv_HabR|t3      -1.656    0.053  -31.321    0.000   -1.656   -1.148
##     Viv_HabR|t4      -0.035    0.030   -1.168    0.243   -0.035   -0.024
##     Viv_PrInf|t1     -4.764    0.205  -23.279    0.000   -4.764   -2.470
##     Viv_PrInf|t2     -3.575    0.150  -23.791    0.000   -3.575   -1.853
##     Viv_PrInf|t3     -2.667    0.115  -23.243    0.000   -2.667   -1.383
##     Viv_PrInf|t4      0.058    0.044    1.322    0.186    0.058    0.030
##     Viv_Aut|t1       -2.717    0.072  -37.530    0.000   -2.717   -2.200
##     Viv_Aut|t2       -1.213    0.033  -36.448    0.000   -1.213   -0.982
##     Viv_Aut|t3       -0.590    0.025  -23.474    0.000   -0.590   -0.478
##     Viv_Aut|t4        0.835    0.030   27.851    0.000    0.835    0.676
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.268
##    .Viv_EvInt         1.000                               1.000    0.311
##    .Viv_DiF           1.000                               1.000    0.309
##    .Viv_Int           1.000                               1.000    0.420
##    .Viv_Pla           1.000                               1.000    0.370
##    .Viv_HabRC         1.000                               1.000    0.361
##    .Viv_HabR          1.000                               1.000    0.481
##    .Viv_PrInf         1.000                               1.000    0.269
##    .Viv_Aut           1.000                               1.000    0.656
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.517                               0.517    1.000
##     Viv_EvInt         0.557                               0.557    1.000
##     Viv_DiF           0.556                               0.556    1.000
##     Viv_Int           0.648                               0.648    1.000
##     Viv_Pla           0.608                               0.608    1.000
##     Viv_HabRC         0.601                               0.601    1.000
##     Viv_HabR          0.693                               0.693    1.000
##     Viv_PrInf         0.518                               0.518    1.000
##     Viv_Aut           0.810                               0.810    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.732
##     Viv_EvInt         0.689
##     Viv_DiF           0.691
##     Viv_Int           0.580
##     Viv_Pla           0.630
##     Viv_HabRC         0.639
##     Viv_HabR          0.519
##     Viv_PrInf         0.731
##     Viv_Aut           0.344
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.654    0.073   22.634    0.000    1.628    0.813
##     Viv_EvInt         1.490    0.055   26.989    0.000    1.467    0.799
##     Viv_DiF           1.495    0.065   22.862    0.000    1.471    0.845
##     Viv_Int           1.175    0.042   28.073    0.000    1.156    0.684
##     Viv_Pla           1.306    0.056   23.425    0.000    1.286    0.861
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.330    0.061   21.720    0.000    1.161    0.802
##     Viv_HabR          1.039    0.039   26.664    0.000    0.907    0.680
##     Viv_PrInf         1.650    0.080   20.620    0.000    1.439    0.788
##     Viv_Aut           0.725    0.025   28.876    0.000    0.632    0.503
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.382    0.045    8.442    0.000    0.382    0.451
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.768    0.070   10.936    0.000    0.768    0.535
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.703    0.038   18.436    0.000    0.818    0.818
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft         -0.150    0.029   -5.164    0.000   -0.153   -0.153
##     Viv_Hard         -0.273    0.029   -9.366    0.000   -0.313   -0.313
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.633    0.194  -23.876    0.000   -4.633   -2.314
##     Viv_AdmT|t2      -3.351    0.134  -24.969    0.000   -3.351   -1.674
##     Viv_AdmT|t3      -2.521    0.103  -24.582    0.000   -2.521   -1.259
##     Viv_AdmT|t4       0.054    0.041    1.302    0.193    0.054    0.027
##     Viv_EvInt|t1     -4.228    0.145  -29.079    0.000   -4.228   -2.304
##     Viv_EvInt|t2     -2.685    0.091  -29.531    0.000   -2.685   -1.463
##     Viv_EvInt|t3     -1.844    0.067  -27.534    0.000   -1.844   -1.005
##     Viv_EvInt|t4      0.446    0.041   10.888    0.000    0.446    0.243
##     Viv_DiF|t1       -4.588    0.190  -24.187    0.000   -4.588   -2.636
##     Viv_DiF|t2       -3.438    0.139  -24.721    0.000   -3.438   -1.975
##     Viv_DiF|t3       -2.667    0.109  -24.485    0.000   -2.667   -1.532
##     Viv_DiF|t4       -0.229    0.039   -5.945    0.000   -0.229   -0.132
##     Viv_Int|t1       -3.583    0.113  -31.580    0.000   -3.583   -2.121
##     Viv_Int|t2       -2.475    0.075  -33.133    0.000   -2.475   -1.465
##     Viv_Int|t3       -1.779    0.056  -31.846    0.000   -1.779   -1.053
##     Viv_Int|t4        0.493    0.034   14.309    0.000    0.493    0.292
##     Viv_Pla|t1       -4.376    0.175  -25.004    0.000   -4.376   -2.931
##     Viv_Pla|t2       -3.553    0.144  -24.746    0.000   -3.553   -2.380
##     Viv_Pla|t3       -2.599    0.105  -24.751    0.000   -2.599   -1.741
##     Viv_Pla|t4       -0.178    0.034   -5.280    0.000   -0.178   -0.119
##     Viv_HabRC|t1     -4.437    0.185  -24.042    0.000   -4.437   -3.064
##     Viv_HabRC|t2     -3.530    0.145  -24.260    0.000   -3.530   -2.437
##     Viv_HabRC|t3     -2.569    0.109  -23.578    0.000   -2.569   -1.774
##     Viv_HabRC|t4     -0.291    0.036   -8.041    0.000   -0.291   -0.201
##     Viv_HabR|t1      -3.584    0.116  -30.999    0.000   -3.584   -2.688
##     Viv_HabR|t2      -2.513    0.077  -32.668    0.000   -2.513   -1.885
##     Viv_HabR|t3      -1.656    0.053  -31.321    0.000   -1.656   -1.242
##     Viv_HabR|t4      -0.035    0.030   -1.168    0.243   -0.035   -0.026
##     Viv_PrInf|t1     -4.764    0.205  -23.279    0.000   -4.764   -2.607
##     Viv_PrInf|t2     -3.575    0.150  -23.791    0.000   -3.575   -1.956
##     Viv_PrInf|t3     -2.667    0.115  -23.243    0.000   -2.667   -1.460
##     Viv_PrInf|t4      0.058    0.044    1.322    0.186    0.058    0.032
##     Viv_Aut|t1       -2.717    0.072  -37.530    0.000   -2.717   -2.161
##     Viv_Aut|t2       -1.213    0.033  -36.448    0.000   -1.213   -0.965
##     Viv_Aut|t3       -0.590    0.025  -23.474    0.000   -0.590   -0.469
##     Viv_Aut|t4        0.835    0.030   27.851    0.000    0.835    0.664
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.358    0.148    9.147    0.000    1.358    0.339
##    .Viv_EvInt         1.216    0.114   10.669    0.000    1.216    0.361
##    .Viv_DiF           0.865    0.111    7.819    0.000    0.865    0.286
##    .Viv_Int           1.517    0.120   12.596    0.000    1.517    0.532
##    .Viv_Pla           0.575    0.085    6.810    0.000    0.575    0.258
##    .Viv_HabRC         0.750    0.100    7.481    0.000    0.750    0.358
##    .Viv_HabR          0.956    0.085   11.288    0.000    0.956    0.538
##    .Viv_PrInf         1.267    0.141    8.961    0.000    1.267    0.379
##    .Viv_Aut           1.181    0.074   16.017    0.000    1.181    0.747
##     Viv_Soft          0.969    0.058   16.774    0.000    1.000    1.000
##     Viv_Hard          0.761    0.050   15.238    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.499                               0.499    1.000
##     Viv_EvInt         0.545                               0.545    1.000
##     Viv_DiF           0.575                               0.575    1.000
##     Viv_Int           0.592                               0.592    1.000
##     Viv_Pla           0.670                               0.670    1.000
##     Viv_HabRC         0.691                               0.691    1.000
##     Viv_HabR          0.750                               0.750    1.000
##     Viv_PrInf         0.547                               0.547    1.000
##     Viv_Aut           0.795                               0.795    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.661
##     Viv_EvInt         0.639
##     Viv_DiF           0.714
##     Viv_Int           0.468
##     Viv_Pla           0.742
##     Viv_HabRC         0.642
##     Viv_HabR          0.462
##     Viv_PrInf         0.621
##     Viv_Aut           0.253
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               237.794                80.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.030                 0.997                 0.998 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.023                 0.019                 0.026
modificationindices(invariance$fit.thresholds, sort.=T,maximum.number = 10)
##          lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 212 Viv_Hard  =~   Viv_Pla     1     1     1 86.69  0.221   0.221    0.134
## 73   Viv_Pla  ~1               1     1     1 85.05 -0.311  -0.311   -0.189
## 152  Viv_Pla  ~1               2     2     1 85.05  0.311   0.311    0.208
## 151  Viv_Int  ~1               2     2     1 82.84 -0.263  -0.263   -0.156
## 72   Viv_Int  ~1               1     1     1 82.84  0.263   0.263    0.171
## 64   Viv_Pla ~*~   Viv_Pla     1     1     1 79.67 -0.101  -0.101   -1.000
## 143  Viv_Pla ~*~   Viv_Pla     2     2     1 70.17  0.111   0.111    1.000
## 238  Viv_Pla  ~~ Viv_HabRC     1     1     1 56.20  0.400   0.400    0.400
## 255 Viv_Hard  =~   Viv_Pla     2     2     1 53.97 -0.182  -0.159   -0.106
## 254 Viv_Hard  =~   Viv_Int     2     2     1 50.51  0.178   0.156    0.092
##     sepc.nox
## 212    0.134
## 73    -0.189
## 152    0.208
## 151   -0.156
## 72     0.171
## 64    -1.000
## 143    1.000
## 238    0.400
## 255   -0.106
## 254    0.092
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8523   0.7517
## alpha.ord   0.9108   0.8480
## omega       0.8488   0.7179
## omega2      0.8488   0.7179
## omega3      0.8507   0.7206
## avevar      0.6727   0.6038
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8504   0.7031
## alpha.ord   0.9082   0.8067
## omega       0.8121   0.6581
## omega2      0.8121   0.6581
## omega3      0.8049   0.6543
## avevar      0.6428   0.5277

4.1.1.5 Partial Invariance - Sex Means

summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 142 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       107
##   Number of equality constraints                    45
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                              1186.248     483.326
##   Degrees of freedom                                82          82
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  2.618
##   Shift parameter for each group:                                 
##       2                                                     12.312
##       1                                                     17.933
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          641.428     257.302
##     1                                          544.820     226.024
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83443.089   60114.774
##   Degrees of freedom                                72          72
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.389
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.987       0.993
##   Tucker-Lewis Index (TLI)                       0.988       0.994
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060       0.036
##   90 Percent confidence interval - lower         0.057       0.033
##   90 Percent confidence interval - upper         0.063       0.039
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.030       0.030
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.667    0.074   22.396    0.000    1.667    0.858
##     Viv_EvInt         1.494    0.055   26.948    0.000    1.494    0.831
##     Viv_DiF           1.501    0.066   22.838    0.000    1.501    0.832
##     Viv_Int           1.157    0.040   28.594    0.000    1.157    0.757
##     Viv_Pla           1.307    0.056   23.398    0.000    1.307    0.794
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.356    0.064   21.174    0.000    1.356    0.805
##     Viv_HabR          1.047    0.040   26.291    0.000    1.047    0.723
##     Viv_PrInf         1.690    0.085   19.921    0.000    1.690    0.861
##     Viv_Aut           0.703    0.024   28.997    0.000    0.703    0.575
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.565    0.021   27.094    0.000    0.565    0.565
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.256    0.033    7.797    0.000    0.256    0.256
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.824    0.010   79.613    0.000    0.824    0.824
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.690    0.198  -23.743    0.000   -4.690   -2.413
##     Viv_AdmT|t2      -3.351    0.134  -24.960    0.000   -3.351   -1.724
##     Viv_AdmT|t3      -2.482    0.100  -24.809    0.000   -2.482   -1.277
##     Viv_AdmT|t4       0.202    0.030    6.742    0.000    0.202    0.104
##     Viv_EvInt|t1     -4.259    0.146  -29.207    0.000   -4.259   -2.369
##     Viv_EvInt|t2     -2.660    0.089  -29.936    0.000   -2.660   -1.479
##     Viv_EvInt|t3     -1.783    0.063  -28.424    0.000   -1.783   -0.992
##     Viv_EvInt|t4      0.595    0.032   18.765    0.000    0.595    0.331
##     Viv_DiF|t1       -4.634    0.191  -24.199    0.000   -4.634   -2.569
##     Viv_DiF|t2       -3.439    0.139  -24.793    0.000   -3.439   -1.906
##     Viv_DiF|t3       -2.636    0.107  -24.665    0.000   -2.636   -1.461
##     Viv_DiF|t4       -0.098    0.027   -3.640    0.000   -0.098   -0.054
##     Viv_Int|t1       -3.568    0.111  -32.214    0.000   -3.568   -2.333
##     Viv_Int|t2       -2.437    0.071  -34.136    0.000   -2.437   -1.593
##     Viv_Int|t3       -1.724    0.052  -33.207    0.000   -1.724   -1.127
##     Viv_Int|t4        0.598    0.028   21.658    0.000    0.598    0.391
##     Viv_Pla|t1       -4.405    0.175  -25.117    0.000   -4.405   -2.677
##     Viv_Pla|t2       -3.554    0.144  -24.758    0.000   -3.554   -2.159
##     Viv_Pla|t3       -2.564    0.104  -24.716    0.000   -2.564   -1.558
##     Viv_Pla|t4       -0.055    0.023   -2.344    0.019   -0.055   -0.033
##     Viv_HabRC|t1     -4.543    0.191  -23.740    0.000   -4.543   -2.697
##     Viv_HabRC|t2     -3.561    0.150  -23.756    0.000   -3.561   -2.114
##     Viv_HabRC|t3     -2.528    0.111  -22.851    0.000   -2.528   -1.501
##     Viv_HabRC|t4     -0.061    0.024   -2.529    0.011   -0.061   -0.036
##     Viv_HabR|t1      -3.643    0.118  -30.866    0.000   -3.643   -2.516
##     Viv_HabR|t2      -2.500    0.077  -32.489    0.000   -2.500   -1.726
##     Viv_HabR|t3      -1.583    0.051  -31.232    0.000   -1.583   -1.094
##     Viv_HabR|t4       0.148    0.021    6.959    0.000    0.148    0.102
##     Viv_PrInf|t1     -4.896    0.215  -22.742    0.000   -4.896   -2.493
##     Viv_PrInf|t2     -3.602    0.155  -23.193    0.000   -3.602   -1.835
##     Viv_PrInf|t3     -2.615    0.115  -22.733    0.000   -2.615   -1.332
##     Viv_PrInf|t4      0.352    0.032   11.138    0.000    0.352    0.179
##     Viv_Aut|t1       -2.688    0.071  -38.102    0.000   -2.688   -2.199
##     Viv_Aut|t2       -1.137    0.030  -37.813    0.000   -1.137   -0.930
##     Viv_Aut|t3       -0.494    0.021  -23.235    0.000   -0.494   -0.404
##     Viv_Aut|t4        0.975    0.027   36.641    0.000    0.975    0.798
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.265
##    .Viv_EvInt         1.000                               1.000    0.309
##    .Viv_DiF           1.000                               1.000    0.307
##    .Viv_Int           1.000                               1.000    0.427
##    .Viv_Pla           1.000                               1.000    0.369
##    .Viv_HabRC         1.000                               1.000    0.352
##    .Viv_HabR          1.000                               1.000    0.477
##    .Viv_PrInf         1.000                               1.000    0.259
##    .Viv_Aut           1.000                               1.000    0.670
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.514                               0.514    1.000
##     Viv_EvInt         0.556                               0.556    1.000
##     Viv_DiF           0.554                               0.554    1.000
##     Viv_Int           0.654                               0.654    1.000
##     Viv_Pla           0.608                               0.608    1.000
##     Viv_HabRC         0.594                               0.594    1.000
##     Viv_HabR          0.691                               0.691    1.000
##     Viv_PrInf         0.509                               0.509    1.000
##     Viv_Aut           0.818                               0.818    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.735
##     Viv_EvInt         0.691
##     Viv_DiF           0.693
##     Viv_Int           0.573
##     Viv_Pla           0.631
##     Viv_HabRC         0.648
##     Viv_HabR          0.523
##     Viv_PrInf         0.741
##     Viv_Aut           0.330
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.667    0.074   22.396    0.000    1.745    0.811
##     Viv_EvInt         1.494    0.055   26.948    0.000    1.564    0.798
##     Viv_DiF           1.501    0.066   22.838    0.000    1.571    0.846
##     Viv_Int           1.157    0.040   28.594    0.000    1.211    0.682
##     Viv_Pla           1.307    0.056   23.398    0.000    1.368    0.866
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.356    0.064   21.174    0.000    1.310    0.805
##     Viv_HabR          1.047    0.040   26.291    0.000    1.012    0.682
##     Viv_PrInf         1.690    0.085   19.921    0.000    1.633    0.782
##     Viv_Aut           0.703    0.024   28.997    0.000    0.679    0.506
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.468    0.055    8.554    0.000    0.468    0.447
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.882    0.081   10.942    0.000    0.882    0.539
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.827    0.040   20.506    0.000    0.818    0.818
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.690    0.198  -23.743    0.000   -4.690   -2.179
##     Viv_AdmT|t2      -3.351    0.134  -24.960    0.000   -3.351   -1.557
##     Viv_AdmT|t3      -2.482    0.100  -24.809    0.000   -2.482   -1.153
##     Viv_AdmT|t4       0.202    0.030    6.742    0.000    0.202    0.094
##     Viv_EvInt|t1     -4.259    0.146  -29.207    0.000   -4.259   -2.172
##     Viv_EvInt|t2     -2.660    0.089  -29.936    0.000   -2.660   -1.356
##     Viv_EvInt|t3     -1.783    0.063  -28.424    0.000   -1.783   -0.909
##     Viv_EvInt|t4      0.595    0.032   18.765    0.000    0.595    0.304
##     Viv_DiF|t1       -4.634    0.191  -24.199    0.000   -4.634   -2.494
##     Viv_DiF|t2       -3.439    0.139  -24.793    0.000   -3.439   -1.851
##     Viv_DiF|t3       -2.636    0.107  -24.665    0.000   -2.636   -1.419
##     Viv_DiF|t4       -0.098    0.027   -3.640    0.000   -0.098   -0.053
##     Viv_Int|t1       -3.568    0.111  -32.214    0.000   -3.568   -2.008
##     Viv_Int|t2       -2.437    0.071  -34.136    0.000   -2.437   -1.372
##     Viv_Int|t3       -1.724    0.052  -33.207    0.000   -1.724   -0.970
##     Viv_Int|t4        0.598    0.028   21.658    0.000    0.598    0.336
##     Viv_Pla|t1       -4.405    0.175  -25.117    0.000   -4.405   -2.788
##     Viv_Pla|t2       -3.554    0.144  -24.758    0.000   -3.554   -2.249
##     Viv_Pla|t3       -2.564    0.104  -24.716    0.000   -2.564   -1.623
##     Viv_Pla|t4       -0.055    0.023   -2.344    0.019   -0.055   -0.035
##     Viv_HabRC|t1     -4.543    0.191  -23.740    0.000   -4.543   -2.792
##     Viv_HabRC|t2     -3.561    0.150  -23.756    0.000   -3.561   -2.189
##     Viv_HabRC|t3     -2.528    0.111  -22.851    0.000   -2.528   -1.554
##     Viv_HabRC|t4     -0.061    0.024   -2.529    0.011   -0.061   -0.037
##     Viv_HabR|t1      -3.643    0.118  -30.866    0.000   -3.643   -2.454
##     Viv_HabR|t2      -2.500    0.077  -32.489    0.000   -2.500   -1.684
##     Viv_HabR|t3      -1.583    0.051  -31.232    0.000   -1.583   -1.067
##     Viv_HabR|t4       0.148    0.021    6.959    0.000    0.148    0.100
##     Viv_PrInf|t1     -4.896    0.215  -22.742    0.000   -4.896   -2.343
##     Viv_PrInf|t2     -3.602    0.155  -23.193    0.000   -3.602   -1.724
##     Viv_PrInf|t3     -2.615    0.115  -22.733    0.000   -2.615   -1.251
##     Viv_PrInf|t4      0.352    0.032   11.138    0.000    0.352    0.168
##     Viv_Aut|t1       -2.688    0.071  -38.102    0.000   -2.688   -2.005
##     Viv_Aut|t2       -1.137    0.030  -37.813    0.000   -1.137   -0.848
##     Viv_Aut|t3       -0.494    0.021  -23.235    0.000   -0.494   -0.368
##     Viv_Aut|t4        0.975    0.027   36.641    0.000    0.975    0.727
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.588    0.176    9.046    0.000    1.588    0.343
##    .Viv_EvInt         1.399    0.131   10.687    0.000    1.399    0.364
##    .Viv_DiF           0.984    0.126    7.796    0.000    0.984    0.285
##    .Viv_Int           1.690    0.131   12.879    0.000    1.690    0.535
##    .Viv_Pla           0.625    0.093    6.748    0.000    0.625    0.250
##    .Viv_HabRC         0.931    0.124    7.495    0.000    0.931    0.352
##    .Viv_HabR          1.179    0.102   11.525    0.000    1.179    0.535
##    .Viv_PrInf         1.699    0.192    8.846    0.000    1.699    0.389
##    .Viv_Aut           1.337    0.082   16.277    0.000    1.337    0.744
##     Viv_Soft          1.096    0.058   18.732    0.000    1.000    1.000
##     Viv_Hard          0.934    0.055   16.871    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.465                               0.465    1.000
##     Viv_EvInt         0.510                               0.510    1.000
##     Viv_DiF           0.538                               0.538    1.000
##     Viv_Int           0.563                               0.563    1.000
##     Viv_Pla           0.633                               0.633    1.000
##     Viv_HabRC         0.615                               0.615    1.000
##     Viv_HabR          0.674                               0.674    1.000
##     Viv_PrInf         0.479                               0.479    1.000
##     Viv_Aut           0.746                               0.746    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.657
##     Viv_EvInt         0.636
##     Viv_DiF           0.715
##     Viv_Int           0.465
##     Viv_Pla           0.750
##     Viv_HabRC         0.648
##     Viv_HabR          0.465
##     Viv_PrInf         0.611
##     Viv_Aut           0.256
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               483.326                82.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.030                 0.993                 0.994 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.036                 0.033                 0.039
modificationindices(invariance$fit.means, sort.=T,maximum.number = 10)
##           lhs op rhs block group level    mi    epc sepc.lv sepc.all sepc.nox
## 158  Viv_Hard ~1         2     2     1 488.6 -0.284  -0.294   -0.294   -0.294
## 79   Viv_Hard ~1         1     1     1 488.6  0.284   0.284    0.284    0.284
## 156   Viv_Aut ~1         2     2     1 243.5 -0.268  -0.268   -0.200   -0.200
## 77    Viv_Aut ~1         1     1     1 243.5  0.268   0.268    0.219    0.219
## 72    Viv_Int ~1         1     1     1 191.2  0.372   0.372    0.243    0.243
## 151   Viv_Int ~1         2     2     1 191.2 -0.372  -0.372   -0.209   -0.209
## 157  Viv_Soft ~1         2     2     1 185.9 -0.154  -0.147   -0.147   -0.147
## 78   Viv_Soft ~1         1     1     1 185.9  0.154   0.154    0.154    0.154
## 155 Viv_PrInf ~1         2     2     1 165.7 -0.474  -0.474   -0.227   -0.227
## 76  Viv_PrInf ~1         1     1     1 165.7  0.474   0.474    0.242    0.242
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8523   0.7517
## alpha.ord   0.9108   0.8480
## omega       0.8487   0.7205
## omega2      0.8487   0.7205
## omega3      0.8505   0.7218
## avevar      0.6735   0.6110
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8504   0.7031
## alpha.ord   0.9082   0.8067
## omega       0.8147   0.6732
## omega2      0.8147   0.6732
## omega3      0.8070   0.6700
## avevar      0.6426   0.5328

4.1.1.6 Organizing Education

data$Esc<-car::recode(data$Esc,"5=4")
data$EscClasseR<-as.factor(data$Esc)
summary(data$EscClasseR)
##    1    2    3    4 
##  503 2506 4006  593

4.1.1.7 Education Invariance Model

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Int + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf + Viv_Aut 
Viv_HabRC   ~~  Viv_HabR
Viv_AdmT    ~~  Viv_Int
'

4.1.1.8 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "EscClasseR",parameterization = "theta", estimator = "ULSMV",ordered = T,missing="pairwise",std.lv=T)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= 7.200944e-14) is close to zero. This may be a symptom that the
##     model is not identified.
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                 Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)    
## fit.configural  96           214                                  
## fit.loadings   117           348       22.8      21       0.35    
## fit.thresholds 192           911       87.7      75       0.15    
## fit.means      198          1683       35.4       6  0.0000037 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.991        0.056               NA                 NA
## fit.loadings        0.998        0.021            0.007              0.035
## fit.thresholds      0.998        0.017            0.000              0.004
## fit.means           0.996        0.025            0.002              0.008
4.1.1.8.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 614 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       225
##   Number of equality constraints                    33
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               214.450     669.683
##   Degrees of freedom                                96          96
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.329
##   Shift parameter for each group:                                 
##       2                                                      6.155
##       3                                                      9.840
##       1                                                      1.235
##       4                                                      1.457
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           50.053     158.098
##     3                                          114.127     356.290
##     1                                           26.162      80.654
##     4                                           24.108      74.640
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83696.523   64274.637
##   Degrees of freedom                               144         144
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.304
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.991
##   Tucker-Lewis Index (TLI)                       0.998       0.987
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.025       0.056
##   90 Percent confidence interval - lower         0.021       0.052
##   90 Percent confidence interval - upper         0.030       0.060
##   P-value RMSEA <= 0.05                          1.000       0.006
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.458    0.053   27.663    0.000    1.458    0.825
##     Viv_EvInt         1.410    0.047   30.170    0.000    1.410    0.816
##     Viv_DiF           1.491    0.055   27.238    0.000    1.491    0.831
##     Viv_Int           1.002    0.035   28.346    0.000    1.002    0.708
##     Viv_Pla           1.491    0.057   26.271    0.000    1.491    0.830
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.475    0.067   21.997    0.000    1.475    0.828
##     Viv_HabR          1.047    0.043   24.396    0.000    1.047    0.723
##     Viv_PrInf         1.434    0.056   25.392    0.000    1.434    0.820
##     Viv_Aut           0.583    0.027   21.361    0.000    0.583    0.504
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.456    0.025   17.913    0.000    0.456    0.456
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.441    0.019   23.302    0.000    0.441    0.441
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.835    0.011   76.781    0.000    0.835    0.835
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.039    0.123  -32.814    0.000   -4.039   -2.284
##     Viv_AdmT|t2      -2.856    0.081  -35.362    0.000   -2.856   -1.616
##     Viv_AdmT|t3      -2.076    0.067  -31.183    0.000   -2.076   -1.174
##     Viv_AdmT|t4       0.325    0.044    7.428    0.000    0.325    0.184
##     Viv_EvInt|t1     -3.861    0.105  -36.632    0.000   -3.861   -2.233
##     Viv_EvInt|t2     -2.474    0.066  -37.206    0.000   -2.474   -1.431
##     Viv_EvInt|t3     -1.663    0.057  -29.422    0.000   -1.663   -0.962
##     Viv_EvInt|t4      0.611    0.043   14.046    0.000    0.611    0.353
##     Viv_DiF|t1       -4.602    0.171  -26.919    0.000   -4.602   -2.563
##     Viv_DiF|t2       -3.260    0.092  -35.311    0.000   -3.260   -1.816
##     Viv_DiF|t3       -2.540    0.077  -33.053    0.000   -2.540   -1.414
##     Viv_DiF|t4       -0.005    0.045   -0.120    0.905   -0.005   -0.003
##     Viv_Int|t1       -3.024    0.082  -37.047    0.000   -3.024   -2.135
##     Viv_Int|t2       -2.062    0.054  -38.209    0.000   -2.062   -1.457
##     Viv_Int|t3       -1.431    0.045  -31.597    0.000   -1.431   -1.011
##     Viv_Int|t4        0.621    0.036   17.102    0.000    0.621    0.439
##     Viv_Pla|t1       -4.825    0.183  -26.326    0.000   -4.825   -2.688
##     Viv_Pla|t2       -3.851    0.116  -33.206    0.000   -3.851   -2.145
##     Viv_Pla|t3       -2.799    0.086  -32.553    0.000   -2.799   -1.559
##     Viv_Pla|t4        0.032    0.045    0.722    0.471    0.032    0.018
##     Viv_HabRC|t1     -4.669    0.194  -24.015    0.000   -4.669   -2.621
##     Viv_HabRC|t2     -3.979    0.144  -27.638    0.000   -3.979   -2.233
##     Viv_HabRC|t3     -2.709    0.098  -27.560    0.000   -2.709   -1.520
##     Viv_HabRC|t4      0.032    0.044    0.722    0.471    0.032    0.018
##     Viv_HabR|t1      -3.574    0.133  -26.822    0.000   -3.574   -2.469
##     Viv_HabR|t2      -2.430    0.071  -34.411    0.000   -2.430   -1.678
##     Viv_HabR|t3      -1.483    0.050  -29.544    0.000   -1.483   -1.024
##     Viv_HabR|t4       0.268    0.036    7.457    0.000    0.268    0.185
##     Viv_PrInf|t1     -4.122    0.148  -27.799    0.000   -4.122   -2.358
##     Viv_PrInf|t2     -3.070    0.094  -32.709    0.000   -3.070   -1.756
##     Viv_PrInf|t3     -2.215    0.074  -30.115    0.000   -2.215   -1.267
##     Viv_PrInf|t4      0.402    0.043    9.343    0.000    0.402    0.230
##     Viv_Aut|t1       -2.251    0.062  -36.478    0.000   -2.251   -1.944
##     Viv_Aut|t2       -0.893    0.033  -27.243    0.000   -0.893   -0.771
##     Viv_Aut|t3       -0.257    0.029   -8.740    0.000   -0.257   -0.222
##     Viv_Aut|t4        1.067    0.034   31.157    0.000    1.067    0.922
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.320
##    .Viv_EvInt         1.000                               1.000    0.335
##    .Viv_DiF           1.000                               1.000    0.310
##    .Viv_Int           1.000                               1.000    0.499
##    .Viv_Pla           1.000                               1.000    0.310
##    .Viv_HabRC         1.000                               1.000    0.315
##    .Viv_HabR          1.000                               1.000    0.477
##    .Viv_PrInf         1.000                               1.000    0.327
##    .Viv_Aut           1.000                               1.000    0.746
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.566                               0.566    1.000
##     Viv_EvInt         0.578                               0.578    1.000
##     Viv_DiF           0.557                               0.557    1.000
##     Viv_Int           0.706                               0.706    1.000
##     Viv_Pla           0.557                               0.557    1.000
##     Viv_HabRC         0.561                               0.561    1.000
##     Viv_HabR          0.691                               0.691    1.000
##     Viv_PrInf         0.572                               0.572    1.000
##     Viv_Aut           0.864                               0.864    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.680
##     Viv_EvInt         0.665
##     Viv_DiF           0.690
##     Viv_Int           0.501
##     Viv_Pla           0.690
##     Viv_HabRC         0.685
##     Viv_HabR          0.523
##     Viv_PrInf         0.673
##     Viv_Aut           0.254
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.642    0.203    8.086    0.000    1.642    0.840
##     Viv_EvInt         1.524    0.161    9.457    0.000    1.524    0.815
##     Viv_DiF           1.626    0.166    9.774    0.000    1.626    0.837
##     Viv_Int           1.143    0.118    9.665    0.000    1.143    0.737
##     Viv_Pla           1.556    0.154   10.114    0.000    1.556    0.835
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.835    0.216    3.860    0.000    0.835    0.794
##     Viv_HabR          0.622    0.144    4.330    0.000    0.622    0.689
##     Viv_PrInf         0.818    0.211    3.870    0.000    0.818    0.811
##     Viv_Aut           0.381    0.082    4.630    0.000    0.381    0.554
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.216    0.106    2.028    0.043    0.216    0.516
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.469    0.105    4.470    0.000    0.469    0.424
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.814    0.010   80.962    0.000    0.814    0.814
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.190    0.232    0.820    0.412    0.190    0.190
##     Viv_Hard         -2.055    1.262   -1.628    0.104   -2.055   -2.055
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.039    0.123  -32.814    0.000   -4.039   -2.067
##     Viv_AdmT|t2      -2.856    0.081  -35.362    0.000   -2.856   -1.462
##     Viv_AdmT|t3      -2.101    0.142  -14.788    0.000   -2.101   -1.075
##     Viv_AdmT|t4       0.383    0.426    0.900    0.368    0.383    0.196
##     Viv_EvInt|t1     -3.861    0.105  -36.632    0.000   -3.861   -2.064
##     Viv_EvInt|t2     -2.293    0.153  -14.950    0.000   -2.293   -1.226
##     Viv_EvInt|t3     -1.463    0.218   -6.718    0.000   -1.463   -0.782
##     Viv_EvInt|t4      0.835    0.436    1.913    0.056    0.835    0.446
##     Viv_DiF|t1       -4.602    0.171  -26.919    0.000   -4.602   -2.368
##     Viv_DiF|t2       -3.452    0.175  -19.715    0.000   -3.452   -1.776
##     Viv_DiF|t3       -2.535    0.194  -13.033    0.000   -2.535   -1.304
##     Viv_DiF|t4        0.099    0.386    0.256    0.798    0.099    0.051
##     Viv_Int|t1       -3.024    0.082  -37.047    0.000   -3.024   -1.952
##     Viv_Int|t2       -1.963    0.103  -19.138    0.000   -1.963   -1.267
##     Viv_Int|t3       -1.375    0.143   -9.622    0.000   -1.375   -0.887
##     Viv_Int|t4        0.703    0.333    2.114    0.035    0.703    0.454
##     Viv_Pla|t1       -4.825    0.183  -26.326    0.000   -4.825   -2.589
##     Viv_Pla|t2       -3.941    0.201  -19.607    0.000   -3.941   -2.115
##     Viv_Pla|t3       -2.752    0.201  -13.663    0.000   -2.752   -1.477
##     Viv_Pla|t4        0.135    0.372    0.363    0.717    0.135    0.072
##     Viv_HabRC|t1     -4.669    0.194  -24.015    0.000   -4.669   -4.439
##     Viv_HabRC|t2     -3.979    0.144  -27.638    0.000   -3.979   -3.783
##     Viv_HabRC|t3     -3.350    0.233  -14.406    0.000   -3.350   -3.185
##     Viv_HabRC|t4     -1.800    0.597   -3.013    0.003   -1.800   -1.711
##     Viv_HabR|t1      -3.574    0.133  -26.822    0.000   -3.574   -3.959
##     Viv_HabR|t2      -2.849    0.181  -15.782    0.000   -2.849   -3.156
##     Viv_HabR|t3      -2.287    0.283   -8.092    0.000   -2.287   -2.533
##     Viv_HabR|t4      -1.238    0.507   -2.442    0.015   -1.238   -1.372
##     Viv_PrInf|t1     -4.122    0.148  -27.799    0.000   -4.122   -4.087
##     Viv_PrInf|t2     -3.489    0.197  -17.756    0.000   -3.489   -3.460
##     Viv_PrInf|t3     -3.009    0.290  -10.379    0.000   -3.009   -2.983
##     Viv_PrInf|t4     -1.563    0.637   -2.455    0.014   -1.563   -1.549
##     Viv_Aut|t1       -2.251    0.062  -36.478    0.000   -2.251   -3.271
##     Viv_Aut|t2       -1.447    0.179   -8.094    0.000   -1.447   -2.103
##     Viv_Aut|t3       -1.126    0.244   -4.612    0.000   -1.126   -1.637
##     Viv_Aut|t4       -0.319    0.414   -0.770    0.441   -0.319   -0.463
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.122    0.271    4.134    0.000    1.122    0.294
##    .Viv_EvInt         1.175    0.244    4.822    0.000    1.175    0.336
##    .Viv_DiF           1.133    0.228    4.965    0.000    1.133    0.300
##    .Viv_Int           1.095    0.219    4.995    0.000    1.095    0.456
##    .Viv_Pla           1.053    0.199    5.283    0.000    1.053    0.303
##    .Viv_HabRC         0.409    0.210    1.948    0.051    0.409    0.369
##    .Viv_HabR          0.428    0.197    2.167    0.030    0.428    0.525
##    .Viv_PrInf         0.348    0.179    1.941    0.052    0.348    0.342
##    .Viv_Aut           0.328    0.142    2.316    0.021    0.328    0.693
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.512                               0.512    1.000
##     Viv_EvInt         0.535                               0.535    1.000
##     Viv_DiF           0.515                               0.515    1.000
##     Viv_Int           0.645                               0.645    1.000
##     Viv_Pla           0.537                               0.537    1.000
##     Viv_HabRC         0.951                               0.951    1.000
##     Viv_HabR          1.108                               1.108    1.000
##     Viv_PrInf         0.991                               0.991    1.000
##     Viv_Aut           1.453                               1.453    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.706
##     Viv_EvInt         0.664
##     Viv_DiF           0.700
##     Viv_Int           0.544
##     Viv_Pla           0.697
##     Viv_HabRC         0.631
##     Viv_HabR          0.475
##     Viv_PrInf         0.658
##     Viv_Aut           0.307
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.650    0.403    4.093    0.000    1.650    0.823
##     Viv_EvInt         1.185    0.241    4.911    0.000    1.185    0.827
##     Viv_DiF           1.823    0.404    4.514    0.000    1.823    0.914
##     Viv_Int           0.982    0.193    5.092    0.000    0.982    0.683
##     Viv_Pla           1.530    0.319    4.802    0.000    1.530    0.852
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.622    0.243    2.561    0.010    0.622    0.842
##     Viv_HabR          0.482    0.173    2.785    0.005    0.482    0.679
##     Viv_PrInf         0.603    0.232    2.596    0.009    0.603    0.846
##     Viv_Aut           0.296    0.102    2.900    0.004    0.296    0.574
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.094    0.072    1.314    0.189    0.094    0.455
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.454    0.191    2.385    0.017    0.454    0.380
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.854    0.025   34.460    0.000    0.854    0.854
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.226    0.447    0.506    0.613    0.226    0.226
##     Viv_Hard         -4.084    2.532   -1.613    0.107   -4.084   -4.084
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.039    0.123  -32.814    0.000   -4.039   -2.014
##     Viv_AdmT|t2      -2.856    0.081  -35.362    0.000   -2.856   -1.424
##     Viv_AdmT|t3      -1.971    0.282   -6.983    0.000   -1.971   -0.983
##     Viv_AdmT|t4       0.811    0.925    0.876    0.381    0.811    0.404
##     Viv_EvInt|t1     -3.861    0.105  -36.632    0.000   -3.861   -2.693
##     Viv_EvInt|t2     -1.918    0.325   -5.898    0.000   -1.918   -1.338
##     Viv_EvInt|t3     -1.211    0.369   -3.287    0.001   -1.211   -0.845
##     Viv_EvInt|t4      0.775    0.661    1.173    0.241    0.775    0.540
##     Viv_DiF|t1       -4.602    0.171  -26.919    0.000   -4.602   -2.308
##     Viv_DiF|t2       -3.610    0.325  -11.097    0.000   -3.610   -1.810
##     Viv_DiF|t3       -2.729    0.394   -6.922    0.000   -2.729   -1.368
##     Viv_DiF|t4        0.576    0.927    0.622    0.534    0.576    0.289
##     Viv_Int|t1       -3.024    0.082  -37.047    0.000   -3.024   -2.105
##     Viv_Int|t2       -2.297    0.176  -13.017    0.000   -2.297   -1.599
##     Viv_Int|t3       -1.471    0.232   -6.337    0.000   -1.471   -1.024
##     Viv_Int|t4        0.901    0.595    1.514    0.130    0.901    0.627
##     Viv_Pla|t1       -4.825    0.183  -26.326    0.000   -4.825   -2.687
##     Viv_Pla|t2       -3.711    0.434   -8.556    0.000   -3.711   -2.067
##     Viv_Pla|t3       -2.685    0.408   -6.578    0.000   -2.685   -1.495
##     Viv_Pla|t4        0.620    0.789    0.786    0.432    0.620    0.345
##     Viv_HabRC|t1     -4.669    0.194  -24.015    0.000   -4.669   -6.320
##     Viv_HabRC|t2     -3.979    0.144  -27.638    0.000   -3.979   -5.386
##     Viv_HabRC|t3     -3.592    0.230  -15.620    0.000   -3.592   -4.862
##     Viv_HabRC|t4     -2.418    0.647   -3.734    0.000   -2.418   -3.273
##     Viv_HabR|t1      -3.574    0.133  -26.822    0.000   -3.574   -5.033
##     Viv_HabR|t2      -2.951    0.224  -13.150    0.000   -2.951   -4.156
##     Viv_HabR|t3      -2.488    0.361   -6.891    0.000   -2.488   -3.504
##     Viv_HabR|t4      -1.634    0.648   -2.520    0.012   -1.634   -2.301
##     Viv_PrInf|t1     -4.122    0.148  -27.799    0.000   -4.122   -5.785
##     Viv_PrInf|t2     -3.506    0.247  -14.195    0.000   -3.506   -4.920
##     Viv_PrInf|t3     -3.168    0.350   -9.058    0.000   -3.168   -4.446
##     Viv_PrInf|t4     -2.165    0.707   -3.062    0.002   -2.165   -3.038
##     Viv_Aut|t1       -2.251    0.062  -36.478    0.000   -2.251   -4.359
##     Viv_Aut|t2       -1.498    0.250   -5.983    0.000   -1.498   -2.901
##     Viv_Aut|t3       -1.193    0.349   -3.414    0.001   -1.193   -2.310
##     Viv_Aut|t4       -0.690    0.517   -1.334    0.182   -0.690   -1.336
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.300    0.601    2.164    0.030    1.300    0.323
##    .Viv_EvInt         0.650    0.261    2.486    0.013    0.650    0.316
##    .Viv_DiF           0.655    0.254    2.579    0.010    0.655    0.165
##    .Viv_Int           1.100    0.391    2.812    0.005    1.100    0.533
##    .Viv_Pla           0.882    0.368    2.395    0.017    0.882    0.274
##    .Viv_HabRC         0.158    0.126    1.258    0.208    0.158    0.290
##    .Viv_HabR          0.272    0.193    1.409    0.159    0.272    0.539
##    .Viv_PrInf         0.144    0.109    1.320    0.187    0.144    0.284
##    .Viv_Aut           0.179    0.122    1.471    0.141    0.179    0.671
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.499                               0.499    1.000
##     Viv_EvInt         0.698                               0.698    1.000
##     Viv_DiF           0.501                               0.501    1.000
##     Viv_Int           0.696                               0.696    1.000
##     Viv_Pla           0.557                               0.557    1.000
##     Viv_HabRC         1.354                               1.354    1.000
##     Viv_HabR          1.408                               1.408    1.000
##     Viv_PrInf         1.403                               1.403    1.000
##     Viv_Aut           1.937                               1.937    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.677
##     Viv_EvInt         0.684
##     Viv_DiF           0.835
##     Viv_Int           0.467
##     Viv_Pla           0.726
##     Viv_HabRC         0.710
##     Viv_HabR          0.461
##     Viv_PrInf         0.716
##     Viv_Aut           0.329
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.186    0.260    4.558    0.000    1.186    0.800
##     Viv_EvInt         1.239    0.240    5.164    0.000    1.239    0.819
##     Viv_DiF           1.406    0.265    5.314    0.000    1.406    0.837
##     Viv_Int           0.816    0.146    5.609    0.000    0.816    0.646
##     Viv_Pla           1.236    0.213    5.796    0.000    1.236    0.777
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.574    0.242    2.375    0.018    0.574    0.704
##     Viv_HabR          0.476    0.189    2.523    0.012    0.476    0.676
##     Viv_PrInf         0.566    0.231    2.451    0.014    0.566    0.778
##     Viv_Aut           0.255    0.086    2.964    0.003    0.255    0.507
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.172    0.141    1.213    0.225    0.172    0.571
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.462    0.178    2.602    0.009    0.462    0.539
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.823    0.027   29.973    0.000    0.823    0.823
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft         -0.418    0.549   -0.761    0.447   -0.418   -0.418
##     Viv_Hard         -3.971    2.928   -1.356    0.175   -3.971   -3.971
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.039    0.123  -32.814    0.000   -4.039   -2.724
##     Viv_AdmT|t2      -2.856    0.081  -35.362    0.000   -2.856   -1.927
##     Viv_AdmT|t3      -2.179    0.204  -10.691    0.000   -2.179   -1.469
##     Viv_AdmT|t4      -0.367    0.573   -0.640    0.522   -0.367   -0.247
##     Viv_EvInt|t1     -3.861    0.105  -36.632    0.000   -3.861   -2.554
##     Viv_EvInt|t2     -2.416    0.281   -8.590    0.000   -2.416   -1.598
##     Viv_EvInt|t3     -1.697    0.387   -4.385    0.000   -1.697   -1.123
##     Viv_EvInt|t4     -0.040    0.674   -0.059    0.953   -0.040   -0.026
##     Viv_DiF|t1       -4.602    0.171  -26.919    0.000   -4.602   -2.739
##     Viv_DiF|t2       -3.369    0.303  -11.109    0.000   -3.369   -2.005
##     Viv_DiF|t3       -2.667    0.369   -7.233    0.000   -2.667   -1.587
##     Viv_DiF|t4       -0.598    0.670   -0.893    0.372   -0.598   -0.356
##     Viv_Int|t1       -3.024    0.082  -37.047    0.000   -3.024   -2.393
##     Viv_Int|t2       -2.014    0.168  -12.005    0.000   -2.014   -1.594
##     Viv_Int|t3       -1.495    0.231   -6.484    0.000   -1.495   -1.184
##     Viv_Int|t4        0.086    0.463    0.186    0.852    0.086    0.068
##     Viv_Pla|t1       -4.825    0.183  -26.326    0.000   -4.825   -3.034
##     Viv_Pla|t2       -3.775    0.347  -10.893    0.000   -3.775   -2.374
##     Viv_Pla|t3       -2.759    0.369   -7.474    0.000   -2.759   -1.735
##     Viv_Pla|t4       -0.601    0.599   -1.003    0.316   -0.601   -0.378
##     Viv_HabRC|t1     -4.669    0.194  -24.015    0.000   -4.669   -5.729
##     Viv_HabRC|t2     -3.979    0.144  -27.638    0.000   -3.979   -4.882
##     Viv_HabRC|t3     -3.542    0.255  -13.881    0.000   -3.542   -4.346
##     Viv_HabRC|t4     -2.424    0.679   -3.567    0.000   -2.424   -2.974
##     Viv_HabR|t1      -3.574    0.133  -26.822    0.000   -3.574   -5.073
##     Viv_HabR|t2      -3.249    0.189  -17.220    0.000   -3.249   -4.611
##     Viv_HabR|t3      -2.918    0.287  -10.166    0.000   -2.918   -4.141
##     Viv_HabR|t4      -2.015    0.613   -3.286    0.001   -2.015   -2.860
##     Viv_PrInf|t1     -4.122    0.148  -27.799    0.000   -4.122   -5.661
##     Viv_PrInf|t2     -3.673    0.248  -14.821    0.000   -3.673   -5.044
##     Viv_PrInf|t3     -3.236    0.385   -8.400    0.000   -3.236   -4.444
##     Viv_PrInf|t4     -2.146    0.799   -2.687    0.007   -2.146   -2.947
##     Viv_Aut|t1       -2.251    0.062  -36.478    0.000   -2.251   -4.485
##     Viv_Aut|t2       -1.538    0.249   -6.186    0.000   -1.538   -3.066
##     Viv_Aut|t3       -1.332    0.313   -4.258    0.000   -1.332   -2.654
##     Viv_Aut|t4       -0.753    0.500   -1.506    0.132   -0.753   -1.501
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.792    0.333    2.379    0.017    0.792    0.360
##    .Viv_EvInt         0.751    0.284    2.641    0.008    0.751    0.329
##    .Viv_DiF           0.845    0.314    2.687    0.007    0.845    0.299
##    .Viv_Int           0.930    0.311    2.994    0.003    0.930    0.583
##    .Viv_Pla           1.002    0.330    3.038    0.002    1.002    0.396
##    .Viv_HabRC         0.335    0.272    1.230    0.219    0.335    0.504
##    .Viv_HabR          0.270    0.213    1.268    0.205    0.270    0.543
##    .Viv_PrInf         0.209    0.172    1.216    0.224    0.209    0.395
##    .Viv_Aut           0.187    0.126    1.480    0.139    0.187    0.743
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.674                               0.674    1.000
##     Viv_EvInt         0.662                               0.662    1.000
##     Viv_DiF           0.595                               0.595    1.000
##     Viv_Int           0.792                               0.792    1.000
##     Viv_Pla           0.629                               0.629    1.000
##     Viv_HabRC         1.227                               1.227    1.000
##     Viv_HabR          1.419                               1.419    1.000
##     Viv_PrInf         1.373                               1.373    1.000
##     Viv_Aut           1.993                               1.993    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.640
##     Viv_EvInt         0.671
##     Viv_DiF           0.701
##     Viv_Int           0.417
##     Viv_Pla           0.604
##     Viv_HabRC         0.496
##     Viv_HabR          0.457
##     Viv_PrInf         0.605
##     Viv_Aut           0.257
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               669.683                96.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 0.991                 0.987 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.056                 0.052                 0.060
modificationindices(invariance$fit.configural, sort.=T,maximum.number = 10)
##           lhs op       rhs block group level     mi    epc sepc.lv sepc.all
## 398  Viv_Hard =~ Viv_EvInt     2     2     1 34.587 -0.531  -0.531   -0.284
## 427   Viv_Pla ~~ Viv_HabRC     2     2     1 26.985  0.190   0.190    0.289
## 409 Viv_EvInt ~~   Viv_DiF     2     2     1 24.343  0.352   0.352    0.305
## 408  Viv_AdmT ~~   Viv_Aut     2     2     1 22.438  0.113   0.113    0.186
## 401  Viv_Hard =~   Viv_Pla     2     2     1 21.992  0.428   0.428    0.229
## 384   Viv_Pla ~~ Viv_HabRC     1     1     1 15.712  0.302   0.302    0.302
## 414 Viv_EvInt ~~ Viv_PrInf     2     2     1 11.300 -0.118  -0.118   -0.185
## 366 Viv_EvInt ~~   Viv_DiF     1     1     1 10.731  0.252   0.252    0.252
## 358  Viv_Hard =~   Viv_Pla     1     1     1 10.223  0.399   0.399    0.222
## 428   Viv_Pla ~~  Viv_HabR     2     2     1  9.528  0.095   0.095    0.141
##     sepc.nox
## 398   -0.284
## 427    0.289
## 409    0.305
## 408    0.186
## 401    0.229
## 384    0.302
## 414   -0.185
## 366    0.252
## 358    0.222
## 428    0.141
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8484   0.7256
## alpha.ord   0.9065   0.8243
## omega       0.8274   0.7003
## omega2      0.8274   0.7003
## omega3      0.8264   0.7004
## avevar      0.6567   0.5862
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8543   0.7213
## alpha.ord   0.9124   0.8254
## omega       0.8403   0.4894
## omega2      0.8403   0.4894
## omega3      0.8379   0.4885
## avevar      0.6712   0.5565
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8575   0.7587
## alpha.ord   0.9168   0.8391
## omega       0.8423   0.2206
## omega2      0.8423   0.2206
## omega3      0.8408   0.2195
## avevar      0.7011   0.5873
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8357   0.6651
## alpha.ord   0.8926   0.7947
## omega       0.7929   0.1392
## omega2      0.7929   0.1392
## omega3      0.7920   0.1390
## avevar      0.6222   0.4849
4.1.1.8.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 463 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       231
##   Number of equality constraints                    60
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               347.499     215.078
##   Degrees of freedom                               117         117
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  2.241
##   Shift parameter for each group:                                 
##       2                                                     19.761
##       3                                                     31.590
##       1                                                      3.966
##       4                                                      4.676
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           76.903      54.082
##     3                                          126.120      87.876
##     1                                           89.398      43.864
##     4                                           55.077      29.256
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83696.523   64274.637
##   Degrees of freedom                               144         144
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.304
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.998
##   Tucker-Lewis Index (TLI)                       0.997       0.998
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.032       0.021
##   90 Percent confidence interval - lower         0.028       0.017
##   90 Percent confidence interval - upper         0.036       0.025
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.029       0.029
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.510    0.075   20.161    0.000    1.510    0.834
##     Viv_EvInt         1.358    0.057   23.976    0.000    1.358    0.805
##     Viv_DiF           1.563    0.100   15.665    0.000    1.563    0.842
##     Viv_Int           1.027    0.040   25.942    0.000    1.027    0.716
##     Viv_Pla           1.409    0.088   15.964    0.000    1.409    0.816
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.358    0.089   15.283    0.000    1.358    0.805
##     Viv_HabR          1.067    0.053   20.175    0.000    1.067    0.730
##     Viv_PrInf         1.366    0.067   20.304    0.000    1.366    0.807
##     Viv_Aut           0.629    0.027   23.080    0.000    0.629    0.532
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.463    0.033   14.235    0.000    0.463    0.463
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.423    0.030   14.093    0.000    0.423    0.423
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.837    0.011   74.239    0.000    0.837    0.837
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.119    0.192  -21.447    0.000   -4.119   -2.274
##     Viv_AdmT|t2      -2.934    0.126  -23.337    0.000   -2.934   -1.620
##     Viv_AdmT|t3      -2.127    0.089  -24.024    0.000   -2.127   -1.174
##     Viv_AdmT|t4       0.333    0.046    7.309    0.000    0.333    0.184
##     Viv_EvInt|t1     -3.788    0.153  -24.808    0.000   -3.788   -2.246
##     Viv_EvInt|t2     -2.414    0.086  -28.140    0.000   -2.414   -1.431
##     Viv_EvInt|t3     -1.623    0.064  -25.167    0.000   -1.623   -0.962
##     Viv_EvInt|t4      0.596    0.044   13.647    0.000    0.596    0.353
##     Viv_DiF|t1       -4.731    0.306  -15.453    0.000   -4.731   -2.549
##     Viv_DiF|t2       -3.369    0.174  -19.381    0.000   -3.369   -1.816
##     Viv_DiF|t3       -2.625    0.132  -19.874    0.000   -2.625   -1.414
##     Viv_DiF|t4       -0.006    0.047   -0.120    0.905   -0.006   -0.003
##     Viv_Int|t1       -3.051    0.103  -29.540    0.000   -3.051   -2.129
##     Viv_Int|t2       -2.088    0.067  -31.064    0.000   -2.088   -1.457
##     Viv_Int|t3       -1.449    0.052  -28.111    0.000   -1.449   -1.011
##     Viv_Int|t4        0.629    0.037   16.845    0.000    0.629    0.439
##     Viv_Pla|t1       -4.670    0.304  -15.384    0.000   -4.670   -2.702
##     Viv_Pla|t2       -3.707    0.199  -18.644    0.000   -3.707   -2.145
##     Viv_Pla|t3       -2.695    0.132  -20.395    0.000   -2.695   -1.559
##     Viv_Pla|t4        0.031    0.043    0.721    0.471    0.031    0.018
##     Viv_HabRC|t1     -4.480    0.287  -15.599    0.000   -4.480   -2.656
##     Viv_HabRC|t2     -3.732    0.212  -17.633    0.000   -3.732   -2.212
##     Viv_HabRC|t3     -2.564    0.127  -20.188    0.000   -2.564   -1.520
##     Viv_HabRC|t4      0.030    0.042    0.720    0.472    0.030    0.018
##     Viv_HabR|t1      -3.597    0.171  -21.086    0.000   -3.597   -2.459
##     Viv_HabR|t2      -2.454    0.091  -26.984    0.000   -2.454   -1.678
##     Viv_HabR|t3      -1.498    0.059  -25.490    0.000   -1.498   -1.024
##     Viv_HabR|t4       0.271    0.037    7.349    0.000    0.271    0.185
##     Viv_PrInf|t1     -4.016    0.193  -20.814    0.000   -4.016   -2.372
##     Viv_PrInf|t2     -2.973    0.122  -24.332    0.000   -2.973   -1.756
##     Viv_PrInf|t3     -2.145    0.087  -24.675    0.000   -2.145   -1.267
##     Viv_PrInf|t4      0.389    0.043    9.051    0.000    0.389    0.230
##     Viv_Aut|t1       -2.261    0.065  -34.714    0.000   -2.261   -1.914
##     Viv_Aut|t2       -0.911    0.035  -26.089    0.000   -0.911   -0.771
##     Viv_Aut|t3       -0.262    0.030   -8.693    0.000   -0.262   -0.222
##     Viv_Aut|t4        1.089    0.035   30.704    0.000    1.089    0.922
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.305
##    .Viv_EvInt         1.000                               1.000    0.351
##    .Viv_DiF           1.000                               1.000    0.290
##    .Viv_Int           1.000                               1.000    0.487
##    .Viv_Pla           1.000                               1.000    0.335
##    .Viv_HabRC         1.000                               1.000    0.351
##    .Viv_HabR          1.000                               1.000    0.467
##    .Viv_PrInf         1.000                               1.000    0.349
##    .Viv_Aut           1.000                               1.000    0.717
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.552                               0.552    1.000
##     Viv_EvInt         0.593                               0.593    1.000
##     Viv_DiF           0.539                               0.539    1.000
##     Viv_Int           0.698                               0.698    1.000
##     Viv_Pla           0.579                               0.579    1.000
##     Viv_HabRC         0.593                               0.593    1.000
##     Viv_HabR          0.684                               0.684    1.000
##     Viv_PrInf         0.591                               0.591    1.000
##     Viv_Aut           0.846                               0.846    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.695
##     Viv_EvInt         0.649
##     Viv_DiF           0.710
##     Viv_Int           0.513
##     Viv_Pla           0.665
##     Viv_HabRC         0.649
##     Viv_HabR          0.533
##     Viv_PrInf         0.651
##     Viv_Aut           0.283
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.510    0.075   20.161    0.000    1.588    0.833
##     Viv_EvInt         1.358    0.057   23.976    0.000    1.428    0.811
##     Viv_DiF           1.563    0.100   15.665    0.000    1.644    0.847
##     Viv_Int           1.027    0.040   25.942    0.000    1.080    0.722
##     Viv_Pla           1.409    0.088   15.964    0.000    1.482    0.845
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.358    0.089   15.283    0.000    0.920    0.798
##     Viv_HabR          1.067    0.053   20.175    0.000    0.723    0.701
##     Viv_PrInf         1.366    0.067   20.304    0.000    0.924    0.811
##     Viv_Aut           0.629    0.027   23.080    0.000    0.426    0.542
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.256    0.100    2.551    0.011    0.256    0.501
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.495    0.107    4.608    0.000    0.495    0.453
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.579    0.122    4.725    0.000    0.813    0.813
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.096    0.220    0.437    0.662    0.092    0.092
##     Viv_Hard         -0.920    0.367   -2.506    0.012   -1.359   -1.359
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.119    0.192  -21.447    0.000   -4.119   -2.160
##     Viv_AdmT|t2      -2.934    0.126  -23.337    0.000   -2.934   -1.539
##     Viv_AdmT|t3      -2.211    0.139  -15.878    0.000   -2.211   -1.159
##     Viv_AdmT|t4       0.215    0.341    0.628    0.530    0.215    0.113
##     Viv_EvInt|t1     -3.788    0.153  -24.808    0.000   -3.788   -2.151
##     Viv_EvInt|t2     -2.302    0.150  -15.331    0.000   -2.302   -1.307
##     Viv_EvInt|t3     -1.521    0.184   -8.284    0.000   -1.521   -0.863
##     Viv_EvInt|t4      0.644    0.340    1.891    0.059    0.644    0.365
##     Viv_DiF|t1       -4.731    0.306  -15.453    0.000   -4.731   -2.439
##     Viv_DiF|t2       -3.604    0.269  -13.372    0.000   -3.604   -1.858
##     Viv_DiF|t3       -2.689    0.245  -10.984    0.000   -2.689   -1.386
##     Viv_DiF|t4       -0.060    0.328   -0.183    0.855   -0.060   -0.031
##     Viv_Int|t1       -3.051    0.103  -29.540    0.000   -3.051   -2.040
##     Viv_Int|t2       -2.007    0.097  -20.750    0.000   -2.007   -1.341
##     Viv_Int|t3       -1.438    0.119  -12.117    0.000   -1.438   -0.962
##     Viv_Int|t4        0.568    0.264    2.153    0.031    0.568    0.380
##     Viv_Pla|t1       -4.670    0.304  -15.384    0.000   -4.670   -2.662
##     Viv_Pla|t2       -3.854    0.270  -14.267    0.000   -3.854   -2.197
##     Viv_Pla|t3       -2.734    0.205  -13.341    0.000   -2.734   -1.559
##     Viv_Pla|t4       -0.016    0.298   -0.054    0.957   -0.016   -0.009
##     Viv_HabRC|t1     -4.480    0.287  -15.599    0.000   -4.480   -3.890
##     Viv_HabRC|t2     -3.732    0.212  -17.633    0.000   -3.732   -3.240
##     Viv_HabRC|t3     -3.039    0.209  -14.509    0.000   -3.039   -2.639
##     Viv_HabRC|t4     -1.342    0.458   -2.932    0.003   -1.342   -1.165
##     Viv_HabR|t1      -3.597    0.171  -21.086    0.000   -3.597   -3.488
##     Viv_HabR|t2      -2.777    0.177  -15.685    0.000   -2.777   -2.692
##     Viv_HabR|t3      -2.134    0.237   -9.003    0.000   -2.134   -2.069
##     Viv_HabR|t4      -0.936    0.408   -2.295    0.022   -0.936   -0.908
##     Viv_PrInf|t1     -4.016    0.193  -20.814    0.000   -4.016   -3.523
##     Viv_PrInf|t2     -3.301    0.204  -16.143    0.000   -3.301   -2.896
##     Viv_PrInf|t3     -2.758    0.257  -10.711    0.000   -2.758   -2.420
##     Viv_PrInf|t4     -1.124    0.517   -2.175    0.030   -1.124   -0.986
##     Viv_Aut|t1       -2.261    0.065  -34.714    0.000   -2.261   -2.880
##     Viv_Aut|t2       -1.336    0.138   -9.665    0.000   -1.336   -1.702
##     Viv_Aut|t3       -0.970    0.187   -5.179    0.000   -0.970   -1.236
##     Viv_Aut|t4       -0.049    0.319   -0.154    0.878   -0.049   -0.062
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.115    0.269    4.139    0.000    1.115    0.307
##    .Viv_EvInt         1.063    0.204    5.208    0.000    1.063    0.343
##    .Viv_DiF           1.061    0.244    4.352    0.000    1.061    0.282
##    .Viv_Int           1.071    0.192    5.573    0.000    1.071    0.479
##    .Viv_Pla           0.882    0.239    3.688    0.000    0.882    0.287
##    .Viv_HabRC         0.481    0.211    2.282    0.022    0.481    0.363
##    .Viv_HabR          0.541    0.186    2.913    0.004    0.541    0.509
##    .Viv_PrInf         0.444    0.174    2.553    0.011    0.444    0.342
##    .Viv_Aut           0.435    0.128    3.386    0.001    0.435    0.706
##     Viv_Soft          1.105    0.199    5.545    0.000    1.000    1.000
##     Viv_Hard          0.458    0.161    2.848    0.004    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.524                               0.524    1.000
##     Viv_EvInt         0.568                               0.568    1.000
##     Viv_DiF           0.516                               0.516    1.000
##     Viv_Int           0.669                               0.669    1.000
##     Viv_Pla           0.570                               0.570    1.000
##     Viv_HabRC         0.868                               0.868    1.000
##     Viv_HabR          0.970                               0.970    1.000
##     Viv_PrInf         0.877                               0.877    1.000
##     Viv_Aut           1.274                               1.274    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.693
##     Viv_EvInt         0.657
##     Viv_DiF           0.718
##     Viv_Int           0.521
##     Viv_Pla           0.713
##     Viv_HabRC         0.637
##     Viv_HabR          0.491
##     Viv_PrInf         0.658
##     Viv_Aut           0.294
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.510    0.075   20.161    0.000    1.544    0.778
##     Viv_EvInt         1.358    0.057   23.976    0.000    1.389    0.938
##     Viv_DiF           1.563    0.100   15.665    0.000    1.598    0.825
##     Viv_Int           1.027    0.040   25.942    0.000    1.050    0.713
##     Viv_Pla           1.409    0.088   15.964    0.000    1.441    0.839
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.358    0.089   15.283    0.000    0.751    0.863
##     Viv_HabR          1.067    0.053   20.175    0.000    0.590    0.665
##     Viv_PrInf         1.366    0.067   20.304    0.000    0.755    0.870
##     Viv_Aut           0.629    0.027   23.080    0.000    0.348    0.537
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.138    0.088    1.572    0.116    0.138    0.473
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.483    0.219    2.208    0.027    0.483    0.375
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.478    0.219    2.185    0.029    0.847    0.847
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.212    0.459    0.462    0.644    0.207    0.207
##     Viv_Hard         -1.479    0.431   -3.432    0.001   -2.677   -2.677
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.119    0.192  -21.447    0.000   -4.119   -2.075
##     Viv_AdmT|t2      -2.934    0.126  -23.337    0.000   -2.934   -1.478
##     Viv_AdmT|t3      -2.000    0.265   -7.533    0.000   -2.000   -1.007
##     Viv_AdmT|t4       0.754    0.776    0.972    0.331    0.754    0.380
##     Viv_EvInt|t1     -3.788    0.153  -24.808    0.000   -3.788   -2.560
##     Viv_EvInt|t2     -1.969    0.282   -6.990    0.000   -1.969   -1.331
##     Viv_EvInt|t3     -1.239    0.347   -3.568    0.000   -1.239   -0.837
##     Viv_EvInt|t4      0.811    0.734    1.106    0.269    0.811    0.548
##     Viv_DiF|t1       -4.731    0.306  -15.453    0.000   -4.731   -2.443
##     Viv_DiF|t2       -3.574    0.331  -10.807    0.000   -3.574   -1.845
##     Viv_DiF|t3       -2.719    0.336   -8.089    0.000   -2.719   -1.404
##     Viv_DiF|t4        0.491    0.745    0.659    0.510    0.491    0.253
##     Viv_Int|t1       -3.051    0.103  -29.540    0.000   -3.051   -2.073
##     Viv_Int|t2       -2.363    0.166  -14.223    0.000   -2.363   -1.606
##     Viv_Int|t3       -1.517    0.215   -7.056    0.000   -1.517   -1.031
##     Viv_Int|t4        0.914    0.593    1.540    0.123    0.914    0.621
##     Viv_Pla|t1       -4.670    0.304  -15.384    0.000   -4.670   -2.721
##     Viv_Pla|t2       -3.579    0.406   -8.816    0.000   -3.579   -2.085
##     Viv_Pla|t3       -2.598    0.326   -7.974    0.000   -2.598   -1.514
##     Viv_Pla|t4        0.561    0.695    0.806    0.420    0.561    0.327
##     Viv_HabRC|t1     -4.480    0.287  -15.599    0.000   -4.480   -5.148
##     Viv_HabRC|t2     -3.732    0.212  -17.633    0.000   -3.732   -4.288
##     Viv_HabRC|t3     -3.247    0.243  -13.387    0.000   -3.247   -3.731
##     Viv_HabRC|t4     -1.864    0.612   -3.045    0.002   -1.864   -2.142
##     Viv_HabR|t1      -3.597    0.171  -21.086    0.000   -3.597   -4.056
##     Viv_HabR|t2      -2.805    0.214  -13.117    0.000   -2.805   -3.163
##     Viv_HabR|t3      -2.227    0.322   -6.924    0.000   -2.227   -2.511
##     Viv_HabR|t4      -1.160    0.582   -1.992    0.046   -1.160   -1.308
##     Viv_PrInf|t1     -4.016    0.193  -20.814    0.000   -4.016   -4.630
##     Viv_PrInf|t2     -3.290    0.259  -12.717    0.000   -3.290   -3.794
##     Viv_PrInf|t3     -2.879    0.347   -8.299    0.000   -2.879   -3.320
##     Viv_PrInf|t4     -1.658    0.688   -2.409    0.016   -1.658   -1.911
##     Viv_Aut|t1       -2.261    0.065  -34.714    0.000   -2.261   -3.493
##     Viv_Aut|t2       -1.292    0.205   -6.304    0.000   -1.292   -1.996
##     Viv_Aut|t3       -0.910    0.290   -3.138    0.002   -0.910   -1.405
##     Viv_Aut|t4       -0.279    0.438   -0.637    0.524   -0.279   -0.431
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.557    0.634    2.458    0.014    1.557    0.395
##    .Viv_EvInt         0.263    0.230    1.142    0.253    0.263    0.120
##    .Viv_DiF           1.198    0.489    2.450    0.014    1.198    0.319
##    .Viv_Int           1.065    0.386    2.756    0.006    1.065    0.491
##    .Viv_Pla           0.870    0.433    2.011    0.044    0.870    0.295
##    .Viv_HabRC         0.194    0.165    1.178    0.239    0.194    0.256
##    .Viv_HabR          0.439    0.227    1.937    0.053    0.439    0.558
##    .Viv_PrInf         0.183    0.131    1.398    0.162    0.183    0.243
##    .Viv_Aut           0.298    0.136    2.199    0.028    0.298    0.712
##     Viv_Soft          1.045    0.427    2.446    0.014    1.000    1.000
##     Viv_Hard          0.305    0.181    1.685    0.092    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.504                               0.504    1.000
##     Viv_EvInt         0.676                               0.676    1.000
##     Viv_DiF           0.516                               0.516    1.000
##     Viv_Int           0.679                               0.679    1.000
##     Viv_Pla           0.583                               0.583    1.000
##     Viv_HabRC         1.149                               1.149    1.000
##     Viv_HabR          1.127                               1.127    1.000
##     Viv_PrInf         1.153                               1.153    1.000
##     Viv_Aut           1.545                               1.545    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.605
##     Viv_EvInt         0.880
##     Viv_DiF           0.681
##     Viv_Int           0.509
##     Viv_Pla           0.705
##     Viv_HabRC         0.744
##     Viv_HabR          0.442
##     Viv_PrInf         0.757
##     Viv_Aut           0.288
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.510    0.075   20.161    0.000    1.332    0.850
##     Viv_EvInt         1.358    0.057   23.976    0.000    1.198    0.789
##     Viv_DiF           1.563    0.100   15.665    0.000    1.379    0.784
##     Viv_Int           1.027    0.040   25.942    0.000    0.906    0.688
##     Viv_Pla           1.409    0.088   15.964    0.000    1.243    0.786
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.358    0.089   15.283    0.000    0.667    0.729
##     Viv_HabR          1.067    0.053   20.175    0.000    0.524    0.592
##     Viv_PrInf         1.366    0.067   20.304    0.000    0.671    0.787
##     Viv_Aut           0.629    0.027   23.080    0.000    0.309    0.534
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.279    0.185    1.511    0.131    0.279    0.623
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.368    0.164    2.250    0.024    0.368    0.467
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.357    0.122    2.923    0.003    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft         -0.287    0.309   -0.927    0.354   -0.325   -0.325
##     Viv_Hard         -1.340    0.502   -2.672    0.008   -2.729   -2.729
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.119    0.192  -21.447    0.000   -4.119   -2.628
##     Viv_AdmT|t2      -2.934    0.126  -23.337    0.000   -2.934   -1.872
##     Viv_AdmT|t3      -2.213    0.195  -11.329    0.000   -2.213   -1.412
##     Viv_AdmT|t4      -0.297    0.484   -0.614    0.539   -0.297   -0.190
##     Viv_EvInt|t1     -3.788    0.153  -24.808    0.000   -3.788   -2.496
##     Viv_EvInt|t2     -2.296    0.217  -10.601    0.000   -2.296   -1.513
##     Viv_EvInt|t3     -1.574    0.278   -5.660    0.000   -1.574   -1.037
##     Viv_EvInt|t4      0.090    0.483    0.186    0.853    0.090    0.059
##     Viv_DiF|t1       -4.731    0.306  -15.453    0.000   -4.731   -2.691
##     Viv_DiF|t2       -3.359    0.311  -10.786    0.000   -3.359   -1.911
##     Viv_DiF|t3       -2.624    0.319   -8.231    0.000   -2.624   -1.493
##     Viv_DiF|t4       -0.460    0.483   -0.952    0.341   -0.460   -0.261
##     Viv_Int|t1       -3.051    0.103  -29.540    0.000   -3.051   -2.319
##     Viv_Int|t2       -2.037    0.146  -13.945    0.000   -2.037   -1.548
##     Viv_Int|t3       -1.497    0.186   -8.050    0.000   -1.497   -1.138
##     Viv_Int|t4        0.150    0.376    0.400    0.689    0.150    0.114
##     Viv_Pla|t1       -4.670    0.304  -15.384    0.000   -4.670   -2.953
##     Viv_Pla|t2       -3.644    0.332  -10.988    0.000   -3.644   -2.305
##     Viv_Pla|t3       -2.634    0.270   -9.763    0.000   -2.634   -1.666
##     Viv_Pla|t4       -0.488    0.425   -1.147    0.251   -0.488   -0.309
##     Viv_HabRC|t1     -4.480    0.287  -15.599    0.000   -4.480   -4.894
##     Viv_HabRC|t2     -3.732    0.212  -17.633    0.000   -3.732   -4.076
##     Viv_HabRC|t3     -3.239    0.254  -12.765    0.000   -3.239   -3.538
##     Viv_HabRC|t4     -1.982    0.607   -3.267    0.001   -1.982   -2.165
##     Viv_HabR|t1      -3.597    0.171  -21.086    0.000   -3.597   -4.059
##     Viv_HabR|t2      -3.139    0.195  -16.096    0.000   -3.139   -3.542
##     Viv_HabR|t3      -2.722    0.254  -10.713    0.000   -2.722   -3.072
##     Viv_HabR|t4      -1.587    0.505   -3.145    0.002   -1.587   -1.791
##     Viv_PrInf|t1     -4.016    0.193  -20.814    0.000   -4.016   -4.715
##     Viv_PrInf|t2     -3.495    0.263  -13.277    0.000   -3.495   -4.104
##     Viv_PrInf|t3     -2.984    0.365   -8.184    0.000   -2.984   -3.504
##     Viv_PrInf|t4     -1.709    0.714   -2.393    0.017   -1.709   -2.007
##     Viv_Aut|t1       -2.261    0.065  -34.714    0.000   -2.261   -3.909
##     Viv_Aut|t2       -1.451    0.188   -7.697    0.000   -1.451   -2.508
##     Viv_Aut|t3       -1.213    0.240   -5.057    0.000   -1.213   -2.097
##     Viv_Aut|t4       -0.546    0.396   -1.377    0.168   -0.546   -0.943
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.683    0.341    2.000    0.046    0.683    0.278
##    .Viv_EvInt         0.868    0.278    3.117    0.002    0.868    0.377
##    .Viv_DiF           1.190    0.385    3.089    0.002    1.190    0.385
##    .Viv_Int           0.911    0.267    3.408    0.001    0.911    0.526
##    .Viv_Pla           0.956    0.412    2.321    0.020    0.956    0.382
##    .Viv_HabRC         0.393    0.314    1.250    0.211    0.393    0.469
##    .Viv_HabR          0.510    0.267    1.912    0.056    0.510    0.650
##    .Viv_PrInf         0.276    0.187    1.470    0.142    0.276    0.380
##    .Viv_Aut           0.239    0.116    2.066    0.039    0.239    0.715
##     Viv_Soft          0.778    0.226    3.445    0.001    1.000    1.000
##     Viv_Hard          0.241    0.143    1.685    0.092    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.638                               0.638    1.000
##     Viv_EvInt         0.659                               0.659    1.000
##     Viv_DiF           0.569                               0.569    1.000
##     Viv_Int           0.760                               0.760    1.000
##     Viv_Pla           0.632                               0.632    1.000
##     Viv_HabRC         1.092                               1.092    1.000
##     Viv_HabR          1.128                               1.128    1.000
##     Viv_PrInf         1.174                               1.174    1.000
##     Viv_Aut           1.729                               1.729    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.722
##     Viv_EvInt         0.623
##     Viv_DiF           0.615
##     Viv_Int           0.474
##     Viv_Pla           0.618
##     Viv_HabRC         0.531
##     Viv_HabR          0.350
##     Viv_PrInf         0.620
##     Viv_Aut           0.285
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               215.078               117.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.029                 0.998                 0.998 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.021                 0.017                 0.025
modificationindices(invariance$fit.loadings, sort.=T,maximum.number = 10)
##           lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 468  Viv_Hard  =~ Viv_EvInt     3     3     1 43.26 -0.319  -0.176   -0.119
## 228 Viv_EvInt  ~1               3     3     1 42.47  0.994   0.994    0.672
## 219 Viv_EvInt ~*~ Viv_EvInt     3     3     1 42.47  0.165   0.165    1.000
## 435  Viv_AdmT  ~~   Viv_Aut     2     2     1 28.89  0.137   0.137    0.197
## 469  Viv_Hard  =~   Viv_DiF     3     3     1 27.13  0.317   0.175    0.090
## 220   Viv_DiF ~*~   Viv_DiF     3     3     1 25.84 -0.102  -0.102   -1.000
## 229   Viv_DiF  ~1               3     3     1 25.84 -1.003  -1.003   -0.518
## 411   Viv_Pla  ~~ Viv_HabRC     1     1     1 24.22  0.313   0.313    0.313
## 454   Viv_Pla  ~~ Viv_HabRC     2     2     1 18.92  0.156   0.156    0.240
## 436 Viv_EvInt  ~~   Viv_DiF     2     2     1 18.09  0.269   0.269    0.253
##     sepc.nox
## 468   -0.119
## 228    0.672
## 219    1.000
## 435    0.197
## 469    0.090
## 220   -1.000
## 229   -0.518
## 411    0.313
## 454    0.240
## 436    0.253
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8484   0.7256
## alpha.ord   0.9065   0.8243
## omega       0.8298   0.7020
## omega2      0.8298   0.7020
## omega3      0.8292   0.7068
## avevar      0.6578   0.5674
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8543   0.7213
## alpha.ord   0.9124   0.8254
## omega       0.8339   0.5852
## omega2      0.8339   0.5852
## omega3      0.8300   0.5831
## avevar      0.6717   0.5583
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8575   0.7587
## alpha.ord   0.9168   0.8391
## omega       0.8442   0.4222
## omega2      0.8442   0.4222
## omega3      0.8447   0.4139
## avevar      0.6697   0.5899
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8357   0.6651
## alpha.ord   0.8926   0.7947
## omega       0.8064   0.3342
## omega2      0.8064   0.3342
## omega3      0.8043   0.3321
## avevar      0.6187   0.4716
4.1.1.8.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 165 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       231
##   Number of equality constraints                   135
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               911.178     292.970
##   Degrees of freedom                               192         192
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  5.222
##   Shift parameter for each group:                                 
##       2                                                     39.027
##       3                                                     62.388
##       1                                                      7.834
##       4                                                      9.235
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          230.747      83.214
##     3                                          206.734     101.976
##     1                                          232.042      52.269
##     4                                          241.655      55.511
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83696.523   64274.637
##   Degrees of freedom                               144         144
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.304
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991       0.998
##   Tucker-Lewis Index (TLI)                       0.994       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044       0.017
##   90 Percent confidence interval - lower         0.042       0.013
##   90 Percent confidence interval - upper         0.047       0.020
##   P-value RMSEA <= 0.05                          0.999       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.028       0.028
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.516    0.065   23.157    0.000    1.516    0.835
##     Viv_EvInt         1.405    0.054   26.025    0.000    1.405    0.815
##     Viv_DiF           1.512    0.075   20.194    0.000    1.512    0.834
##     Viv_Int           1.035    0.036   28.547    0.000    1.035    0.719
##     Viv_Pla           1.392    0.073   19.004    0.000    1.392    0.812
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.374    0.077   17.948    0.000    1.374    0.808
##     Viv_HabR          1.015    0.043   23.747    0.000    1.015    0.712
##     Viv_PrInf         1.465    0.070   20.963    0.000    1.465    0.826
##     Viv_Aut           0.608    0.023   26.369    0.000    0.608    0.520
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.483    0.029   16.645    0.000    0.483    0.483
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.417    0.028   14.662    0.000    0.417    0.417
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.838    0.011   75.412    0.000    0.838    0.838
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.128    0.166  -24.881    0.000   -4.128   -2.273
##     Viv_AdmT|t2      -2.931    0.117  -25.141    0.000   -2.931   -1.614
##     Viv_AdmT|t3      -2.157    0.089  -24.165    0.000   -2.157   -1.188
##     Viv_AdmT|t4       0.280    0.042    6.621    0.000    0.280    0.154
##     Viv_EvInt|t1     -3.929    0.139  -28.264    0.000   -3.929   -2.278
##     Viv_EvInt|t2     -2.386    0.088  -27.225    0.000   -2.386   -1.384
##     Viv_EvInt|t3     -1.579    0.064  -24.712    0.000   -1.579   -0.916
##     Viv_EvInt|t4      0.640    0.045   14.150    0.000    0.640    0.371
##     Viv_DiF|t1       -4.574    0.223  -20.514    0.000   -4.574   -2.523
##     Viv_DiF|t2       -3.379    0.155  -21.819    0.000   -3.379   -1.864
##     Viv_DiF|t3       -2.563    0.121  -21.175    0.000   -2.563   -1.414
##     Viv_DiF|t4       -0.006    0.041   -0.146    0.884   -0.006   -0.003
##     Viv_Int|t1       -3.079    0.092  -33.542    0.000   -3.079   -2.139
##     Viv_Int|t2       -2.076    0.062  -33.280    0.000   -2.076   -1.442
##     Viv_Int|t3       -1.456    0.048  -30.403    0.000   -1.456   -1.012
##     Viv_Int|t4        0.606    0.035   17.347    0.000    0.606    0.421
##     Viv_Pla|t1       -4.612    0.243  -18.990    0.000   -4.612   -2.691
##     Viv_Pla|t2       -3.717    0.187  -19.842    0.000   -3.717   -2.169
##     Viv_Pla|t3       -2.659    0.136  -19.568    0.000   -2.659   -1.552
##     Viv_Pla|t4        0.028    0.038    0.745    0.456    0.028    0.017
##     Viv_HabRC|t1     -4.652    0.240  -19.391    0.000   -4.652   -2.738
##     Viv_HabRC|t2     -3.608    0.191  -18.889    0.000   -3.608   -2.123
##     Viv_HabRC|t3     -2.517    0.131  -19.255    0.000   -2.517   -1.482
##     Viv_HabRC|t4      0.087    0.039    2.245    0.025    0.087    0.051
##     Viv_HabR|t1      -3.525    0.131  -26.894    0.000   -3.525   -2.473
##     Viv_HabR|t2      -2.384    0.084  -28.433    0.000   -2.384   -1.673
##     Viv_HabR|t3      -1.471    0.055  -26.568    0.000   -1.471   -1.032
##     Viv_HabR|t4       0.272    0.032    8.480    0.000    0.272    0.191
##     Viv_PrInf|t1     -4.232    0.177  -23.887    0.000   -4.232   -2.386
##     Viv_PrInf|t2     -3.071    0.128  -24.000    0.000   -3.071   -1.731
##     Viv_PrInf|t3     -2.176    0.095  -23.019    0.000   -2.176   -1.227
##     Viv_PrInf|t4      0.491    0.046   10.773    0.000    0.491    0.277
##     Viv_Aut|t1       -2.291    0.057  -40.065    0.000   -2.291   -1.957
##     Viv_Aut|t2       -0.921    0.029  -31.618    0.000   -0.921   -0.787
##     Viv_Aut|t3       -0.359    0.022  -16.035    0.000   -0.359   -0.307
##     Viv_Aut|t4        0.940    0.031   30.359    0.000    0.940    0.803
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.303
##    .Viv_EvInt         1.000                               1.000    0.336
##    .Viv_DiF           1.000                               1.000    0.304
##    .Viv_Int           1.000                               1.000    0.483
##    .Viv_Pla           1.000                               1.000    0.341
##    .Viv_HabRC         1.000                               1.000    0.346
##    .Viv_HabR          1.000                               1.000    0.492
##    .Viv_PrInf         1.000                               1.000    0.318
##    .Viv_Aut           1.000                               1.000    0.730
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.551                               0.551    1.000
##     Viv_EvInt         0.580                               0.580    1.000
##     Viv_DiF           0.552                               0.552    1.000
##     Viv_Int           0.695                               0.695    1.000
##     Viv_Pla           0.584                               0.584    1.000
##     Viv_HabRC         0.589                               0.589    1.000
##     Viv_HabR          0.702                               0.702    1.000
##     Viv_PrInf         0.564                               0.564    1.000
##     Viv_Aut           0.854                               0.854    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.697
##     Viv_EvInt         0.664
##     Viv_DiF           0.696
##     Viv_Int           0.517
##     Viv_Pla           0.659
##     Viv_HabRC         0.654
##     Viv_HabR          0.508
##     Viv_PrInf         0.682
##     Viv_Aut           0.270
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.516    0.065   23.157    0.000    1.601    0.833
##     Viv_EvInt         1.405    0.054   26.025    0.000    1.483    0.806
##     Viv_DiF           1.512    0.075   20.194    0.000    1.597    0.852
##     Viv_Int           1.035    0.036   28.547    0.000    1.093    0.714
##     Viv_Pla           1.392    0.073   19.004    0.000    1.469    0.849
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.374    0.077   17.948    0.000    1.413    0.792
##     Viv_HabR          1.015    0.043   23.747    0.000    1.045    0.703
##     Viv_PrInf         1.465    0.070   20.963    0.000    1.507    0.803
##     Viv_Aut           0.608    0.023   26.369    0.000    0.626    0.555
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.575    0.072    7.958    0.000    0.575    0.501
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.530    0.056    9.508    0.000    0.530    0.465
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.885    0.050   17.831    0.000    0.815    0.815
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.119    0.034    3.485    0.000    0.113    0.113
##     Viv_Hard          0.211    0.037    5.738    0.000    0.205    0.205
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.128    0.166  -24.881    0.000   -4.128   -2.148
##     Viv_AdmT|t2      -2.931    0.117  -25.141    0.000   -2.931   -1.525
##     Viv_AdmT|t3      -2.157    0.089  -24.165    0.000   -2.157   -1.122
##     Viv_AdmT|t4       0.280    0.042    6.621    0.000    0.280    0.146
##     Viv_EvInt|t1     -3.929    0.139  -28.264    0.000   -3.929   -2.135
##     Viv_EvInt|t2     -2.386    0.088  -27.225    0.000   -2.386   -1.297
##     Viv_EvInt|t3     -1.579    0.064  -24.712    0.000   -1.579   -0.858
##     Viv_EvInt|t4      0.640    0.045   14.150    0.000    0.640    0.348
##     Viv_DiF|t1       -4.574    0.223  -20.514    0.000   -4.574   -2.442
##     Viv_DiF|t2       -3.379    0.155  -21.819    0.000   -3.379   -1.804
##     Viv_DiF|t3       -2.563    0.121  -21.175    0.000   -2.563   -1.368
##     Viv_DiF|t4       -0.006    0.041   -0.146    0.884   -0.006   -0.003
##     Viv_Int|t1       -3.079    0.092  -33.542    0.000   -3.079   -2.011
##     Viv_Int|t2       -2.076    0.062  -33.280    0.000   -2.076   -1.356
##     Viv_Int|t3       -1.456    0.048  -30.403    0.000   -1.456   -0.951
##     Viv_Int|t4        0.606    0.035   17.347    0.000    0.606    0.396
##     Viv_Pla|t1       -4.612    0.243  -18.990    0.000   -4.612   -2.666
##     Viv_Pla|t2       -3.717    0.187  -19.842    0.000   -3.717   -2.148
##     Viv_Pla|t3       -2.659    0.136  -19.568    0.000   -2.659   -1.537
##     Viv_Pla|t4        0.028    0.038    0.745    0.456    0.028    0.016
##     Viv_HabRC|t1     -4.652    0.240  -19.391    0.000   -4.652   -2.609
##     Viv_HabRC|t2     -3.608    0.191  -18.889    0.000   -3.608   -2.023
##     Viv_HabRC|t3     -2.517    0.131  -19.255    0.000   -2.517   -1.412
##     Viv_HabRC|t4      0.087    0.039    2.245    0.025    0.087    0.049
##     Viv_HabR|t1      -3.525    0.131  -26.894    0.000   -3.525   -2.373
##     Viv_HabR|t2      -2.384    0.084  -28.433    0.000   -2.384   -1.606
##     Viv_HabR|t3      -1.471    0.055  -26.568    0.000   -1.471   -0.990
##     Viv_HabR|t4       0.272    0.032    8.480    0.000    0.272    0.183
##     Viv_PrInf|t1     -4.232    0.177  -23.887    0.000   -4.232   -2.255
##     Viv_PrInf|t2     -3.071    0.128  -24.000    0.000   -3.071   -1.637
##     Viv_PrInf|t3     -2.176    0.095  -23.019    0.000   -2.176   -1.159
##     Viv_PrInf|t4      0.491    0.046   10.773    0.000    0.491    0.262
##     Viv_Aut|t1       -2.291    0.057  -40.065    0.000   -2.291   -2.031
##     Viv_Aut|t2       -0.921    0.029  -31.618    0.000   -0.921   -0.817
##     Viv_Aut|t3       -0.359    0.022  -16.035    0.000   -0.359   -0.318
##     Viv_Aut|t4        0.940    0.031   30.359    0.000    0.940    0.833
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.132    0.124    9.126    0.000    1.132    0.306
##    .Viv_EvInt         1.186    0.116   10.267    0.000    1.186    0.350
##    .Viv_DiF           0.960    0.137    6.993    0.000    0.960    0.274
##    .Viv_Int           1.148    0.090   12.762    0.000    1.148    0.490
##    .Viv_Pla           0.835    0.138    6.064    0.000    0.835    0.279
##    .Viv_HabRC         1.183    0.177    6.687    0.000    1.183    0.372
##    .Viv_HabR          1.114    0.111   10.004    0.000    1.114    0.505
##    .Viv_PrInf         1.250    0.142    8.812    0.000    1.250    0.355
##    .Viv_Aut           0.881    0.056   15.835    0.000    0.881    0.692
##     Viv_Soft          1.115    0.069   16.124    0.000    1.000    1.000
##     Viv_Hard          1.058    0.072   14.704    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.520                               0.520    1.000
##     Viv_EvInt         0.543                               0.543    1.000
##     Viv_DiF           0.534                               0.534    1.000
##     Viv_Int           0.653                               0.653    1.000
##     Viv_Pla           0.578                               0.578    1.000
##     Viv_HabRC         0.561                               0.561    1.000
##     Viv_HabR          0.673                               0.673    1.000
##     Viv_PrInf         0.533                               0.533    1.000
##     Viv_Aut           0.887                               0.887    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.694
##     Viv_EvInt         0.650
##     Viv_DiF           0.726
##     Viv_Int           0.510
##     Viv_Pla           0.721
##     Viv_HabRC         0.628
##     Viv_HabR          0.495
##     Viv_PrInf         0.645
##     Viv_Aut           0.308
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.516    0.065   23.157    0.000    1.426    0.787
##     Viv_EvInt         1.405    0.054   26.025    0.000    1.321    0.911
##     Viv_DiF           1.512    0.075   20.194    0.000    1.422    0.838
##     Viv_Int           1.035    0.036   28.547    0.000    0.974    0.747
##     Viv_Pla           1.392    0.073   19.004    0.000    1.309    0.823
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.374    0.077   17.948    0.000    1.344    0.873
##     Viv_HabR          1.015    0.043   23.747    0.000    0.993    0.682
##     Viv_PrInf         1.465    0.070   20.963    0.000    1.433    0.841
##     Viv_Aut           0.608    0.023   26.369    0.000    0.595    0.553
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.352    0.101    3.484    0.000    0.352    0.440
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.313    0.115    2.728    0.006    0.313    0.322
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.778    0.105    7.424    0.000    0.845    0.845
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft         -0.021    0.060   -0.355    0.723   -0.023   -0.023
##     Viv_Hard         -0.294    0.059   -5.011    0.000   -0.300   -0.300
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.128    0.166  -24.881    0.000   -4.128   -2.279
##     Viv_AdmT|t2      -2.931    0.117  -25.141    0.000   -2.931   -1.618
##     Viv_AdmT|t3      -2.157    0.089  -24.165    0.000   -2.157   -1.191
##     Viv_AdmT|t4       0.280    0.042    6.621    0.000    0.280    0.155
##     Viv_EvInt|t1     -3.929    0.139  -28.264    0.000   -3.929   -2.710
##     Viv_EvInt|t2     -2.386    0.088  -27.225    0.000   -2.386   -1.646
##     Viv_EvInt|t3     -1.579    0.064  -24.712    0.000   -1.579   -1.089
##     Viv_EvInt|t4      0.640    0.045   14.150    0.000    0.640    0.441
##     Viv_DiF|t1       -4.574    0.223  -20.514    0.000   -4.574   -2.696
##     Viv_DiF|t2       -3.379    0.155  -21.819    0.000   -3.379   -1.992
##     Viv_DiF|t3       -2.563    0.121  -21.175    0.000   -2.563   -1.511
##     Viv_DiF|t4       -0.006    0.041   -0.146    0.884   -0.006   -0.003
##     Viv_Int|t1       -3.079    0.092  -33.542    0.000   -3.079   -2.360
##     Viv_Int|t2       -2.076    0.062  -33.280    0.000   -2.076   -1.591
##     Viv_Int|t3       -1.456    0.048  -30.403    0.000   -1.456   -1.116
##     Viv_Int|t4        0.606    0.035   17.347    0.000    0.606    0.464
##     Viv_Pla|t1       -4.612    0.243  -18.990    0.000   -4.612   -2.902
##     Viv_Pla|t2       -3.717    0.187  -19.842    0.000   -3.717   -2.338
##     Viv_Pla|t3       -2.659    0.136  -19.568    0.000   -2.659   -1.673
##     Viv_Pla|t4        0.028    0.038    0.745    0.456    0.028    0.018
##     Viv_HabRC|t1     -4.652    0.240  -19.391    0.000   -4.652   -3.021
##     Viv_HabRC|t2     -3.608    0.191  -18.889    0.000   -3.608   -2.343
##     Viv_HabRC|t3     -2.517    0.131  -19.255    0.000   -2.517   -1.635
##     Viv_HabRC|t4      0.087    0.039    2.245    0.025    0.087    0.057
##     Viv_HabR|t1      -3.525    0.131  -26.894    0.000   -3.525   -2.421
##     Viv_HabR|t2      -2.384    0.084  -28.433    0.000   -2.384   -1.637
##     Viv_HabR|t3      -1.471    0.055  -26.568    0.000   -1.471   -1.010
##     Viv_HabR|t4       0.272    0.032    8.480    0.000    0.272    0.187
##     Viv_PrInf|t1     -4.232    0.177  -23.887    0.000   -4.232   -2.484
##     Viv_PrInf|t2     -3.071    0.128  -24.000    0.000   -3.071   -1.803
##     Viv_PrInf|t3     -2.176    0.095  -23.019    0.000   -2.176   -1.277
##     Viv_PrInf|t4      0.491    0.046   10.773    0.000    0.491    0.288
##     Viv_Aut|t1       -2.291    0.057  -40.065    0.000   -2.291   -2.127
##     Viv_Aut|t2       -0.921    0.029  -31.618    0.000   -0.921   -0.856
##     Viv_Aut|t3       -0.359    0.022  -16.035    0.000   -0.359   -0.333
##     Viv_Aut|t4        0.940    0.031   30.359    0.000    0.940    0.873
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.247    0.236    5.282    0.000    1.247    0.380
##    .Viv_EvInt         0.356    0.148    2.410    0.016    0.356    0.169
##    .Viv_DiF           0.856    0.215    3.988    0.000    0.856    0.297
##    .Viv_Int           0.754    0.130    5.803    0.000    0.754    0.443
##    .Viv_Pla           0.813    0.206    3.954    0.000    0.813    0.322
##    .Viv_HabRC         0.565    0.217    2.608    0.009    0.565    0.238
##    .Viv_HabR          1.134    0.167    6.783    0.000    1.134    0.535
##    .Viv_PrInf         0.849    0.163    5.199    0.000    0.849    0.292
##    .Viv_Aut           0.806    0.090    8.906    0.000    0.806    0.695
##     Viv_Soft          0.885    0.130    6.804    0.000    1.000    1.000
##     Viv_Hard          0.957    0.125    7.648    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.552                               0.552    1.000
##     Viv_EvInt         0.690                               0.690    1.000
##     Viv_DiF           0.589                               0.589    1.000
##     Viv_Int           0.766                               0.766    1.000
##     Viv_Pla           0.629                               0.629    1.000
##     Viv_HabRC         0.649                               0.649    1.000
##     Viv_HabR          0.687                               0.687    1.000
##     Viv_PrInf         0.587                               0.587    1.000
##     Viv_Aut           0.928                               0.928    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.620
##     Viv_EvInt         0.831
##     Viv_DiF           0.703
##     Viv_Int           0.557
##     Viv_Pla           0.678
##     Viv_HabRC         0.762
##     Viv_HabR          0.465
##     Viv_PrInf         0.708
##     Viv_Aut           0.305
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.516    0.065   23.157    0.000    1.532    0.850
##     Viv_EvInt         1.405    0.054   26.025    0.000    1.420    0.783
##     Viv_DiF           1.512    0.075   20.194    0.000    1.528    0.782
##     Viv_Int           1.035    0.036   28.547    0.000    1.046    0.689
##     Viv_Pla           1.392    0.073   19.004    0.000    1.406    0.793
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.374    0.077   17.948    0.000    1.332    0.708
##     Viv_HabR          1.015    0.043   23.747    0.000    0.984    0.647
##     Viv_PrInf         1.465    0.070   20.963    0.000    1.420    0.750
##     Viv_Aut           0.608    0.023   26.369    0.000    0.590    0.556
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.906    0.209    4.338    0.000    0.906    0.588
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.486    0.135    3.595    0.000    0.486    0.465
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.808    0.075   10.799    0.000    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.001    0.059    0.017    0.986    0.001    0.001
##     Viv_Hard          0.401    0.071    5.621    0.000    0.414    0.414
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.128    0.166  -24.881    0.000   -4.128   -2.290
##     Viv_AdmT|t2      -2.931    0.117  -25.141    0.000   -2.931   -1.626
##     Viv_AdmT|t3      -2.157    0.089  -24.165    0.000   -2.157   -1.197
##     Viv_AdmT|t4       0.280    0.042    6.621    0.000    0.280    0.155
##     Viv_EvInt|t1     -3.929    0.139  -28.264    0.000   -3.929   -2.167
##     Viv_EvInt|t2     -2.386    0.088  -27.225    0.000   -2.386   -1.316
##     Viv_EvInt|t3     -1.579    0.064  -24.712    0.000   -1.579   -0.871
##     Viv_EvInt|t4      0.640    0.045   14.150    0.000    0.640    0.353
##     Viv_DiF|t1       -4.574    0.223  -20.514    0.000   -4.574   -2.341
##     Viv_DiF|t2       -3.379    0.155  -21.819    0.000   -3.379   -1.730
##     Viv_DiF|t3       -2.563    0.121  -21.175    0.000   -2.563   -1.312
##     Viv_DiF|t4       -0.006    0.041   -0.146    0.884   -0.006   -0.003
##     Viv_Int|t1       -3.079    0.092  -33.542    0.000   -3.079   -2.028
##     Viv_Int|t2       -2.076    0.062  -33.280    0.000   -2.076   -1.368
##     Viv_Int|t3       -1.456    0.048  -30.403    0.000   -1.456   -0.959
##     Viv_Int|t4        0.606    0.035   17.347    0.000    0.606    0.399
##     Viv_Pla|t1       -4.612    0.243  -18.990    0.000   -4.612   -2.600
##     Viv_Pla|t2       -3.717    0.187  -19.842    0.000   -3.717   -2.096
##     Viv_Pla|t3       -2.659    0.136  -19.568    0.000   -2.659   -1.499
##     Viv_Pla|t4        0.028    0.038    0.745    0.456    0.028    0.016
##     Viv_HabRC|t1     -4.652    0.240  -19.391    0.000   -4.652   -2.474
##     Viv_HabRC|t2     -3.608    0.191  -18.889    0.000   -3.608   -1.919
##     Viv_HabRC|t3     -2.517    0.131  -19.255    0.000   -2.517   -1.339
##     Viv_HabRC|t4      0.087    0.039    2.245    0.025    0.087    0.046
##     Viv_HabR|t1      -3.525    0.131  -26.894    0.000   -3.525   -2.316
##     Viv_HabR|t2      -2.384    0.084  -28.433    0.000   -2.384   -1.567
##     Viv_HabR|t3      -1.471    0.055  -26.568    0.000   -1.471   -0.966
##     Viv_HabR|t4       0.272    0.032    8.480    0.000    0.272    0.179
##     Viv_PrInf|t1     -4.232    0.177  -23.887    0.000   -4.232   -2.236
##     Viv_PrInf|t2     -3.071    0.128  -24.000    0.000   -3.071   -1.623
##     Viv_PrInf|t3     -2.176    0.095  -23.019    0.000   -2.176   -1.150
##     Viv_PrInf|t4      0.491    0.046   10.773    0.000    0.491    0.260
##     Viv_Aut|t1       -2.291    0.057  -40.065    0.000   -2.291   -2.160
##     Viv_Aut|t2       -0.921    0.029  -31.618    0.000   -0.921   -0.869
##     Viv_Aut|t3       -0.359    0.022  -16.035    0.000   -0.359   -0.339
##     Viv_Aut|t4        0.940    0.031   30.359    0.000    0.940    0.886
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.902    0.222    4.058    0.000    0.902    0.277
##    .Viv_EvInt         1.271    0.211    6.030    0.000    1.271    0.387
##    .Viv_DiF           1.482    0.284    5.225    0.000    1.482    0.388
##    .Viv_Int           1.210    0.174    6.973    0.000    1.210    0.525
##    .Viv_Pla           1.168    0.304    3.840    0.000    1.168    0.371
##    .Viv_HabRC         1.761    0.457    3.855    0.000    1.761    0.498
##    .Viv_HabR          1.347    0.235    5.737    0.000    1.347    0.582
##    .Viv_PrInf         1.564    0.333    4.700    0.000    1.564    0.437
##    .Viv_Aut           0.777    0.117    6.644    0.000    0.777    0.691
##     Viv_Soft          1.021    0.109    9.338    0.000    1.000    1.000
##     Viv_Hard          0.940    0.109    8.645    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.555                               0.555    1.000
##     Viv_EvInt         0.552                               0.552    1.000
##     Viv_DiF           0.512                               0.512    1.000
##     Viv_Int           0.659                               0.659    1.000
##     Viv_Pla           0.564                               0.564    1.000
##     Viv_HabRC         0.532                               0.532    1.000
##     Viv_HabR          0.657                               0.657    1.000
##     Viv_PrInf         0.528                               0.528    1.000
##     Viv_Aut           0.943                               0.943    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.723
##     Viv_EvInt         0.613
##     Viv_DiF           0.612
##     Viv_Int           0.475
##     Viv_Pla           0.629
##     Viv_HabRC         0.502
##     Viv_HabR          0.418
##     Viv_PrInf         0.563
##     Viv_Aut           0.309
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               292.970               192.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.028                 0.998                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.017                 0.013                 0.020
modificationindices(invariance$fit.thresholds, sort.=T,maximum.number = 10)
##           lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 77    Viv_Aut  ~1               1     1     1 82.36 -0.166  -0.166   -0.142
## 156   Viv_Aut  ~1               2     2     1 66.89  0.141   0.141    0.125
## 313 Viv_PrInf  ~1               4     4     1 40.12 -0.510  -0.510   -0.269
## 312  Viv_HabR  ~1               4     4     1 24.84  0.305   0.305    0.200
## 543  Viv_Hard  =~ Viv_EvInt     3     3     1 24.26 -0.205  -0.201   -0.138
## 486   Viv_Pla  ~~ Viv_HabRC     1     1     1 24.23  0.312   0.312    0.312
## 219 Viv_EvInt ~*~ Viv_EvInt     3     3     1 22.32  0.117   0.117    1.000
## 76  Viv_PrInf  ~1               1     1     1 22.31  0.186   0.186    0.105
## 510  Viv_AdmT  ~~   Viv_Aut     2     2     1 22.24  0.173   0.173    0.173
## 314   Viv_Aut  ~1               4     4     1 20.88  0.153   0.153    0.144
##     sepc.nox
## 77    -0.142
## 156    0.125
## 313   -0.269
## 312    0.200
## 543   -0.138
## 486    0.312
## 219    1.000
## 76     0.105
## 510    0.173
## 314    0.144
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8484   0.7256
## alpha.ord   0.9065   0.8243
## omega       0.8310   0.6973
## omega2      0.8310   0.6973
## omega3      0.8311   0.6996
## avevar      0.6568   0.5760
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8543   0.7213
## alpha.ord   0.9124   0.8254
## omega       0.8334   0.7027
## omega2      0.8334   0.7027
## omega3      0.8286   0.7026
## avevar      0.6697   0.5650
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8575   0.7587
## alpha.ord   0.9168   0.8391
## omega       0.8431   0.7167
## omega2      0.8431   0.7167
## omega3      0.8443   0.7121
## avevar      0.6777   0.6080
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8357   0.6651
## alpha.ord   0.8926   0.7947
## omega       0.8129   0.6489
## omega2      0.8129   0.6489
## omega3      0.8106   0.6510
## avevar      0.6183   0.4838
4.1.1.8.4 Partial Invariance - Means
summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 186 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       225
##   Number of equality constraints                   135
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                              1682.934     426.271
##   Degrees of freedom                               198         198
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  5.511
##   Shift parameter for each group:                                 
##       2                                                     39.829
##       3                                                     63.670
##       1                                                      7.994
##       4                                                      9.425
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          407.101     113.694
##     3                                          337.886     124.976
##     1                                          564.474     110.413
##     4                                          373.473      77.188
## 
## Model Test Baseline Model:
## 
##   Test statistic                             83696.523   64274.637
##   Degrees of freedom                               144         144
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.304
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.982       0.996
##   Tucker-Lewis Index (TLI)                       0.987       0.997
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.063       0.025
##   90 Percent confidence interval - lower         0.060       0.021
##   90 Percent confidence interval - upper         0.066       0.028
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.028       0.028
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.503    0.065   23.209    0.000    1.503    0.832
##     Viv_EvInt         1.407    0.054   25.821    0.000    1.407    0.815
##     Viv_DiF           1.508    0.074   20.263    0.000    1.508    0.833
##     Viv_Int           1.039    0.036   28.550    0.000    1.039    0.720
##     Viv_Pla           1.399    0.074   18.833    0.000    1.399    0.813
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.395    0.079   17.699    0.000    1.395    0.813
##     Viv_HabR          1.009    0.042   23.884    0.000    1.009    0.710
##     Viv_PrInf         1.466    0.071   20.694    0.000    1.466    0.826
##     Viv_Aut           0.605    0.023   26.614    0.000    0.605    0.518
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.483    0.029   16.537    0.000    0.483    0.483
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.417    0.028   14.668    0.000    0.417    0.417
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.838    0.011   75.481    0.000    0.838    0.838
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.083    0.165  -24.709    0.000   -4.083   -2.262
##     Viv_AdmT|t2      -2.925    0.116  -25.298    0.000   -2.925   -1.621
##     Viv_AdmT|t3      -2.177    0.087  -24.935    0.000   -2.177   -1.206
##     Viv_AdmT|t4       0.183    0.027    6.889    0.000    0.183    0.101
##     Viv_EvInt|t1     -3.917    0.141  -27.808    0.000   -3.917   -2.269
##     Viv_EvInt|t2     -2.410    0.088  -27.510    0.000   -2.410   -1.396
##     Viv_EvInt|t3     -1.621    0.062  -26.199    0.000   -1.621   -0.939
##     Viv_EvInt|t4      0.548    0.030   17.995    0.000    0.548    0.318
##     Viv_DiF|t1       -4.542    0.221  -20.516    0.000   -4.542   -2.511
##     Viv_DiF|t2       -3.381    0.155  -21.858    0.000   -3.381   -1.869
##     Viv_DiF|t3       -2.585    0.121  -21.417    0.000   -2.585   -1.429
##     Viv_DiF|t4       -0.096    0.027   -3.611    0.000   -0.096   -0.053
##     Viv_Int|t1       -3.074    0.093  -33.187    0.000   -3.074   -2.132
##     Viv_Int|t2       -2.091    0.062  -33.629    0.000   -2.091   -1.450
##     Viv_Int|t3       -1.485    0.046  -32.087    0.000   -1.485   -1.030
##     Viv_Int|t4        0.534    0.025   21.311    0.000    0.534    0.370
##     Viv_Pla|t1       -4.608    0.245  -18.841    0.000   -4.608   -2.680
##     Viv_Pla|t2       -3.732    0.190  -19.660    0.000   -3.732   -2.170
##     Viv_Pla|t3       -2.693    0.138  -19.475    0.000   -2.693   -1.566
##     Viv_Pla|t4       -0.057    0.025   -2.310    0.021   -0.057   -0.033
##     Viv_HabRC|t1     -4.665    0.244  -19.090    0.000   -4.665   -2.718
##     Viv_HabRC|t2     -3.648    0.196  -18.639    0.000   -3.648   -2.126
##     Viv_HabRC|t3     -2.591    0.136  -19.007    0.000   -2.591   -1.510
##     Viv_HabRC|t4     -0.067    0.025   -2.712    0.007   -0.067   -0.039
##     Viv_HabR|t1      -3.481    0.129  -27.037    0.000   -3.481   -2.451
##     Viv_HabR|t2      -2.397    0.084  -28.666    0.000   -2.397   -1.687
##     Viv_HabR|t3      -1.528    0.055  -27.698    0.000   -1.528   -1.075
##     Viv_HabR|t4       0.135    0.020    6.568    0.000    0.135    0.095
##     Viv_PrInf|t1     -4.201    0.179  -23.509    0.000   -4.201   -2.367
##     Viv_PrInf|t2     -3.098    0.130  -23.802    0.000   -3.098   -1.745
##     Viv_PrInf|t3     -2.241    0.096  -23.351    0.000   -2.241   -1.263
##     Viv_PrInf|t4      0.303    0.027   11.073    0.000    0.303    0.171
##     Viv_Aut|t1       -2.287    0.057  -40.099    0.000   -2.287   -1.957
##     Viv_Aut|t2       -0.968    0.028  -35.128    0.000   -0.968   -0.828
##     Viv_Aut|t3       -0.429    0.019  -22.929    0.000   -0.429   -0.367
##     Viv_Aut|t4        0.826    0.025   32.916    0.000    0.826    0.706
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.307
##    .Viv_EvInt         1.000                               1.000    0.336
##    .Viv_DiF           1.000                               1.000    0.306
##    .Viv_Int           1.000                               1.000    0.481
##    .Viv_Pla           1.000                               1.000    0.338
##    .Viv_HabRC         1.000                               1.000    0.340
##    .Viv_HabR          1.000                               1.000    0.496
##    .Viv_PrInf         1.000                               1.000    0.317
##    .Viv_Aut           1.000                               1.000    0.732
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.554                               0.554    1.000
##     Viv_EvInt         0.579                               0.579    1.000
##     Viv_DiF           0.553                               0.553    1.000
##     Viv_Int           0.693                               0.693    1.000
##     Viv_Pla           0.582                               0.582    1.000
##     Viv_HabRC         0.583                               0.583    1.000
##     Viv_HabR          0.704                               0.704    1.000
##     Viv_PrInf         0.563                               0.563    1.000
##     Viv_Aut           0.856                               0.856    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.693
##     Viv_EvInt         0.664
##     Viv_DiF           0.694
##     Viv_Int           0.519
##     Viv_Pla           0.662
##     Viv_HabRC         0.660
##     Viv_HabR          0.504
##     Viv_PrInf         0.683
##     Viv_Aut           0.268
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.503    0.065   23.209    0.000    1.513    0.834
##     Viv_EvInt         1.407    0.054   25.821    0.000    1.416    0.808
##     Viv_DiF           1.508    0.074   20.263    0.000    1.518    0.852
##     Viv_Int           1.039    0.036   28.550    0.000    1.046    0.714
##     Viv_Pla           1.399    0.074   18.833    0.000    1.408    0.847
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.395    0.079   17.699    0.000    1.333    0.797
##     Viv_HabR          1.009    0.042   23.884    0.000    0.965    0.702
##     Viv_PrInf         1.466    0.071   20.694    0.000    1.402    0.811
##     Viv_Aut           0.605    0.023   26.614    0.000    0.578    0.543
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.495    0.060    8.217    0.000    0.495    0.500
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.476    0.050    9.455    0.000    0.476    0.464
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.783    0.040   19.344    0.000    0.814    0.814
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.083    0.165  -24.709    0.000   -4.083   -2.251
##     Viv_AdmT|t2      -2.925    0.116  -25.298    0.000   -2.925   -1.613
##     Viv_AdmT|t3      -2.177    0.087  -24.935    0.000   -2.177   -1.200
##     Viv_AdmT|t4       0.183    0.027    6.889    0.000    0.183    0.101
##     Viv_EvInt|t1     -3.917    0.141  -27.808    0.000   -3.917   -2.235
##     Viv_EvInt|t2     -2.410    0.088  -27.510    0.000   -2.410   -1.375
##     Viv_EvInt|t3     -1.621    0.062  -26.199    0.000   -1.621   -0.925
##     Viv_EvInt|t4      0.548    0.030   17.995    0.000    0.548    0.313
##     Viv_DiF|t1       -4.542    0.221  -20.516    0.000   -4.542   -2.549
##     Viv_DiF|t2       -3.381    0.155  -21.858    0.000   -3.381   -1.897
##     Viv_DiF|t3       -2.585    0.121  -21.417    0.000   -2.585   -1.451
##     Viv_DiF|t4       -0.096    0.027   -3.611    0.000   -0.096   -0.054
##     Viv_Int|t1       -3.074    0.093  -33.187    0.000   -3.074   -2.098
##     Viv_Int|t2       -2.091    0.062  -33.629    0.000   -2.091   -1.427
##     Viv_Int|t3       -1.485    0.046  -32.087    0.000   -1.485   -1.014
##     Viv_Int|t4        0.534    0.025   21.311    0.000    0.534    0.365
##     Viv_Pla|t1       -4.608    0.245  -18.841    0.000   -4.608   -2.772
##     Viv_Pla|t2       -3.732    0.190  -19.660    0.000   -3.732   -2.244
##     Viv_Pla|t3       -2.693    0.138  -19.475    0.000   -2.693   -1.619
##     Viv_Pla|t4       -0.057    0.025   -2.310    0.021   -0.057   -0.034
##     Viv_HabRC|t1     -4.665    0.244  -19.090    0.000   -4.665   -2.788
##     Viv_HabRC|t2     -3.648    0.196  -18.639    0.000   -3.648   -2.180
##     Viv_HabRC|t3     -2.591    0.136  -19.007    0.000   -2.591   -1.549
##     Viv_HabRC|t4     -0.067    0.025   -2.712    0.007   -0.067   -0.040
##     Viv_HabR|t1      -3.481    0.129  -27.037    0.000   -3.481   -2.532
##     Viv_HabR|t2      -2.397    0.084  -28.666    0.000   -2.397   -1.744
##     Viv_HabR|t3      -1.528    0.055  -27.698    0.000   -1.528   -1.111
##     Viv_HabR|t4       0.135    0.020    6.568    0.000    0.135    0.098
##     Viv_PrInf|t1     -4.201    0.179  -23.509    0.000   -4.201   -2.430
##     Viv_PrInf|t2     -3.098    0.130  -23.802    0.000   -3.098   -1.791
##     Viv_PrInf|t3     -2.241    0.096  -23.351    0.000   -2.241   -1.296
##     Viv_PrInf|t4      0.303    0.027   11.073    0.000    0.303    0.175
##     Viv_Aut|t1       -2.287    0.057  -40.099    0.000   -2.287   -2.148
##     Viv_Aut|t2       -0.968    0.028  -35.128    0.000   -0.968   -0.909
##     Viv_Aut|t3       -0.429    0.019  -22.929    0.000   -0.429   -0.402
##     Viv_Aut|t4        0.826    0.025   32.916    0.000    0.826    0.775
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.002    0.112    8.979    0.000    1.002    0.305
##    .Viv_EvInt         1.066    0.105   10.115    0.000    1.066    0.347
##    .Viv_DiF           0.871    0.124    7.044    0.000    0.871    0.274
##    .Viv_Int           1.051    0.083   12.698    0.000    1.051    0.490
##    .Viv_Pla           0.781    0.127    6.134    0.000    0.781    0.283
##    .Viv_HabRC         1.021    0.151    6.757    0.000    1.021    0.365
##    .Viv_HabR          0.959    0.093   10.346    0.000    0.959    0.508
##    .Viv_PrInf         1.024    0.118    8.705    0.000    1.024    0.343
##    .Viv_Aut           0.799    0.050   15.835    0.000    0.799    0.705
##     Viv_Soft          1.014    0.057   17.707    0.000    1.000    1.000
##     Viv_Hard          0.914    0.058   15.887    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.551                               0.551    1.000
##     Viv_EvInt         0.571                               0.571    1.000
##     Viv_DiF           0.561                               0.561    1.000
##     Viv_Int           0.683                               0.683    1.000
##     Viv_Pla           0.601                               0.601    1.000
##     Viv_HabRC         0.598                               0.598    1.000
##     Viv_HabR          0.727                               0.727    1.000
##     Viv_PrInf         0.578                               0.578    1.000
##     Viv_Aut           0.939                               0.939    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.695
##     Viv_EvInt         0.653
##     Viv_DiF           0.726
##     Viv_Int           0.510
##     Viv_Pla           0.717
##     Viv_HabRC         0.635
##     Viv_HabR          0.492
##     Viv_PrInf         0.657
##     Viv_Aut           0.295
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.503    0.065   23.209    0.000    1.426    0.784
##     Viv_EvInt         1.407    0.054   25.821    0.000    1.334    0.911
##     Viv_DiF           1.508    0.074   20.263    0.000    1.430    0.837
##     Viv_Int           1.039    0.036   28.550    0.000    0.986    0.748
##     Viv_Pla           1.399    0.074   18.833    0.000    1.327    0.825
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.395    0.079   17.699    0.000    1.525    0.878
##     Viv_HabR          1.009    0.042   23.884    0.000    1.103    0.676
##     Viv_PrInf         1.466    0.071   20.694    0.000    1.604    0.830
##     Viv_Aut           0.605    0.023   26.614    0.000    0.662    0.564
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.450    0.126    3.561    0.000    0.450    0.450
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.318    0.119    2.669    0.008    0.318    0.323
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.878    0.110    7.999    0.000    0.846    0.846
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.083    0.165  -24.709    0.000   -4.083   -2.247
##     Viv_AdmT|t2      -2.925    0.116  -25.298    0.000   -2.925   -1.610
##     Viv_AdmT|t3      -2.177    0.087  -24.935    0.000   -2.177   -1.198
##     Viv_AdmT|t4       0.183    0.027    6.889    0.000    0.183    0.101
##     Viv_EvInt|t1     -3.917    0.141  -27.808    0.000   -3.917   -2.675
##     Viv_EvInt|t2     -2.410    0.088  -27.510    0.000   -2.410   -1.645
##     Viv_EvInt|t3     -1.621    0.062  -26.199    0.000   -1.621   -1.107
##     Viv_EvInt|t4      0.548    0.030   17.995    0.000    0.548    0.374
##     Viv_DiF|t1       -4.542    0.221  -20.516    0.000   -4.542   -2.659
##     Viv_DiF|t2       -3.381    0.155  -21.858    0.000   -3.381   -1.979
##     Viv_DiF|t3       -2.585    0.121  -21.417    0.000   -2.585   -1.513
##     Viv_DiF|t4       -0.096    0.027   -3.611    0.000   -0.096   -0.056
##     Viv_Int|t1       -3.074    0.093  -33.187    0.000   -3.074   -2.334
##     Viv_Int|t2       -2.091    0.062  -33.629    0.000   -2.091   -1.587
##     Viv_Int|t3       -1.485    0.046  -32.087    0.000   -1.485   -1.127
##     Viv_Int|t4        0.534    0.025   21.311    0.000    0.534    0.405
##     Viv_Pla|t1       -4.608    0.245  -18.841    0.000   -4.608   -2.865
##     Viv_Pla|t2       -3.732    0.190  -19.660    0.000   -3.732   -2.320
##     Viv_Pla|t3       -2.693    0.138  -19.475    0.000   -2.693   -1.674
##     Viv_Pla|t4       -0.057    0.025   -2.310    0.021   -0.057   -0.035
##     Viv_HabRC|t1     -4.665    0.244  -19.090    0.000   -4.665   -2.685
##     Viv_HabRC|t2     -3.648    0.196  -18.639    0.000   -3.648   -2.100
##     Viv_HabRC|t3     -2.591    0.136  -19.007    0.000   -2.591   -1.492
##     Viv_HabRC|t4     -0.067    0.025   -2.712    0.007   -0.067   -0.039
##     Viv_HabR|t1      -3.481    0.129  -27.037    0.000   -3.481   -2.133
##     Viv_HabR|t2      -2.397    0.084  -28.666    0.000   -2.397   -1.469
##     Viv_HabR|t3      -1.528    0.055  -27.698    0.000   -1.528   -0.936
##     Viv_HabR|t4       0.135    0.020    6.568    0.000    0.135    0.082
##     Viv_PrInf|t1     -4.201    0.179  -23.509    0.000   -4.201   -2.175
##     Viv_PrInf|t2     -3.098    0.130  -23.802    0.000   -3.098   -1.604
##     Viv_PrInf|t3     -2.241    0.096  -23.351    0.000   -2.241   -1.160
##     Viv_PrInf|t4      0.303    0.027   11.073    0.000    0.303    0.157
##     Viv_Aut|t1       -2.287    0.057  -40.099    0.000   -2.287   -1.950
##     Viv_Aut|t2       -0.968    0.028  -35.128    0.000   -0.968   -0.825
##     Viv_Aut|t3       -0.429    0.019  -22.929    0.000   -0.429   -0.365
##     Viv_Aut|t4        0.826    0.025   32.916    0.000    0.826    0.704
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.270    0.252    5.038    0.000    1.270    0.385
##    .Viv_EvInt         0.364    0.145    2.511    0.012    0.364    0.170
##    .Viv_DiF           0.872    0.217    4.020    0.000    0.872    0.299
##    .Viv_Int           0.763    0.134    5.678    0.000    0.763    0.440
##    .Viv_Pla           0.826    0.204    4.056    0.000    0.826    0.319
##    .Viv_HabRC         0.691    0.267    2.584    0.010    0.691    0.229
##    .Viv_HabR          1.446    0.216    6.704    0.000    1.446    0.543
##    .Viv_PrInf         1.159    0.221    5.241    0.000    1.159    0.311
##    .Viv_Aut           0.938    0.113    8.329    0.000    0.938    0.682
##     Viv_Soft          0.900    0.117    7.666    0.000    1.000    1.000
##     Viv_Hard          1.196    0.153    7.814    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.550                               0.550    1.000
##     Viv_EvInt         0.683                               0.683    1.000
##     Viv_DiF           0.585                               0.585    1.000
##     Viv_Int           0.759                               0.759    1.000
##     Viv_Pla           0.622                               0.622    1.000
##     Viv_HabRC         0.576                               0.576    1.000
##     Viv_HabR          0.613                               0.613    1.000
##     Viv_PrInf         0.518                               0.518    1.000
##     Viv_Aut           0.853                               0.853    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.615
##     Viv_EvInt         0.830
##     Viv_DiF           0.701
##     Viv_Int           0.560
##     Viv_Pla           0.681
##     Viv_HabRC         0.771
##     Viv_HabR          0.457
##     Viv_PrInf         0.689
##     Viv_Aut           0.318
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.503    0.065   23.209    0.000    1.518    0.848
##     Viv_EvInt         1.407    0.054   25.821    0.000    1.421    0.783
##     Viv_DiF           1.508    0.074   20.263    0.000    1.523    0.782
##     Viv_Int           1.039    0.036   28.550    0.000    1.050    0.691
##     Viv_Pla           1.399    0.074   18.833    0.000    1.413    0.794
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.395    0.079   17.699    0.000    1.183    0.715
##     Viv_HabR          1.009    0.042   23.884    0.000    0.856    0.644
##     Viv_PrInf         1.466    0.071   20.694    0.000    1.244    0.768
##     Viv_Aut           0.605    0.023   26.614    0.000    0.513    0.534
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.692    0.152    4.541    0.000    0.692    0.588
##  .Viv_AdmT ~~                                                           
##    .Viv_Int           0.484    0.135    3.575    0.000    0.484    0.464
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.705    0.059   11.907    0.000    0.823    0.823
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Int           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##    .Viv_Aut           0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.083    0.165  -24.709    0.000   -4.083   -2.281
##     Viv_AdmT|t2      -2.925    0.116  -25.298    0.000   -2.925   -1.634
##     Viv_AdmT|t3      -2.177    0.087  -24.935    0.000   -2.177   -1.216
##     Viv_AdmT|t4       0.183    0.027    6.889    0.000    0.183    0.102
##     Viv_EvInt|t1     -3.917    0.141  -27.808    0.000   -3.917   -2.159
##     Viv_EvInt|t2     -2.410    0.088  -27.510    0.000   -2.410   -1.328
##     Viv_EvInt|t3     -1.621    0.062  -26.199    0.000   -1.621   -0.893
##     Viv_EvInt|t4      0.548    0.030   17.995    0.000    0.548    0.302
##     Viv_DiF|t1       -4.542    0.221  -20.516    0.000   -4.542   -2.331
##     Viv_DiF|t2       -3.381    0.155  -21.858    0.000   -3.381   -1.735
##     Viv_DiF|t3       -2.585    0.121  -21.417    0.000   -2.585   -1.326
##     Viv_DiF|t4       -0.096    0.027   -3.611    0.000   -0.096   -0.049
##     Viv_Int|t1       -3.074    0.093  -33.187    0.000   -3.074   -2.022
##     Viv_Int|t2       -2.091    0.062  -33.629    0.000   -2.091   -1.376
##     Viv_Int|t3       -1.485    0.046  -32.087    0.000   -1.485   -0.977
##     Viv_Int|t4        0.534    0.025   21.311    0.000    0.534    0.351
##     Viv_Pla|t1       -4.608    0.245  -18.841    0.000   -4.608   -2.590
##     Viv_Pla|t2       -3.732    0.190  -19.660    0.000   -3.732   -2.098
##     Viv_Pla|t3       -2.693    0.138  -19.475    0.000   -2.693   -1.514
##     Viv_Pla|t4       -0.057    0.025   -2.310    0.021   -0.057   -0.032
##     Viv_HabRC|t1     -4.665    0.244  -19.090    0.000   -4.665   -2.819
##     Viv_HabRC|t2     -3.648    0.196  -18.639    0.000   -3.648   -2.205
##     Viv_HabRC|t3     -2.591    0.136  -19.007    0.000   -2.591   -1.566
##     Viv_HabRC|t4     -0.067    0.025   -2.712    0.007   -0.067   -0.041
##     Viv_HabR|t1      -3.481    0.129  -27.037    0.000   -3.481   -2.619
##     Viv_HabR|t2      -2.397    0.084  -28.666    0.000   -2.397   -1.804
##     Viv_HabR|t3      -1.528    0.055  -27.698    0.000   -1.528   -1.149
##     Viv_HabR|t4       0.135    0.020    6.568    0.000    0.135    0.101
##     Viv_PrInf|t1     -4.201    0.179  -23.509    0.000   -4.201   -2.594
##     Viv_PrInf|t2     -3.098    0.130  -23.802    0.000   -3.098   -1.912
##     Viv_PrInf|t3     -2.241    0.096  -23.351    0.000   -2.241   -1.384
##     Viv_PrInf|t4      0.303    0.027   11.073    0.000    0.303    0.187
##     Viv_Aut|t1       -2.287    0.057  -40.099    0.000   -2.287   -2.381
##     Viv_Aut|t2       -0.968    0.028  -35.128    0.000   -0.968   -1.008
##     Viv_Aut|t3       -0.429    0.019  -22.929    0.000   -0.429   -0.446
##     Viv_Aut|t4        0.826    0.025   32.916    0.000    0.826    0.860
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.901    0.224    4.014    0.000    0.901    0.281
##    .Viv_EvInt         1.273    0.213    5.970    0.000    1.273    0.387
##    .Viv_DiF           1.479    0.286    5.177    0.000    1.479    0.389
##    .Viv_Int           1.208    0.175    6.915    0.000    1.208    0.523
##    .Viv_Pla           1.168    0.300    3.893    0.000    1.168    0.369
##    .Viv_HabRC         1.339    0.338    3.961    0.000    1.339    0.489
##    .Viv_HabR          1.034    0.177    5.837    0.000    1.034    0.585
##    .Viv_PrInf         1.077    0.237    4.537    0.000    1.077    0.410
##    .Viv_Aut           0.659    0.096    6.866    0.000    0.659    0.715
##     Viv_Soft          1.021    0.100   10.182    0.000    1.000    1.000
##     Viv_Hard          0.719    0.073    9.915    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.559                               0.559    1.000
##     Viv_EvInt         0.551                               0.551    1.000
##     Viv_DiF           0.513                               0.513    1.000
##     Viv_Int           0.658                               0.658    1.000
##     Viv_Pla           0.562                               0.562    1.000
##     Viv_HabRC         0.604                               0.604    1.000
##     Viv_HabR          0.752                               0.752    1.000
##     Viv_PrInf         0.617                               0.617    1.000
##     Viv_Aut           1.041                               1.041    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.719
##     Viv_EvInt         0.613
##     Viv_DiF           0.611
##     Viv_Int           0.477
##     Viv_Pla           0.631
##     Viv_HabRC         0.511
##     Viv_HabR          0.415
##     Viv_PrInf         0.590
##     Viv_Aut           0.285
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               426.271               198.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.028                 0.996                 0.997 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.025                 0.021                 0.028
modificationindices(invariance$fit.means, sort.=T,maximum.number = 10)
##          lhs op rhs block group level     mi    epc sepc.lv sepc.all sepc.nox
## 237 Viv_Hard ~1         3     3     1 326.41 -0.495  -0.452   -0.452   -0.452
## 77   Viv_Aut ~1         1     1     1 217.10 -0.236  -0.236   -0.202   -0.202
## 158 Viv_Hard ~1         2     2     1 191.24  0.174   0.182    0.182    0.182
## 79  Viv_Hard ~1         1     1     1 176.01 -0.180  -0.180   -0.180   -0.180
## 156  Viv_Aut ~1         2     2     1 169.81  0.190   0.190    0.179    0.179
## 235  Viv_Aut ~1         3     3     1 142.69 -0.370  -0.370   -0.316   -0.316
## 316 Viv_Hard ~1         4     4     1 140.69  0.260   0.307    0.307    0.307
## 157 Viv_Soft ~1         2     2     1 121.22  0.120   0.119    0.119    0.119
## 314  Viv_Aut ~1         4     4     1 100.45  0.243   0.243    0.253    0.253
## 233 Viv_HabR ~1         3     3     1  94.74 -0.553  -0.553   -0.339   -0.339
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8484   0.7256
## alpha.ord   0.9065   0.8243
## omega       0.8306   0.6956
## omega2      0.8306   0.6956
## omega3      0.8306   0.6974
## avevar      0.6562   0.5780
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8543   0.7213
## alpha.ord   0.9124   0.8254
## omega       0.8311   0.6938
## omega2      0.8311   0.6938
## omega3      0.8265   0.6921
## avevar      0.6697   0.5684
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8575   0.7587
## alpha.ord   0.9168   0.8391
## omega       0.8433   0.7254
## omega2      0.8433   0.7254
## omega3      0.8445   0.7212
## avevar      0.6772   0.6075
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8357   0.6651
## alpha.ord   0.8926   0.7947
## omega       0.8123   0.6354
## omega2      0.8123   0.6354
## omega3      0.8100   0.6357
## avevar      0.6177   0.4896
4.1.1.8.5 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
partial
## $estimates
##            poolest mean:2 mean:3   mean:1   mean:4 std:2  std:3   std:1
## Viv_Soft~1       0      0 0.1193 -0.02146 0.000988     0 0.1161 -0.0209
## Viv_Hard~1       0      0 0.2110 -0.29376 0.401145     0 0.2086 -0.2904
##                std:4 diff_std:3 vs. 2 diff_std:1 vs. 2 diff_std:4 vs. 2
## Viv_Soft~1 0.0009621           0.1161          -0.0209        0.0009621
## Viv_Hard~1 0.3965774           0.2086          -0.2904        0.3965774
## 
## $results
##            free.chi free.df          free.p  free.cfi fix.chi fix.df
## Viv_Soft~1    6.658       3 0.0836430264054 -0.001430   7.789      3
## Viv_Hard~1   46.996       3 0.0000000003482 -0.007735  58.273      3
##                        fix.p   fix.cfi wald.chi wald.df wald.p
## Viv_Soft~1 0.050584514799289 -0.001430       NA      NA     NA
## Viv_Hard~1 0.000000000001374 -0.007735       NA      NA     NA

4.1.2 Predicting Latent as Factor Scores

#data_predict <- predict(fit)
#data <- cbind(data,data_predict)
write.csv(data,"data_CFA_leo.csv")
#names(data)

5 Confirmatory Factor Analysis - Cleyton

5.0.0.1 Changing data - all cases

data<-banco_CFA

5.1 Structure Validity - Dimensionality (Cleyton)

5.1.0.1 Model - excluded Viv_DiG crossed factor loadings

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf 
'

5.1.0.2 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T)

5.1.0.3 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 17 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        36
##                                                       
##   Number of observations                          5286
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               168.805     731.514
##   Degrees of freedom                                13          13
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.231
##   Shift parameter                                            1.429
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             40289.802   37258.115
##   Degrees of freedom                                21          21
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.082
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996       0.981
##   Tucker-Lewis Index (TLI)                       0.994       0.969
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.048       0.102
##   90 Percent confidence interval - lower         0.041       0.096
##   90 Percent confidence interval - upper         0.054       0.109
##   P-value RMSEA <= 0.05                          0.717       0.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.034       0.034
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          0.821    0.007  124.885    0.000    0.821    0.821
##     Viv_EvInt         0.814    0.006  129.195    0.000    0.814    0.814
##     Viv_DiF           0.851    0.006  135.378    0.000    0.851    0.851
##     Viv_Pla           0.850    0.007  129.771    0.000    0.850    0.850
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.877    0.007  134.844    0.000    0.877    0.877
##     Viv_HabR          0.771    0.008   97.582    0.000    0.771    0.771
##     Viv_PrInf         0.796    0.008   96.109    0.000    0.796    0.796
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.778    0.008   97.413    0.000    0.778    0.778
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -2.213    0.046  -48.134    0.000   -2.213   -2.213
##     Viv_AdmT|t2      -1.598    0.028  -56.693    0.000   -1.598   -1.598
##     Viv_AdmT|t3      -1.202    0.023  -53.130    0.000   -1.202   -1.202
##     Viv_AdmT|t4       0.101    0.017    5.830    0.000    0.101    0.101
##     Viv_EvInt|t1     -2.242    0.047  -47.447    0.000   -2.242   -2.242
##     Viv_EvInt|t2     -1.386    0.025  -55.801    0.000   -1.386   -1.386
##     Viv_EvInt|t3     -0.935    0.020  -46.095    0.000   -0.935   -0.935
##     Viv_EvInt|t4      0.298    0.018   17.001    0.000    0.298    0.298
##     Viv_DiF|t1       -2.568    0.067  -38.601    0.000   -2.568   -2.568
##     Viv_DiF|t2       -1.877    0.034  -54.591    0.000   -1.877   -1.877
##     Viv_DiF|t3       -1.439    0.026  -56.238    0.000   -1.439   -1.439
##     Viv_DiF|t4       -0.057    0.017   -3.301    0.001   -0.057   -0.057
##     Viv_Pla|t1       -2.639    0.072  -36.576    0.000   -2.639   -2.639
##     Viv_Pla|t2       -2.162    0.044  -49.345    0.000   -2.162   -2.162
##     Viv_Pla|t3       -1.583    0.028  -56.704    0.000   -1.583   -1.583
##     Viv_Pla|t4       -0.041    0.017   -2.393    0.017   -0.041   -0.041
##     Viv_HabRC|t1     -2.688    0.076  -35.148    0.000   -2.688   -2.688
##     Viv_HabRC|t2     -2.102    0.041  -50.654    0.000   -2.102   -2.102
##     Viv_HabRC|t3     -1.503    0.027  -56.576    0.000   -1.503   -1.503
##     Viv_HabRC|t4     -0.033    0.017   -1.925    0.054   -0.033   -0.033
##     Viv_HabR|t1      -2.448    0.058  -42.020    0.000   -2.448   -2.448
##     Viv_HabR|t2      -1.685    0.030  -56.411    0.000   -1.685   -1.685
##     Viv_HabR|t3      -1.069    0.021  -50.071    0.000   -1.069   -1.069
##     Viv_HabR|t4       0.112    0.017    6.463    0.000    0.112    0.112
##     Viv_PrInf|t1     -2.370    0.054  -44.142    0.000   -2.370   -2.370
##     Viv_PrInf|t2     -1.745    0.031  -56.013    0.000   -1.745   -1.745
##     Viv_PrInf|t3     -1.274    0.023  -54.379    0.000   -1.274   -1.274
##     Viv_PrInf|t4      0.188    0.017   10.859    0.000    0.188    0.188
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.327                               0.327    0.327
##    .Viv_EvInt         0.338                               0.338    0.338
##    .Viv_DiF           0.275                               0.275    0.275
##    .Viv_Pla           0.277                               0.277    0.277
##    .Viv_HabRC         0.231                               0.231    0.231
##    .Viv_HabR          0.405                               0.405    0.405
##    .Viv_PrInf         0.367                               0.367    0.367
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          1.000                               1.000    1.000
##     Viv_EvInt         1.000                               1.000    1.000
##     Viv_DiF           1.000                               1.000    1.000
##     Viv_Pla           1.000                               1.000    1.000
##     Viv_HabRC         1.000                               1.000    1.000
##     Viv_HabR          1.000                               1.000    1.000
##     Viv_PrInf         1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.673
##     Viv_EvInt         0.662
##     Viv_DiF           0.725
##     Viv_Pla           0.723
##     Viv_HabRC         0.769
##     Viv_HabR          0.595
##     Viv_PrInf         0.633

5.1.0.4 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               731.514                13.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.034                 0.981                 0.969 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.102                 0.096                 0.109

5.1.0.5 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##        lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 1 Viv_Soft =~  Viv_AdmT   0.821 0.007 124.89      0    0.808    0.833
## 2 Viv_Soft =~ Viv_EvInt   0.814 0.006 129.19      0    0.801    0.826
## 3 Viv_Soft =~   Viv_DiF   0.851 0.006 135.38      0    0.839    0.864
## 4 Viv_Soft =~   Viv_Pla   0.850 0.007 129.77      0    0.837    0.863
## 5 Viv_Hard =~ Viv_HabRC   0.877 0.007 134.84      0    0.864    0.890
## 6 Viv_Hard =~  Viv_HabR   0.771 0.008  97.58      0    0.756    0.787
## 7 Viv_Hard =~ Viv_PrInf   0.796 0.008  96.11      0    0.780    0.812

5.1.0.6 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T,maximum.number = 10)
##          lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 64  Viv_Soft =~ Viv_PrInf 105.86  0.484   0.484    0.484    0.484
## 87 Viv_HabRC ~~  Viv_HabR 105.86  0.208   0.208    0.681    0.681
## 74  Viv_AdmT ~~ Viv_PrInf  34.76  0.097   0.097    0.281    0.281
## 88 Viv_HabRC ~~ Viv_PrInf  32.98 -0.119  -0.119   -0.410   -0.410
## 63  Viv_Soft =~  Viv_HabR  32.98 -0.261  -0.261   -0.261   -0.261
## 68  Viv_Hard =~   Viv_Pla  26.88  0.205   0.205    0.205    0.205
## 66  Viv_Hard =~ Viv_EvInt  26.03 -0.196  -0.196   -0.196   -0.196
## 62  Viv_Soft =~ Viv_HabRC  21.38 -0.246  -0.246   -0.246   -0.246
## 89  Viv_HabR ~~ Viv_PrInf  21.38 -0.087  -0.087   -0.226   -0.226
## 75 Viv_EvInt ~~   Viv_DiF  20.24  0.082   0.082    0.269    0.269

5.1.0.7 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##           Viv_Soft Viv_Hard
## alpha       0.8338   0.7662
## alpha.ord   0.9014   0.8545
## omega       0.8416   0.7792
## omega2      0.8416   0.7792
## omega3      0.8384   0.7797
## avevar      0.6957   0.6658

5.1.0.8 Discriminant Validity (faild if discriminant validity is false)

semMediation::discriminantValidityTable(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##          Viv_Soft Viv_Hard   AVE sqrt(AVE) discriminantValidity
## Viv_Soft    1.000    0.778 0.838     0.696                FALSE
## Viv_Hard    0.778    1.000 0.838     0.696                FALSE

5.1.0.9 Discriminant Validity Robust Test (p<0.05 model tested is different from model with .90 correlation and discriminant validity is accepted)

semTools::discriminantValidity(fit,cutoff =0.9)
##        lhs op      rhs    est ci.lower ci.upper Df AIC BIC Chisq Chisq diff
## 1 Viv_Soft ~~ Viv_Hard 0.7785   0.7628   0.7941 14  NA  NA 360.1        241
##   Df diff                                                  Pr(>Chisq)
## 1       1 0.000000000000000000000000000000000000000000000000000002326

5.1.0.10 Modified Model - after two iteration by MI searching for lower relationship between X2/df

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf
Viv_HabRC ~~ Viv_HabR
Viv_EvInt ~~ Viv_DiF
'

5.1.0.11 Fitting

fit <- lavaan::cfa(model, data =data,estimator="ULSMV",ordered=T,missing="pairwise",std.lv=T,orthogonal=F)

5.1.0.12 General Summary

summary(fit,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 19 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        38
##                                                       
##   Number of observations                          5286
##   Number of missing patterns                         1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                42.450     214.566
##   Degrees of freedom                                11          11
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.199
##   Shift parameter                                            0.772
##        simple second-order correction                             
## 
## Model Test Baseline Model:
## 
##   Test statistic                             40289.802   37258.115
##   Degrees of freedom                                21          21
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.082
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.995
##   Tucker-Lewis Index (TLI)                       0.999       0.990
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.023       0.059
##   90 Percent confidence interval - lower         0.016       0.052
##   90 Percent confidence interval - upper         0.031       0.066
##   P-value RMSEA <= 0.05                          1.000       0.013
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017       0.017
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          0.826    0.007  124.365    0.000    0.826    0.826
##     Viv_EvInt         0.792    0.007  107.864    0.000    0.792    0.792
##     Viv_DiF           0.830    0.007  114.079    0.000    0.830    0.830
##     Viv_Pla           0.855    0.007  128.261    0.000    0.855    0.855
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.811    0.009   92.607    0.000    0.811    0.811
##     Viv_HabR          0.705    0.010   67.225    0.000    0.705    0.705
##     Viv_PrInf         0.800    0.008   94.941    0.000    0.800    0.800
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.201    0.011   17.579    0.000    0.201    0.484
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.082    0.008    9.662    0.000    0.082    0.240
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.830    0.008  100.267    0.000    0.830    0.830
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -2.213    0.046  -48.134    0.000   -2.213   -2.213
##     Viv_AdmT|t2      -1.598    0.028  -56.693    0.000   -1.598   -1.598
##     Viv_AdmT|t3      -1.202    0.023  -53.130    0.000   -1.202   -1.202
##     Viv_AdmT|t4       0.101    0.017    5.830    0.000    0.101    0.101
##     Viv_EvInt|t1     -2.242    0.047  -47.447    0.000   -2.242   -2.242
##     Viv_EvInt|t2     -1.386    0.025  -55.801    0.000   -1.386   -1.386
##     Viv_EvInt|t3     -0.935    0.020  -46.095    0.000   -0.935   -0.935
##     Viv_EvInt|t4      0.298    0.018   17.001    0.000    0.298    0.298
##     Viv_DiF|t1       -2.568    0.067  -38.601    0.000   -2.568   -2.568
##     Viv_DiF|t2       -1.877    0.034  -54.591    0.000   -1.877   -1.877
##     Viv_DiF|t3       -1.439    0.026  -56.238    0.000   -1.439   -1.439
##     Viv_DiF|t4       -0.057    0.017   -3.301    0.001   -0.057   -0.057
##     Viv_Pla|t1       -2.639    0.072  -36.576    0.000   -2.639   -2.639
##     Viv_Pla|t2       -2.162    0.044  -49.345    0.000   -2.162   -2.162
##     Viv_Pla|t3       -1.583    0.028  -56.704    0.000   -1.583   -1.583
##     Viv_Pla|t4       -0.041    0.017   -2.393    0.017   -0.041   -0.041
##     Viv_HabRC|t1     -2.688    0.076  -35.148    0.000   -2.688   -2.688
##     Viv_HabRC|t2     -2.102    0.041  -50.654    0.000   -2.102   -2.102
##     Viv_HabRC|t3     -1.503    0.027  -56.576    0.000   -1.503   -1.503
##     Viv_HabRC|t4     -0.033    0.017   -1.925    0.054   -0.033   -0.033
##     Viv_HabR|t1      -2.448    0.058  -42.020    0.000   -2.448   -2.448
##     Viv_HabR|t2      -1.685    0.030  -56.411    0.000   -1.685   -1.685
##     Viv_HabR|t3      -1.069    0.021  -50.071    0.000   -1.069   -1.069
##     Viv_HabR|t4       0.112    0.017    6.463    0.000    0.112    0.112
##     Viv_PrInf|t1     -2.370    0.054  -44.142    0.000   -2.370   -2.370
##     Viv_PrInf|t2     -1.745    0.031  -56.013    0.000   -1.745   -1.745
##     Viv_PrInf|t3     -1.274    0.023  -54.379    0.000   -1.274   -1.274
##     Viv_PrInf|t4      0.188    0.017   10.859    0.000    0.188    0.188
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.318                               0.318    0.318
##    .Viv_EvInt         0.373                               0.373    0.373
##    .Viv_DiF           0.310                               0.310    0.310
##    .Viv_Pla           0.269                               0.269    0.269
##    .Viv_HabRC         0.342                               0.342    0.342
##    .Viv_HabR          0.503                               0.503    0.503
##    .Viv_PrInf         0.361                               0.361    0.361
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          1.000                               1.000    1.000
##     Viv_EvInt         1.000                               1.000    1.000
##     Viv_DiF           1.000                               1.000    1.000
##     Viv_Pla           1.000                               1.000    1.000
##     Viv_HabRC         1.000                               1.000    1.000
##     Viv_HabR          1.000                               1.000    1.000
##     Viv_PrInf         1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.682
##     Viv_EvInt         0.627
##     Viv_DiF           0.690
##     Viv_Pla           0.731
##     Viv_HabRC         0.658
##     Viv_HabR          0.497
##     Viv_PrInf         0.639

5.1.0.13 Selected Robust and Scaled Fit Measures

lavaan::fitMeasures(fit,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               214.566                11.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.017                 0.995                 0.990 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.059                 0.052                 0.066

5.1.0.14 Factor Loadings

parameters<-lavaan::standardizedSolution(fit)
loadings<-parameters[parameters$op=="=~",]
loadings
##        lhs op       rhs est.std    se      z pvalue ci.lower ci.upper
## 1 Viv_Soft =~  Viv_AdmT   0.826 0.007 124.36      0    0.813    0.839
## 2 Viv_Soft =~ Viv_EvInt   0.792 0.007 107.86      0    0.777    0.806
## 3 Viv_Soft =~   Viv_DiF   0.830 0.007 114.08      0    0.816    0.845
## 4 Viv_Soft =~   Viv_Pla   0.855 0.007 128.26      0    0.842    0.868
## 5 Viv_Hard =~ Viv_HabRC   0.811 0.009  92.61      0    0.794    0.828
## 6 Viv_Hard =~  Viv_HabR   0.705 0.010  67.22      0    0.685    0.726
## 7 Viv_Hard =~ Viv_PrInf   0.800 0.008  94.94      0    0.783    0.816

5.1.0.15 Modificantion Indices considering very bad RMSEA

modificationindices(fit, sort.=T,maximum.number = 10)
##          lhs op       rhs     mi    epc sepc.lv sepc.all sepc.nox
## 85   Viv_Pla ~~ Viv_HabRC 16.797  0.072   0.072    0.237    0.237
## 71  Viv_AdmT ~~ Viv_EvInt 15.152  0.073   0.073    0.211    0.211
## 68  Viv_Hard =~ Viv_EvInt 13.861 -0.206  -0.206   -0.206   -0.206
## 70  Viv_Hard =~   Viv_Pla 13.422  0.213   0.213    0.213    0.213
## 80 Viv_EvInt ~~ Viv_PrInf  6.933 -0.046  -0.046   -0.125   -0.125
## 76  Viv_AdmT ~~ Viv_PrInf  6.728  0.046   0.046    0.135    0.135
## 73  Viv_AdmT ~~   Viv_Pla  5.719 -0.045  -0.045   -0.153   -0.153
## 75  Viv_AdmT ~~  Viv_HabR  5.204 -0.038  -0.038   -0.096   -0.096
## 74  Viv_AdmT ~~ Viv_HabRC  4.577 -0.037  -0.037   -0.112   -0.112
## 78 Viv_EvInt ~~ Viv_HabRC  4.298 -0.036  -0.036   -0.099   -0.099

5.1.0.16 Ordinal Alpha and Omega

semTools::reliability(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##           Viv_Soft Viv_Hard
## alpha       0.8338   0.7662
## alpha.ord   0.9014   0.8545
## omega       0.8214   0.6932
## omega2      0.8214   0.6932
## omega3      0.8187   0.6930
## avevar      0.6822   0.5981

5.1.0.17 Discriminant Validity

semMediation::discriminantValidityTable(fit)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
##          Viv_Soft Viv_Hard   AVE sqrt(AVE) discriminantValidity
## Viv_Soft     1.00     0.83 0.819     0.682                FALSE
## Viv_Hard     0.83     1.00 0.819     0.682                FALSE

5.1.0.18 Discriminant Validity Robust Test

semTools::discriminantValidity(fit)
##        lhs op      rhs    est ci.lower ci.upper Df AIC BIC Chisq Chisq diff
## 1 Viv_Soft ~~ Viv_Hard 0.8303   0.8141   0.8465 12  NA  NA 85.74      70.21
##   Df diff            Pr(>Chisq)
## 1       1 0.0000000000000000533

5.1.0.19 Graphical Representation

semPaths(object=fit,whatLabels ="stand",residuals = F, thresholds = F,ThreshAtSide=F, cardinal = c("exogenous covariances", border.color = ("black")), intercept=F, edge.label.cex = 1,curve=2,nCharNodes=0)

5.1.1 Internal Validity

5.1.1.1 Using all data

data<-TDados

5.1.1.2 Organizing Sex

data$Gen<-car::recode(data$Gen,"0=NA")
data$SexoR<-as.factor(data$Gen)
#dataSexoR1<-data[data$SexoR=="1",]
#dataSexoR2<-data[data$SexoR=="2",]

5.1.1.3 Sex Invariance Model

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf
Viv_HabRC ~~ Viv_HabR
Viv_EvInt ~~ Viv_DiF
'

5.1.1.4 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group ="SexoR",parameterization = "theta", estimator = "ULSMV",ordered =T,missing="pairwise",std.lv=F)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values

## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: group variable 'SexoR' contains missing values
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                Df AIC BIC Chisq Chisq diff Df diff     Pr(>Chisq)    
## fit.configural 22            63                                      
## fit.loadings   27           143       18.1       5         0.0028 ** 
## fit.thresholds 46           234       23.2      19         0.2290    
## fit.means      48           580       48.3       2 0.000000000032 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.994        0.059               NA                 NA
## fit.loadings        0.998        0.029            0.004              0.030
## fit.thresholds      0.999        0.017            0.001              0.013
## fit.means           0.997        0.029            0.002              0.012
5.1.1.4.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 210 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        85
##   Number of equality constraints                     9
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                63.036     316.808
##   Degrees of freedom                                22          22
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.200
##   Shift parameter for each group:                                 
##       2                                                      0.790
##       1                                                      1.151
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           17.079      86.099
##     1                                           45.957     230.709
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57583.946   53150.718
##   Degrees of freedom                                42          42
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.084
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.994
##   Tucker-Lewis Index (TLI)                       0.999       0.989
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.022       0.059
##   90 Percent confidence interval - lower         0.016       0.054
##   90 Percent confidence interval - upper         0.029       0.065
##   P-value RMSEA <= 0.05                          1.000       0.004
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017       0.017
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.408    0.815
##     Viv_EvInt         0.929    0.037   24.836    0.000    1.309    0.795
##     Viv_DiF           1.077    0.049   22.137    0.000    1.517    0.835
##     Viv_Pla           1.251    0.059   21.364    0.000    1.763    0.870
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.604    0.849
##     Viv_HabR          0.678    0.026   25.865    0.000    1.088    0.736
##     Viv_PrInf         0.982    0.060   16.245    0.000    1.576    0.844
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.527    0.020   25.944    0.000    0.527    0.527
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.245    0.026    9.549    0.000    0.245    0.245
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.852    0.107   17.236    0.000    0.820    0.820
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.207    0.127  -33.213    0.000   -4.207   -2.436
##     Viv_AdmT|t2      -2.997    0.076  -39.235    0.000   -2.997   -1.735
##     Viv_AdmT|t3      -2.184    0.062  -35.479    0.000   -2.184   -1.264
##     Viv_AdmT|t4       0.068    0.039    1.755    0.079    0.068    0.039
##     Viv_EvInt|t1     -3.872    0.107  -36.186    0.000   -3.872   -2.351
##     Viv_EvInt|t2     -2.533    0.063  -40.477    0.000   -2.533   -1.538
##     Viv_EvInt|t3     -1.699    0.051  -33.426    0.000   -1.699   -1.031
##     Viv_EvInt|t4      0.409    0.037   11.134    0.000    0.409    0.248
##     Viv_DiF|t1       -4.584    0.150  -30.631    0.000   -4.584   -2.523
##     Viv_DiF|t2       -3.497    0.095  -36.839    0.000   -3.497   -1.925
##     Viv_DiF|t3       -2.711    0.079  -34.320    0.000   -2.711   -1.492
##     Viv_DiF|t4       -0.182    0.042   -4.317    0.000   -0.182   -0.100
##     Viv_Pla|t1       -5.341    0.179  -29.855    0.000   -5.341   -2.636
##     Viv_Pla|t2       -4.371    0.130  -33.594    0.000   -4.371   -2.157
##     Viv_Pla|t3       -3.106    0.100  -31.049    0.000   -3.106   -1.533
##     Viv_Pla|t4       -0.076    0.046   -1.654    0.098   -0.076   -0.038
##     Viv_HabRC|t1     -5.033    0.195  -25.780    0.000   -5.033   -2.663
##     Viv_HabRC|t2     -3.932    0.131  -29.951    0.000   -3.932   -2.080
##     Viv_HabRC|t3     -2.974    0.103  -28.996    0.000   -2.974   -1.573
##     Viv_HabRC|t4     -0.197    0.044   -4.457    0.000   -0.197   -0.104
##     Viv_HabR|t1      -3.673    0.117  -31.406    0.000   -3.673   -2.486
##     Viv_HabR|t2      -2.586    0.067  -38.687    0.000   -2.586   -1.750
##     Viv_HabR|t3      -1.683    0.049  -34.488    0.000   -1.683   -1.139
##     Viv_HabR|t4       0.004    0.033    0.126    0.900    0.004    0.003
##     Viv_PrInf|t1     -4.607    0.165  -27.859    0.000   -4.607   -2.468
##     Viv_PrInf|t2     -3.474    0.111  -31.190    0.000   -3.474   -1.861
##     Viv_PrInf|t3     -2.597    0.087  -29.783    0.000   -2.597   -1.391
##     Viv_PrInf|t4      0.036    0.042    0.848    0.396    0.036    0.019
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.335
##    .Viv_EvInt         1.000                               1.000    0.369
##    .Viv_DiF           1.000                               1.000    0.303
##    .Viv_Pla           1.000                               1.000    0.244
##    .Viv_HabRC         1.000                               1.000    0.280
##    .Viv_HabR          1.000                               1.000    0.458
##    .Viv_PrInf         1.000                               1.000    0.287
##     Viv_Soft          1.984    0.127   15.661    0.000    1.000    1.000
##     Viv_Hard          2.573    0.224   11.480    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.579                               0.579    1.000
##     Viv_EvInt         0.607                               0.607    1.000
##     Viv_DiF           0.550                               0.550    1.000
##     Viv_Pla           0.493                               0.493    1.000
##     Viv_HabRC         0.529                               0.529    1.000
##     Viv_HabR          0.677                               0.677    1.000
##     Viv_PrInf         0.536                               0.536    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.665
##     Viv_EvInt         0.631
##     Viv_DiF           0.697
##     Viv_Pla           0.756
##     Viv_HabRC         0.720
##     Viv_HabR          0.542
##     Viv_PrInf         0.713
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.637    0.830
##     Viv_EvInt         0.860    0.045   19.223    0.000    1.407    0.785
##     Viv_DiF           0.922    0.059   15.681    0.000    1.509    0.822
##     Viv_Pla           0.981    0.067   14.690    0.000    1.606    0.838
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.440    0.791
##     Viv_HabR          0.715    0.044   16.098    0.000    1.030    0.682
##     Viv_PrInf         1.080    0.069   15.693    0.000    1.556    0.781
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.559    0.218    2.562    0.010    0.559    0.454
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.295    0.062    4.730    0.000    0.295    0.255
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.951    0.482    4.050    0.000    0.827    0.827
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.055    0.388    0.142    0.887    0.034    0.034
##     Viv_Hard          0.093    0.865    0.107    0.915    0.064    0.064
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.207    0.127  -33.213    0.000   -4.207   -2.134
##     Viv_AdmT|t2      -2.997    0.076  -39.235    0.000   -2.997   -1.520
##     Viv_AdmT|t3      -2.237    0.135  -16.559    0.000   -2.237   -1.135
##     Viv_AdmT|t4       0.337    0.421    0.800    0.423    0.337    0.171
##     Viv_EvInt|t1     -3.872    0.107  -36.186    0.000   -3.872   -2.159
##     Viv_EvInt|t2     -2.306    0.141  -16.362    0.000   -2.306   -1.286
##     Viv_EvInt|t3     -1.531    0.196   -7.818    0.000   -1.531   -0.854
##     Viv_EvInt|t4      0.703    0.394    1.783    0.075    0.703    0.392
##     Viv_DiF|t1       -4.584    0.150  -30.631    0.000   -4.584   -2.498
##     Viv_DiF|t2       -3.321    0.163  -20.391    0.000   -3.321   -1.810
##     Viv_DiF|t3       -2.513    0.185  -13.586    0.000   -2.513   -1.369
##     Viv_DiF|t4        0.013    0.353    0.037    0.971    0.013    0.007
##     Viv_Pla|t1       -5.341    0.179  -29.855    0.000   -5.341   -2.787
##     Viv_Pla|t2       -4.260    0.201  -21.154    0.000   -4.260   -2.223
##     Viv_Pla|t3       -3.088    0.202  -15.295    0.000   -3.088   -1.611
##     Viv_Pla|t4       -0.007    0.375   -0.018    0.986   -0.007   -0.004
##     Viv_HabRC|t1     -5.033    0.195  -25.780    0.000   -5.033   -2.764
##     Viv_HabRC|t2     -3.932    0.131  -29.951    0.000   -3.932   -2.160
##     Viv_HabRC|t3     -2.648    0.321   -8.245    0.000   -2.648   -1.455
##     Viv_HabRC|t4      0.107    0.868    0.123    0.902    0.107    0.059
##     Viv_HabR|t1      -3.673    0.117  -31.406    0.000   -3.673   -2.431
##     Viv_HabR|t2      -2.453    0.208  -11.801    0.000   -2.453   -1.624
##     Viv_HabR|t3      -1.497    0.353   -4.234    0.000   -1.497   -0.991
##     Viv_HabR|t4       0.323    0.661    0.489    0.625    0.323    0.214
##     Viv_PrInf|t1     -4.607    0.165  -27.859    0.000   -4.607   -2.311
##     Viv_PrInf|t2     -3.297    0.278  -11.877    0.000   -3.297   -1.654
##     Viv_PrInf|t3     -2.307    0.455   -5.074    0.000   -2.307   -1.157
##     Viv_PrInf|t4      0.669    1.051    0.636    0.525    0.669    0.335
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.208    0.283    4.277    0.000    1.208    0.311
##    .Viv_EvInt         1.235    0.242    5.103    0.000    1.235    0.384
##    .Viv_DiF           1.090    0.198    5.496    0.000    1.090    0.324
##    .Viv_Pla           1.094    0.197    5.549    0.000    1.094    0.298
##    .Viv_HabRC         1.241    0.512    2.425    0.015    1.241    0.374
##    .Viv_HabR          1.220    0.432    2.828    0.005    1.220    0.535
##    .Viv_PrInf         1.552    0.648    2.396    0.017    1.552    0.391
##     Viv_Soft          2.678    0.640    4.185    0.000    1.000    1.000
##     Viv_Hard          2.075    0.865    2.399    0.016    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.507                               0.507    1.000
##     Viv_EvInt         0.558                               0.558    1.000
##     Viv_DiF           0.545                               0.545    1.000
##     Viv_Pla           0.522                               0.522    1.000
##     Viv_HabRC         0.549                               0.549    1.000
##     Viv_HabR          0.662                               0.662    1.000
##     Viv_PrInf         0.502                               0.502    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.689
##     Viv_EvInt         0.616
##     Viv_DiF           0.676
##     Viv_Pla           0.702
##     Viv_HabRC         0.626
##     Viv_HabR          0.465
##     Viv_PrInf         0.609
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               316.808                22.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.017                 0.994                 0.989 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.059                 0.054                 0.065
modificationindices(invariance$fit.configural, sort.=T,maximum.number = 10)
##           lhs op       rhs block group level     mi    epc sepc.lv sepc.all
## 168  Viv_Hard =~   Viv_Pla     2     2     1 21.653  0.385   0.555    0.290
## 169  Viv_AdmT ~~ Viv_EvInt     2     2     1 20.287  0.326   0.326    0.267
## 166  Viv_Hard =~ Viv_EvInt     2     2     1 16.380 -0.302  -0.435   -0.242
## 183   Viv_Pla ~~ Viv_HabRC     2     2     1 14.573  0.252   0.252    0.216
## 171  Viv_AdmT ~~   Viv_Pla     2     2     1 11.488 -0.262  -0.262   -0.228
## 157   Viv_Pla ~~ Viv_HabRC     1     1     1  9.559  0.274   0.274    0.274
## 178 Viv_EvInt ~~ Viv_PrInf     2     2     1  6.923 -0.177  -0.177   -0.128
## 184   Viv_Pla ~~  Viv_HabR     2     2     1  5.061  0.119   0.119    0.103
## 143  Viv_AdmT ~~ Viv_EvInt     1     1     1  4.845  0.150   0.150    0.150
## 173  Viv_AdmT ~~  Viv_HabR     2     2     1  4.736 -0.118  -0.118   -0.097
##     sepc.nox
## 168    0.290
## 169    0.267
## 166   -0.242
## 183    0.216
## 171   -0.228
## 157    0.274
## 178   -0.128
## 184    0.103
## 143    0.150
## 173   -0.097
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8368   0.8072
## alpha.ord   0.9035   0.8841
## omega       0.8234   0.7296
## omega2      0.8234   0.7296
## omega3      0.8218   0.7288
## avevar      0.6948   0.6753
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8292   0.7421
## alpha.ord   0.8972   0.8368
## omega       0.8155   0.6749
## omega2      0.8155   0.6749
## omega3      0.8116   0.6748
## avevar      0.6728   0.5807
5.1.1.4.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 173 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        85
##   Number of equality constraints                    14
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               143.072     114.882
##   Degrees of freedom                                27          27
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  1.353
##   Shift parameter for each group:                                 
##       2                                                      3.725
##       1                                                      5.426
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           66.448      52.830
##     1                                           76.624      62.052
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57583.946   53150.718
##   Degrees of freedom                                42          42
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.084
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.998
##   Tucker-Lewis Index (TLI)                       0.997       0.997
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.034       0.029
##   90 Percent confidence interval - lower         0.028       0.024
##   90 Percent confidence interval - upper         0.039       0.035
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.024       0.024
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.640    0.854
##     Viv_EvInt         0.844    0.058   14.429    0.000    1.385    0.811
##     Viv_DiF           0.892    0.077   11.543    0.000    1.464    0.826
##     Viv_Pla           0.897    0.075   11.962    0.000    1.471    0.827
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.462    0.825
##     Viv_HabR          0.740    0.053   14.055    0.000    1.082    0.735
##     Viv_PrInf         1.145    0.097   11.768    0.000    1.675    0.859
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.541    0.023   23.115    0.000    0.541    0.541
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.230    0.049    4.680    0.000    0.230    0.230
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.971    0.153   12.870    0.000    0.822    0.822
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.579    0.232  -19.697    0.000   -4.579   -2.383
##     Viv_AdmT|t2      -3.376    0.147  -23.032    0.000   -3.376   -1.757
##     Viv_AdmT|t3      -2.429    0.103  -23.618    0.000   -2.429   -1.264
##     Viv_AdmT|t4       0.075    0.043    1.755    0.079    0.075    0.039
##     Viv_EvInt|t1     -3.992    0.172  -23.243    0.000   -3.992   -2.337
##     Viv_EvInt|t2     -2.627    0.096  -27.304    0.000   -2.627   -1.538
##     Viv_EvInt|t3     -1.761    0.069  -25.416    0.000   -1.761   -1.031
##     Viv_EvInt|t4      0.424    0.039   10.820    0.000    0.424    0.248
##     Viv_DiF|t1       -4.490    0.262  -17.155    0.000   -4.490   -2.533
##     Viv_DiF|t2       -3.412    0.170  -20.062    0.000   -3.412   -1.925
##     Viv_DiF|t3       -2.645    0.127  -20.793    0.000   -2.645   -1.492
##     Viv_DiF|t4       -0.178    0.041   -4.284    0.000   -0.178   -0.100
##     Viv_Pla|t1       -4.749    0.260  -18.295    0.000   -4.749   -2.670
##     Viv_Pla|t2       -3.836    0.186  -20.670    0.000   -3.836   -2.157
##     Viv_Pla|t3       -2.726    0.120  -22.639    0.000   -2.726   -1.533
##     Viv_Pla|t4       -0.067    0.040   -1.657    0.098   -0.067   -0.038
##     Viv_HabRC|t1     -4.732    0.249  -19.040    0.000   -4.732   -2.671
##     Viv_HabRC|t2     -3.696    0.167  -22.070    0.000   -3.696   -2.086
##     Viv_HabRC|t3     -2.787    0.123  -22.727    0.000   -2.787   -1.573
##     Viv_HabRC|t4     -0.185    0.041   -4.472    0.000   -0.185   -0.104
##     Viv_HabR|t1      -3.659    0.142  -25.733    0.000   -3.659   -2.483
##     Viv_HabR|t2      -2.579    0.088  -29.244    0.000   -2.579   -1.750
##     Viv_HabR|t3      -1.679    0.060  -28.171    0.000   -1.679   -1.139
##     Viv_HabR|t4       0.004    0.033    0.126    0.900    0.004    0.003
##     Viv_PrInf|t1     -4.793    0.236  -20.303    0.000   -4.793   -2.457
##     Viv_PrInf|t2     -3.631    0.153  -23.711    0.000   -3.631   -1.861
##     Viv_PrInf|t3     -2.714    0.114  -23.853    0.000   -2.714   -1.391
##     Viv_PrInf|t4      0.037    0.044    0.848    0.396    0.037    0.019
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.271
##    .Viv_EvInt         1.000                               1.000    0.343
##    .Viv_DiF           1.000                               1.000    0.318
##    .Viv_Pla           1.000                               1.000    0.316
##    .Viv_HabRC         1.000                               1.000    0.319
##    .Viv_HabR          1.000                               1.000    0.460
##    .Viv_PrInf         1.000                               1.000    0.263
##     Viv_Soft          2.691    0.275    9.793    0.000    1.000    1.000
##     Viv_Hard          2.138    0.241    8.875    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.521                               0.521    1.000
##     Viv_EvInt         0.586                               0.586    1.000
##     Viv_DiF           0.564                               0.564    1.000
##     Viv_Pla           0.562                               0.562    1.000
##     Viv_HabRC         0.564                               0.564    1.000
##     Viv_HabR          0.679                               0.679    1.000
##     Viv_PrInf         0.513                               0.513    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.729
##     Viv_EvInt         0.657
##     Viv_DiF           0.682
##     Viv_Pla           0.684
##     Viv_HabRC         0.681
##     Viv_HabR          0.540
##     Viv_PrInf         0.737
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.459    0.803
##     Viv_EvInt         0.844    0.058   14.429    0.000    1.231    0.773
##     Viv_DiF           0.892    0.077   11.543    0.000    1.302    0.828
##     Viv_Pla           0.897    0.075   11.962    0.000    1.308    0.866
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.393    0.809
##     Viv_HabR          0.740    0.053   14.055    0.000    1.031    0.684
##     Viv_PrInf         1.145    0.097   11.768    0.000    1.595    0.770
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.492    0.179    2.739    0.006    0.492    0.442
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.238    0.058    4.093    0.000    0.238    0.267
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.676    0.403    4.157    0.000    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.591    0.313   -1.886    0.059   -0.405   -0.405
##     Viv_Hard          0.103    0.746    0.138    0.890    0.074    0.074
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.579    0.232  -19.697    0.000   -4.579   -2.521
##     Viv_AdmT|t2      -3.376    0.147  -23.032    0.000   -3.376   -1.859
##     Viv_AdmT|t3      -2.702    0.147  -18.399    0.000   -2.702   -1.488
##     Viv_AdmT|t4      -0.331    0.340   -0.973    0.330   -0.331   -0.182
##     Viv_EvInt|t1     -3.992    0.172  -23.243    0.000   -3.992   -2.508
##     Viv_EvInt|t2     -2.587    0.159  -16.318    0.000   -2.587   -1.625
##     Viv_EvInt|t3     -1.899    0.182  -10.421    0.000   -1.899   -1.193
##     Viv_EvInt|t4      0.083    0.323    0.258    0.796    0.083    0.052
##     Viv_DiF|t1       -4.490    0.262  -17.155    0.000   -4.490   -2.855
##     Viv_DiF|t2       -3.417    0.241  -14.204    0.000   -3.417   -2.173
##     Viv_DiF|t3       -2.724    0.229  -11.898    0.000   -2.724   -1.732
##     Viv_DiF|t4       -0.559    0.295   -1.895    0.058   -0.559   -0.356
##     Viv_Pla|t1       -4.749    0.260  -18.295    0.000   -4.749   -3.145
##     Viv_Pla|t2       -3.928    0.251  -15.644    0.000   -3.928   -2.601
##     Viv_Pla|t3       -3.005    0.209  -14.360    0.000   -3.005   -1.990
##     Viv_Pla|t4       -0.577    0.286   -2.019    0.044   -0.577   -0.382
##     Viv_HabRC|t1     -4.732    0.249  -19.040    0.000   -4.732   -2.749
##     Viv_HabRC|t2     -3.696    0.167  -22.070    0.000   -3.696   -2.147
##     Viv_HabRC|t3     -2.488    0.267   -9.316    0.000   -2.488   -1.446
##     Viv_HabRC|t4      0.116    0.748    0.156    0.876    0.116    0.068
##     Viv_HabR|t1      -3.659    0.142  -25.733    0.000   -3.659   -2.427
##     Viv_HabR|t2      -2.438    0.205  -11.871    0.000   -2.438   -1.617
##     Viv_HabR|t3      -1.484    0.322   -4.604    0.000   -1.484   -0.984
##     Viv_HabR|t4       0.332    0.588    0.566    0.572    0.332    0.220
##     Viv_PrInf|t1     -4.793    0.236  -20.303    0.000   -4.793   -2.313
##     Viv_PrInf|t2     -3.414    0.291  -11.734    0.000   -3.414   -1.648
##     Viv_PrInf|t3     -2.385    0.428   -5.577    0.000   -2.385   -1.151
##     Viv_PrInf|t4      0.709    0.959    0.740    0.460    0.709    0.342
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.169    0.299    3.914    0.000    1.169    0.355
##    .Viv_EvInt         1.018    0.206    4.937    0.000    1.018    0.402
##    .Viv_DiF           0.779    0.171    4.565    0.000    0.779    0.315
##    .Viv_Pla           0.569    0.150    3.802    0.000    0.569    0.250
##    .Viv_HabRC         1.023    0.443    2.311    0.021    1.023    0.345
##    .Viv_HabR          1.210    0.375    3.232    0.001    1.210    0.533
##    .Viv_PrInf         1.751    0.669    2.617    0.009    1.751    0.408
##     Viv_Soft          2.128    0.491    4.338    0.000    1.000    1.000
##     Viv_Hard          1.940    0.775    2.504    0.012    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.551                               0.551    1.000
##     Viv_EvInt         0.628                               0.628    1.000
##     Viv_DiF           0.636                               0.636    1.000
##     Viv_Pla           0.662                               0.662    1.000
##     Viv_HabRC         0.581                               0.581    1.000
##     Viv_HabR          0.663                               0.663    1.000
##     Viv_PrInf         0.483                               0.483    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.645
##     Viv_EvInt         0.598
##     Viv_DiF           0.685
##     Viv_Pla           0.750
##     Viv_HabRC         0.655
##     Viv_HabR          0.467
##     Viv_PrInf         0.592
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               114.882                27.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.024                 0.998                 0.997 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.029                 0.024                 0.035
modificationindices(invariance$fit.loadings, sort.=T,maximum.number = 10)
##          lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 147 Viv_Hard  =~   Viv_Pla     1     1     1 48.00  0.152   0.222    0.125
## 58   Viv_Pla  ~1               1     1     1 45.57 -0.752  -0.752   -0.423
## 51   Viv_Pla ~*~   Viv_Pla     1     1     1 45.57 -0.089  -0.089   -1.000
## 114  Viv_Pla ~*~   Viv_Pla     2     2     1 45.57  0.118   0.118    1.000
## 121  Viv_Pla  ~1               2     2     1 45.57  0.752   0.752    0.498
## 174 Viv_AdmT  ~~ Viv_EvInt     2     2     1 44.85  0.364   0.364    0.333
## 111 Viv_AdmT ~*~  Viv_AdmT     2     2     1 43.04 -0.100  -0.100   -1.000
## 64  Viv_Soft  =~  Viv_AdmT     2     2     1 42.18  0.158   0.231    0.127
## 48  Viv_AdmT ~*~  Viv_AdmT     1     1     1 42.18  0.082   0.082    1.000
## 1   Viv_Soft  =~  Viv_AdmT     1     1     1 42.18 -0.158  -0.259   -0.135
##     sepc.nox
## 147    0.125
## 58    -0.423
## 51    -1.000
## 114    1.000
## 121    0.498
## 174    0.333
## 111   -1.000
## 64     0.127
## 48     1.000
## 1     -0.135
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8368   0.8072
## alpha.ord   0.9035   0.8841
## omega       0.8279   0.7235
## omega2      0.8279   0.7235
## omega3      0.8287   0.7233
## avevar      0.6902   0.6709
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8292   0.7421
## alpha.ord   0.8972   0.8368
## omega       0.7953   0.6796
## omega2      0.7953   0.6796
## omega3      0.7880   0.6790
## avevar      0.6660   0.5819
5.1.1.4.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 154 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        85
##   Number of equality constraints                    33
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               234.485      94.795
##   Degrees of freedom                                46          46
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  2.942
##   Shift parameter for each group:                                 
##       2                                                      6.147
##       1                                                      8.953
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          122.571      47.805
##     1                                          111.914      46.990
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57583.946   53150.718
##   Degrees of freedom                                42          42
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.084
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.999
##   Tucker-Lewis Index (TLI)                       0.997       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.033       0.017
##   90 Percent confidence interval - lower         0.029       0.012
##   90 Percent confidence interval - upper         0.037       0.021
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.651    0.855
##     Viv_EvInt         0.864    0.051   17.089    0.000    1.427    0.819
##     Viv_DiF           0.899    0.059   15.130    0.000    1.484    0.829
##     Viv_Pla           0.859    0.057   15.147    0.000    1.418    0.817
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.436    0.821
##     Viv_HabR          0.758    0.041   18.665    0.000    1.088    0.736
##     Viv_PrInf         1.176    0.089   13.151    0.000    1.689    0.860
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.541    0.022   24.684    0.000    0.541    0.541
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.207    0.044    4.750    0.000    0.207    0.207
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.947    0.133   14.624    0.000    0.821    0.821
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.616    0.191  -24.195    0.000   -4.616   -2.391
##     Viv_AdmT|t2      -3.328    0.131  -25.331    0.000   -3.328   -1.724
##     Viv_AdmT|t3      -2.493    0.100  -24.887    0.000   -2.493   -1.291
##     Viv_AdmT|t4       0.094    0.042    2.229    0.026    0.094    0.049
##     Viv_EvInt|t1     -4.117    0.150  -27.517    0.000   -4.117   -2.363
##     Viv_EvInt|t2     -2.602    0.094  -27.798    0.000   -2.602   -1.493
##     Viv_EvInt|t3     -1.774    0.068  -26.001    0.000   -1.774   -1.018
##     Viv_EvInt|t4      0.476    0.041   11.617    0.000    0.476    0.273
##     Viv_DiF|t1       -4.570    0.206  -22.201    0.000   -4.570   -2.554
##     Viv_DiF|t2       -3.415    0.152  -22.503    0.000   -3.415   -1.908
##     Viv_DiF|t3       -2.640    0.119  -22.275    0.000   -2.640   -1.475
##     Viv_DiF|t4       -0.191    0.039   -4.918    0.000   -0.191   -0.107
##     Viv_Pla|t1       -4.609    0.192  -23.989    0.000   -4.609   -2.657
##     Viv_Pla|t2       -3.737    0.159  -23.435    0.000   -3.737   -2.154
##     Viv_Pla|t3       -2.724    0.116  -23.388    0.000   -2.724   -1.570
##     Viv_Pla|t4       -0.154    0.037   -4.196    0.000   -0.154   -0.089
##     Viv_HabRC|t1     -4.667    0.201  -23.171    0.000   -4.667   -2.667
##     Viv_HabRC|t2     -3.706    0.161  -23.063    0.000   -3.706   -2.118
##     Viv_HabRC|t3     -2.688    0.121  -22.298    0.000   -2.688   -1.536
##     Viv_HabRC|t4     -0.274    0.040   -6.776    0.000   -0.274   -0.157
##     Viv_HabR|t1      -3.677    0.122  -30.252    0.000   -3.677   -2.488
##     Viv_HabR|t2      -2.571    0.082  -31.447    0.000   -2.571   -1.739
##     Viv_HabR|t3      -1.685    0.056  -29.994    0.000   -1.685   -1.140
##     Viv_HabR|t4      -0.010    0.032   -0.321    0.749   -0.010   -0.007
##     Viv_PrInf|t1     -4.854    0.205  -23.639    0.000   -4.854   -2.473
##     Viv_PrInf|t2     -3.631    0.152  -23.887    0.000   -3.631   -1.850
##     Viv_PrInf|t3     -2.698    0.116  -23.220    0.000   -2.698   -1.375
##     Viv_PrInf|t4      0.103    0.047    2.182    0.029    0.103    0.052
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.268
##    .Viv_EvInt         1.000                               1.000    0.329
##    .Viv_DiF           1.000                               1.000    0.312
##    .Viv_Pla           1.000                               1.000    0.332
##    .Viv_HabRC         1.000                               1.000    0.327
##    .Viv_HabR          1.000                               1.000    0.458
##    .Viv_PrInf         1.000                               1.000    0.260
##     Viv_Soft          2.727    0.239   11.398    0.000    1.000    1.000
##     Viv_Hard          2.062    0.201   10.271    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.518                               0.518    1.000
##     Viv_EvInt         0.574                               0.574    1.000
##     Viv_DiF           0.559                               0.559    1.000
##     Viv_Pla           0.576                               0.576    1.000
##     Viv_HabRC         0.572                               0.572    1.000
##     Viv_HabR          0.677                               0.677    1.000
##     Viv_PrInf         0.510                               0.510    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.732
##     Viv_EvInt         0.671
##     Viv_DiF           0.688
##     Viv_Pla           0.668
##     Viv_HabRC         0.673
##     Viv_HabR          0.542
##     Viv_PrInf         0.740
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.617    0.800
##     Viv_EvInt         0.864    0.051   17.089    0.000    1.397    0.768
##     Viv_DiF           0.899    0.059   15.130    0.000    1.453    0.826
##     Viv_Pla           0.859    0.057   15.147    0.000    1.388    0.873
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.242    0.806
##     Viv_HabR          0.758    0.041   18.665    0.000    0.941    0.680
##     Viv_PrInf         1.176    0.089   13.151    0.000    1.461    0.773
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.413    0.049    8.356    0.000    0.413    0.448
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.322    0.055    5.868    0.000    0.322    0.279
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.660    0.120   13.880    0.000    0.827    0.827
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.181    0.052   -3.500    0.000   -0.112   -0.112
##     Viv_Hard         -0.335    0.048   -7.020    0.000   -0.270   -0.270
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.616    0.191  -24.195    0.000   -4.616   -2.284
##     Viv_AdmT|t2      -3.328    0.131  -25.331    0.000   -3.328   -1.646
##     Viv_AdmT|t3      -2.493    0.100  -24.887    0.000   -2.493   -1.233
##     Viv_AdmT|t4       0.094    0.042    2.229    0.026    0.094    0.047
##     Viv_EvInt|t1     -4.117    0.150  -27.517    0.000   -4.117   -2.263
##     Viv_EvInt|t2     -2.602    0.094  -27.798    0.000   -2.602   -1.430
##     Viv_EvInt|t3     -1.774    0.068  -26.001    0.000   -1.774   -0.975
##     Viv_EvInt|t4      0.476    0.041   11.617    0.000    0.476    0.262
##     Viv_DiF|t1       -4.570    0.206  -22.201    0.000   -4.570   -2.598
##     Viv_DiF|t2       -3.415    0.152  -22.503    0.000   -3.415   -1.941
##     Viv_DiF|t3       -2.640    0.119  -22.275    0.000   -2.640   -1.501
##     Viv_DiF|t4       -0.191    0.039   -4.918    0.000   -0.191   -0.109
##     Viv_Pla|t1       -4.609    0.192  -23.989    0.000   -4.609   -2.899
##     Viv_Pla|t2       -3.737    0.159  -23.435    0.000   -3.737   -2.350
##     Viv_Pla|t3       -2.724    0.116  -23.388    0.000   -2.724   -1.713
##     Viv_Pla|t4       -0.154    0.037   -4.196    0.000   -0.154   -0.097
##     Viv_HabRC|t1     -4.667    0.201  -23.171    0.000   -4.667   -3.030
##     Viv_HabRC|t2     -3.706    0.161  -23.063    0.000   -3.706   -2.406
##     Viv_HabRC|t3     -2.688    0.121  -22.298    0.000   -2.688   -1.745
##     Viv_HabRC|t4     -0.274    0.040   -6.776    0.000   -0.274   -0.178
##     Viv_HabR|t1      -3.677    0.122  -30.252    0.000   -3.677   -2.658
##     Viv_HabR|t2      -2.571    0.082  -31.447    0.000   -2.571   -1.858
##     Viv_HabR|t3      -1.685    0.056  -29.994    0.000   -1.685   -1.218
##     Viv_HabR|t4      -0.010    0.032   -0.321    0.749   -0.010   -0.007
##     Viv_PrInf|t1     -4.854    0.205  -23.639    0.000   -4.854   -2.567
##     Viv_PrInf|t2     -3.631    0.152  -23.887    0.000   -3.631   -1.921
##     Viv_PrInf|t3     -2.698    0.116  -23.220    0.000   -2.698   -1.427
##     Viv_PrInf|t4      0.103    0.047    2.182    0.029    0.103    0.055
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.472    0.156    9.411    0.000    1.472    0.360
##    .Viv_EvInt         1.357    0.134   10.122    0.000    1.357    0.410
##    .Viv_DiF           0.982    0.134    7.330    0.000    0.982    0.317
##    .Viv_Pla           0.600    0.094    6.372    0.000    0.600    0.237
##    .Viv_HabRC         0.830    0.116    7.172    0.000    0.830    0.350
##    .Viv_HabR          1.028    0.095   10.862    0.000    1.028    0.537
##    .Viv_PrInf         1.440    0.152    9.456    0.000    1.440    0.403
##     Viv_Soft          2.615    0.235   11.121    0.000    1.000    1.000
##     Viv_Hard          1.543    0.161    9.556    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.495                               0.495    1.000
##     Viv_EvInt         0.550                               0.550    1.000
##     Viv_DiF           0.569                               0.569    1.000
##     Viv_Pla           0.629                               0.629    1.000
##     Viv_HabRC         0.649                               0.649    1.000
##     Viv_HabR          0.723                               0.723    1.000
##     Viv_PrInf         0.529                               0.529    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.640
##     Viv_EvInt         0.590
##     Viv_DiF           0.683
##     Viv_Pla           0.763
##     Viv_HabRC         0.650
##     Viv_HabR          0.463
##     Viv_PrInf         0.597
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##                94.795                46.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.025                 0.999                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.017                 0.012                 0.021
modificationindices(invariance$fit.thresholds, sort.=T,maximum.number = 10)
##          lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 166 Viv_Hard  =~   Viv_Pla     1     1     1 62.76  0.162   0.233    0.134
## 51   Viv_Pla ~*~   Viv_Pla     1     1     1 59.88 -0.099  -0.099   -1.000
## 114  Viv_Pla ~*~   Viv_Pla     2     2     1 54.57  0.107   0.107    1.000
## 58   Viv_Pla  ~1               1     1     1 52.04 -0.273  -0.273   -0.157
## 121  Viv_Pla  ~1               2     2     1 52.04  0.273   0.273    0.172
## 193 Viv_AdmT  ~~ Viv_EvInt     2     2     1 50.61  0.481   0.481    0.340
## 192 Viv_Hard  =~   Viv_Pla     2     2     1 41.90 -0.140  -0.174   -0.109
## 111 Viv_AdmT ~*~  Viv_AdmT     2     2     1 40.10 -0.074  -0.074   -1.000
## 64  Viv_Soft  =~  Viv_AdmT     2     2     1 39.56  0.141   0.228    0.113
## 1   Viv_Soft  =~  Viv_AdmT     1     1     1 39.56 -0.141  -0.233   -0.121
##     sepc.nox
## 166    0.134
## 51    -1.000
## 114    1.000
## 58    -0.157
## 121    0.172
## 193    0.340
## 192   -0.109
## 111   -1.000
## 64     0.113
## 1     -0.121
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8368   0.8072
## alpha.ord   0.9035   0.8841
## omega       0.8301   0.7234
## omega2      0.8301   0.7234
## omega3      0.8313   0.7234
## avevar      0.6917   0.6703
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8292   0.7421
## alpha.ord   0.8972   0.8368
## omega       0.8045   0.6640
## omega2      0.8045   0.6640
## omega3      0.7964   0.6634
## avevar      0.6612   0.5805

5.1.1.5 Partial Invariance - Sex Means

summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 153 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                        83
##   Number of equality constraints                    33
##                                                       
##   Number of observations per group:                   
##     2                                             3095
##     1                                             4508
##   Number of missing patterns per group:               
##     2                                                1
##     1                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               580.229     200.166
##   Degrees of freedom                                48          48
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  3.137
##   Shift parameter for each group:                                 
##       2                                                      6.188
##       1                                                      9.014
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          311.951     105.631
##     1                                          268.278      94.535
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57583.946   53150.718
##   Degrees of freedom                                42          42
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.084
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991       0.997
##   Tucker-Lewis Index (TLI)                       0.992       0.997
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.054       0.029
##   90 Percent confidence interval - lower         0.050       0.025
##   90 Percent confidence interval - upper         0.058       0.033
##   P-value RMSEA <= 0.05                          0.045       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026       0.026
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.657    0.856
##     Viv_EvInt         0.857    0.050   17.143    0.000    1.420    0.818
##     Viv_DiF           0.894    0.059   15.129    0.000    1.481    0.829
##     Viv_Pla           0.857    0.057   15.045    0.000    1.419    0.818
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.444    0.822
##     Viv_HabR          0.751    0.041   18.299    0.000    1.085    0.735
##     Viv_PrInf         1.168    0.091   12.901    0.000    1.686    0.860
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.542    0.022   24.536    0.000    0.542    0.542
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.210    0.043    4.878    0.000    0.210    0.210
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.965    0.136   14.495    0.000    0.821    0.821
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.652    0.193  -24.091    0.000   -4.652   -2.403
##     Viv_AdmT|t2      -3.323    0.131  -25.356    0.000   -3.323   -1.717
##     Viv_AdmT|t3      -2.462    0.098  -25.201    0.000   -2.462   -1.272
##     Viv_AdmT|t4       0.201    0.030    6.751    0.000    0.201    0.104
##     Viv_EvInt|t1     -4.121    0.148  -27.763    0.000   -4.121   -2.372
##     Viv_EvInt|t2     -2.573    0.091  -28.341    0.000   -2.573   -1.481
##     Viv_EvInt|t3     -1.725    0.064  -27.067    0.000   -1.725   -0.993
##     Viv_EvInt|t4      0.576    0.031   18.308    0.000    0.576    0.331
##     Viv_DiF|t1       -4.587    0.206  -22.273    0.000   -4.587   -2.566
##     Viv_DiF|t2       -3.404    0.150  -22.628    0.000   -3.404   -1.904
##     Viv_DiF|t3       -2.609    0.116  -22.499    0.000   -2.609   -1.460
##     Viv_DiF|t4       -0.097    0.027   -3.631    0.000   -0.097   -0.054
##     Viv_Pla|t1       -4.634    0.193  -24.048    0.000   -4.634   -2.669
##     Viv_Pla|t2       -3.738    0.160  -23.398    0.000   -3.738   -2.153
##     Viv_Pla|t3       -2.697    0.116  -23.327    0.000   -2.697   -1.553
##     Viv_Pla|t4       -0.058    0.025   -2.341    0.019   -0.058   -0.033
##     Viv_HabRC|t1     -4.733    0.205  -23.066    0.000   -4.733   -2.695
##     Viv_HabRC|t2     -3.710    0.163  -22.775    0.000   -3.710   -2.112
##     Viv_HabRC|t3     -2.633    0.121  -21.826    0.000   -2.633   -1.499
##     Viv_HabRC|t4     -0.063    0.025   -2.524    0.012   -0.063   -0.036
##     Viv_HabR|t1      -3.710    0.122  -30.355    0.000   -3.710   -2.515
##     Viv_HabR|t2      -2.546    0.081  -31.564    0.000   -2.546   -1.726
##     Viv_HabR|t3      -1.613    0.053  -30.377    0.000   -1.613   -1.093
##     Viv_HabR|t4       0.151    0.022    6.954    0.000    0.151    0.102
##     Viv_PrInf|t1     -4.892    0.207  -23.643    0.000   -4.892   -2.495
##     Viv_PrInf|t2     -3.599    0.150  -23.941    0.000   -3.599   -1.836
##     Viv_PrInf|t3     -2.612    0.111  -23.473    0.000   -2.612   -1.332
##     Viv_PrInf|t4      0.351    0.031   11.188    0.000    0.351    0.179
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.267
##    .Viv_EvInt         1.000                               1.000    0.331
##    .Viv_DiF           1.000                               1.000    0.313
##    .Viv_Pla           1.000                               1.000    0.332
##    .Viv_HabRC         1.000                               1.000    0.324
##    .Viv_HabR          1.000                               1.000    0.459
##    .Viv_PrInf         1.000                               1.000    0.260
##     Viv_Soft          2.746    0.243   11.301    0.000    1.000    1.000
##     Viv_Hard          2.085    0.206   10.117    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.517                               0.517    1.000
##     Viv_EvInt         0.576                               0.576    1.000
##     Viv_DiF           0.559                               0.559    1.000
##     Viv_Pla           0.576                               0.576    1.000
##     Viv_HabRC         0.569                               0.569    1.000
##     Viv_HabR          0.678                               0.678    1.000
##     Viv_PrInf         0.510                               0.510    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.733
##     Viv_EvInt         0.669
##     Viv_DiF           0.687
##     Viv_Pla           0.668
##     Viv_HabRC         0.676
##     Viv_HabR          0.541
##     Viv_PrInf         0.740
## 
## 
## Group 2 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.000                               1.698    0.798
##     Viv_EvInt         0.857    0.050   17.143    0.000    1.455    0.766
##     Viv_DiF           0.894    0.059   15.129    0.000    1.518    0.826
##     Viv_Pla           0.857    0.057   15.045    0.000    1.454    0.877
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.000                               1.374    0.811
##     Viv_HabR          0.751    0.041   18.299    0.000    1.033    0.683
##     Viv_PrInf         1.168    0.091   12.901    0.000    1.605    0.769
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.482    0.057    8.455    0.000    0.482    0.441
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.358    0.060    5.947    0.000    0.358    0.283
##   Viv_Soft ~~                                                           
##     Viv_Hard          1.926    0.134   14.349    0.000    0.825    0.825
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.652    0.193  -24.091    0.000   -4.652   -2.186
##     Viv_AdmT|t2      -3.323    0.131  -25.356    0.000   -3.323   -1.562
##     Viv_AdmT|t3      -2.462    0.098  -25.201    0.000   -2.462   -1.157
##     Viv_AdmT|t4       0.201    0.030    6.751    0.000    0.201    0.094
##     Viv_EvInt|t1     -4.121    0.148  -27.763    0.000   -4.121   -2.169
##     Viv_EvInt|t2     -2.573    0.091  -28.341    0.000   -2.573   -1.355
##     Viv_EvInt|t3     -1.725    0.064  -27.067    0.000   -1.725   -0.908
##     Viv_EvInt|t4      0.576    0.031   18.308    0.000    0.576    0.303
##     Viv_DiF|t1       -4.587    0.206  -22.273    0.000   -4.587   -2.496
##     Viv_DiF|t2       -3.404    0.150  -22.628    0.000   -3.404   -1.852
##     Viv_DiF|t3       -2.609    0.116  -22.499    0.000   -2.609   -1.420
##     Viv_DiF|t4       -0.097    0.027   -3.631    0.000   -0.097   -0.053
##     Viv_Pla|t1       -4.634    0.193  -24.048    0.000   -4.634   -2.793
##     Viv_Pla|t2       -3.738    0.160  -23.398    0.000   -3.738   -2.253
##     Viv_Pla|t3       -2.697    0.116  -23.327    0.000   -2.697   -1.626
##     Viv_Pla|t4       -0.058    0.025   -2.341    0.019   -0.058   -0.035
##     Viv_HabRC|t1     -4.733    0.205  -23.066    0.000   -4.733   -2.794
##     Viv_HabRC|t2     -3.710    0.163  -22.775    0.000   -3.710   -2.190
##     Viv_HabRC|t3     -2.633    0.121  -21.826    0.000   -2.633   -1.554
##     Viv_HabRC|t4     -0.063    0.025   -2.524    0.012   -0.063   -0.037
##     Viv_HabR|t1      -3.710    0.122  -30.355    0.000   -3.710   -2.455
##     Viv_HabR|t2      -2.546    0.081  -31.564    0.000   -2.546   -1.685
##     Viv_HabR|t3      -1.613    0.053  -30.377    0.000   -1.613   -1.067
##     Viv_HabR|t4       0.151    0.022    6.954    0.000    0.151    0.100
##     Viv_PrInf|t1     -4.892    0.207  -23.643    0.000   -4.892   -2.342
##     Viv_PrInf|t2     -3.599    0.150  -23.941    0.000   -3.599   -1.723
##     Viv_PrInf|t3     -2.612    0.111  -23.473    0.000   -2.612   -1.251
##     Viv_PrInf|t4      0.351    0.031   11.188    0.000    0.351    0.168
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.644    0.176    9.353    0.000    1.644    0.363
##    .Viv_EvInt         1.490    0.146   10.207    0.000    1.490    0.413
##    .Viv_DiF           1.074    0.146    7.363    0.000    1.074    0.318
##    .Viv_Pla           0.638    0.100    6.356    0.000    0.638    0.232
##    .Viv_HabRC         0.981    0.136    7.229    0.000    0.981    0.342
##    .Viv_HabR          1.217    0.109   11.214    0.000    1.217    0.533
##    .Viv_PrInf         1.785    0.188    9.484    0.000    1.785    0.409
##     Viv_Soft          2.882    0.256   11.261    0.000    1.000    1.000
##     Viv_Hard          1.889    0.191    9.894    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.470                               0.470    1.000
##     Viv_EvInt         0.526                               0.526    1.000
##     Viv_DiF           0.544                               0.544    1.000
##     Viv_Pla           0.603                               0.603    1.000
##     Viv_HabRC         0.590                               0.590    1.000
##     Viv_HabR          0.662                               0.662    1.000
##     Viv_PrInf         0.479                               0.479    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.637
##     Viv_EvInt         0.587
##     Viv_DiF           0.682
##     Viv_Pla           0.768
##     Viv_HabRC         0.658
##     Viv_HabR          0.467
##     Viv_PrInf         0.591
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               200.166                48.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.026                 0.997                 0.997 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.029                 0.025                 0.033
modificationindices(invariance$fit.means, sort.=T,maximum.number = 10)
##           lhs op rhs block group level     mi    epc sepc.lv sepc.all sepc.nox
## 63   Viv_Hard ~1         1     1     1 266.41  0.350   0.242    0.242    0.242
## 126  Viv_Hard ~1         2     2     1 266.41 -0.350  -0.254   -0.254   -0.254
## 61  Viv_PrInf ~1         1     1     1 170.01  0.495   0.495    0.252    0.252
## 124 Viv_PrInf ~1         2     2     1 170.01 -0.495  -0.495   -0.237   -0.237
## 125  Viv_Soft ~1         2     2     1  78.53 -0.185  -0.109   -0.109   -0.109
## 62   Viv_Soft ~1         1     1     1  78.53  0.185   0.111    0.111    0.111
## 56  Viv_EvInt ~1         1     1     1  68.99  0.248   0.248    0.143    0.143
## 119 Viv_EvInt ~1         2     2     1  68.99 -0.248  -0.248   -0.131   -0.131
## 60   Viv_HabR ~1         1     1     1  66.48  0.225   0.225    0.152    0.152
## 123  Viv_HabR ~1         2     2     1  66.48 -0.225  -0.225   -0.149   -0.149
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8368   0.8072
## alpha.ord   0.9035   0.8841
## omega       0.8299   0.7249
## omega2      0.8299   0.7249
## omega3      0.8311   0.7248
## avevar      0.6917   0.6705
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8292   0.7421
## alpha.ord   0.8972   0.8368
## omega       0.8067   0.6757
## omega2      0.8067   0.6757
## omega3      0.7981   0.6751
## avevar      0.6603   0.5814

5.1.1.6 Organizing Education

data$Esc<-car::recode(data$Esc,"5=4")
data$EscClasseR<-as.factor(data$Esc)
summary(data$EscClasseR)
##    1    2    3    4 
##  503 2506 4006  593

5.1.1.7 Education Invariance Model

model <- '
Viv_Soft =~ Viv_AdmT + Viv_EvInt + Viv_DiF + Viv_Pla
Viv_Hard =~ Viv_HabRC + Viv_HabR + Viv_PrInf
Viv_HabRC ~~ Viv_HabR
Viv_EvInt ~~ Viv_DiF
'

5.1.1.8 Fitting

invariance<- measurementInvarianceCat(model = model, data = data, group = "EscClasseR",parameterization = "theta", estimator = "ULSMV",ordered = T,missing="pairwise",std.lv=T)
## Warning: The measurementInvarianceCat function is deprecated, and it will cease
## to be included in future versions of semTools. See help('semTools-deprecated)
## for details.
## Warning in lav_model_vcov(lavmodel = lavmodel, lavsamplestats = lavsamplestats, : lavaan WARNING:
##     The variance-covariance matrix of the estimated parameters (vcov)
##     does not appear to be positive definite! The smallest eigenvalue
##     (= 1.243154e-13) is close to zero. This may be a symptom that the
##     model is not identified.
## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.thresholds
## Model 4 : fit.means
## 
## Scaled Chi-Squared Difference Test (method = "satorra.2000")
## 
## lavaan NOTE:
##     The "Chisq" column contains standard test statistics, not the
##     robust test that should be reported per model. A robust difference
##     test is a function of two standard (not robust) statistics.
##  
##                 Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)   
## fit.configural  44          71.5                                 
## fit.loadings    59         150.0       16.3      15     0.3648   
## fit.thresholds 116         511.2       61.6      57     0.3151   
## fit.means      122         910.1       22.2       6     0.0011 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                cfi.scaled rmsea.scaled cfi.scaled.delta rmsea.scaled.delta
## fit.configural      0.995        0.059               NA                 NA
## fit.loadings        0.999        0.018            0.005              0.041
## fit.thresholds      0.999        0.012            0.000              0.006
## fit.means           0.998        0.019            0.001              0.007
5.1.1.8.1 Configural
summary(invariance$fit.configural,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 598 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       179
##   Number of equality constraints                    27
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                                71.511     339.451
##   Degrees of freedom                                44          44
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  0.214
##   Shift parameter for each group:                                 
##       2                                                      1.613
##       3                                                      2.579
##       1                                                      0.324
##       4                                                      0.382
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           17.308      82.587
##     3                                           39.420     186.999
##     1                                            7.015      33.140
##     4                                            7.768      36.725
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57688.409   56390.095
##   Degrees of freedom                                84          84
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.024
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       0.995
##   Tucker-Lewis Index (TLI)                       0.999       0.990
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.018       0.059
##   90 Percent confidence interval - lower         0.010       0.054
##   90 Percent confidence interval - upper         0.026       0.065
##   P-value RMSEA <= 0.05                          1.000       0.004
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018       0.018
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.435    0.052   27.427    0.000    1.435    0.821
##     Viv_EvInt         1.322    0.047   28.174    0.000    1.322    0.798
##     Viv_DiF           1.438    0.056   25.830    0.000    1.438    0.821
##     Viv_Pla           1.569    0.065   24.290    0.000    1.569    0.843
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.565    0.075   20.915    0.000    1.565    0.843
##     Viv_HabR          1.075    0.045   23.804    0.000    1.075    0.732
##     Viv_PrInf         1.390    0.055   25.128    0.000    1.390    0.812
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.432    0.028   15.535    0.000    0.432    0.432
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.220    0.030    7.352    0.000    0.220    0.220
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.832    0.011   73.615    0.000    0.832    0.832
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -3.996    0.123  -32.448    0.000   -3.996   -2.284
##     Viv_AdmT|t2      -2.827    0.081  -35.109    0.000   -2.827   -1.616
##     Viv_AdmT|t3      -2.055    0.066  -30.997    0.000   -2.055   -1.174
##     Viv_AdmT|t4       0.322    0.043    7.416    0.000    0.322    0.184
##     Viv_EvInt|t1     -3.702    0.103  -36.016    0.000   -3.702   -2.233
##     Viv_EvInt|t2     -2.372    0.066  -36.203    0.000   -2.372   -1.431
##     Viv_EvInt|t3     -1.595    0.055  -29.030    0.000   -1.595   -0.962
##     Viv_EvInt|t4      0.586    0.042   13.967    0.000    0.586    0.353
##     Viv_DiF|t1       -4.489    0.168  -26.746    0.000   -4.489   -2.563
##     Viv_DiF|t2       -3.180    0.092  -34.722    0.000   -3.180   -1.816
##     Viv_DiF|t3       -2.477    0.077  -32.353    0.000   -2.477   -1.414
##     Viv_DiF|t4       -0.005    0.044   -0.120    0.905   -0.005   -0.003
##     Viv_Pla|t1       -5.002    0.192  -26.006    0.000   -5.002   -2.688
##     Viv_Pla|t2       -3.992    0.128  -31.231    0.000   -3.992   -2.145
##     Viv_Pla|t3       -2.902    0.095  -30.411    0.000   -2.902   -1.559
##     Viv_Pla|t4        0.034    0.046    0.722    0.470    0.034    0.018
##     Viv_HabRC|t1     -4.867    0.208  -23.433    0.000   -4.867   -2.621
##     Viv_HabRC|t2     -4.148    0.155  -26.676    0.000   -4.148   -2.233
##     Viv_HabRC|t3     -2.823    0.108  -26.148    0.000   -2.823   -1.520
##     Viv_HabRC|t4      0.033    0.046    0.722    0.470    0.033    0.018
##     Viv_HabR|t1      -3.624    0.135  -26.833    0.000   -3.624   -2.469
##     Viv_HabR|t2      -2.463    0.072  -34.117    0.000   -2.463   -1.678
##     Viv_HabR|t3      -1.504    0.052  -29.048    0.000   -1.504   -1.024
##     Viv_HabR|t4       0.272    0.036    7.456    0.000    0.272    0.185
##     Viv_PrInf|t1     -4.038    0.144  -27.979    0.000   -4.038   -2.358
##     Viv_PrInf|t2     -3.007    0.091  -32.941    0.000   -3.007   -1.756
##     Viv_PrInf|t3     -2.169    0.071  -30.429    0.000   -2.169   -1.267
##     Viv_PrInf|t4      0.394    0.042    9.294    0.000    0.394    0.230
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.327
##    .Viv_EvInt         1.000                               1.000    0.364
##    .Viv_DiF           1.000                               1.000    0.326
##    .Viv_Pla           1.000                               1.000    0.289
##    .Viv_HabRC         1.000                               1.000    0.290
##    .Viv_HabR          1.000                               1.000    0.464
##    .Viv_PrInf         1.000                               1.000    0.341
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.572                               0.572    1.000
##     Viv_EvInt         0.603                               0.603    1.000
##     Viv_DiF           0.571                               0.571    1.000
##     Viv_Pla           0.537                               0.537    1.000
##     Viv_HabRC         0.538                               0.538    1.000
##     Viv_HabR          0.681                               0.681    1.000
##     Viv_PrInf         0.584                               0.584    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.673
##     Viv_EvInt         0.636
##     Viv_DiF           0.674
##     Viv_Pla           0.711
##     Viv_HabRC         0.710
##     Viv_HabR          0.536
##     Viv_PrInf         0.659
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.610    0.199    8.075    0.000    1.610    0.833
##     Viv_EvInt         1.411    0.147    9.571    0.000    1.411    0.788
##     Viv_DiF           1.558    0.159    9.809    0.000    1.558    0.823
##     Viv_Pla           1.651    0.167    9.898    0.000    1.651    0.853
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.882    0.229    3.859    0.000    0.882    0.804
##     Viv_HabR          0.638    0.147    4.335    0.000    0.638    0.696
##     Viv_PrInf         0.801    0.204    3.929    0.000    0.801    0.803
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.216    0.106    2.031    0.042    0.216    0.504
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.325    0.072    4.487    0.000    0.325    0.274
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.817    0.010   81.626    0.000    0.817    0.817
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.192    0.234    0.820    0.412    0.192    0.192
##     Viv_Hard         -2.029    1.246   -1.628    0.104   -2.029   -2.029
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -3.996    0.123  -32.448    0.000   -3.996   -2.067
##     Viv_AdmT|t2      -2.827    0.081  -35.109    0.000   -2.827   -1.462
##     Viv_AdmT|t3      -2.079    0.141  -14.789    0.000   -2.079   -1.075
##     Viv_AdmT|t4       0.379    0.422    0.900    0.368    0.379    0.196
##     Viv_EvInt|t1     -3.702    0.103  -36.016    0.000   -3.702   -2.068
##     Viv_EvInt|t2     -2.201    0.143  -15.367    0.000   -2.201   -1.230
##     Viv_EvInt|t3     -1.407    0.203   -6.942    0.000   -1.407   -0.786
##     Viv_EvInt|t4      0.792    0.408    1.944    0.052    0.792    0.443
##     Viv_DiF|t1       -4.489    0.168  -26.746    0.000   -4.489   -2.370
##     Viv_DiF|t2       -3.367    0.171  -19.696    0.000   -3.367   -1.778
##     Viv_DiF|t3       -2.473    0.189  -13.102    0.000   -2.473   -1.306
##     Viv_DiF|t4        0.094    0.373    0.252    0.801    0.094    0.050
##     Viv_Pla|t1       -5.002    0.192  -26.006    0.000   -5.002   -2.584
##     Viv_Pla|t2       -4.084    0.211  -19.381    0.000   -4.084   -2.110
##     Viv_Pla|t3       -2.849    0.214  -13.323    0.000   -2.849   -1.472
##     Viv_Pla|t4        0.150    0.400    0.375    0.708    0.150    0.077
##     Viv_HabRC|t1     -4.867    0.208  -23.433    0.000   -4.867   -4.439
##     Viv_HabRC|t2     -4.148    0.155  -26.676    0.000   -4.148   -3.783
##     Viv_HabRC|t3     -3.492    0.245  -14.248    0.000   -3.492   -3.185
##     Viv_HabRC|t4     -1.876    0.623   -3.011    0.003   -1.876   -1.711
##     Viv_HabR|t1      -3.624    0.135  -26.833    0.000   -3.624   -3.954
##     Viv_HabR|t2      -2.888    0.183  -15.808    0.000   -2.888   -3.151
##     Viv_HabR|t3      -2.317    0.286   -8.101    0.000   -2.317   -2.528
##     Viv_HabR|t4      -1.253    0.513   -2.439    0.015   -1.253   -1.367
##     Viv_PrInf|t1     -4.038    0.144  -27.979    0.000   -4.038   -4.050
##     Viv_PrInf|t2     -3.412    0.193  -17.659    0.000   -3.412   -3.423
##     Viv_PrInf|t3     -2.937    0.284  -10.329    0.000   -2.937   -2.946
##     Viv_PrInf|t4     -1.508    0.622   -2.425    0.015   -1.508   -1.512
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.146    0.278    4.122    0.000    1.146    0.307
##    .Viv_EvInt         1.212    0.248    4.881    0.000    1.212    0.378
##    .Viv_DiF           1.160    0.233    4.970    0.000    1.160    0.323
##    .Viv_Pla           1.020    0.197    5.179    0.000    1.020    0.272
##    .Viv_HabRC         0.425    0.218    1.949    0.051    0.425    0.353
##    .Viv_HabR          0.433    0.200    2.173    0.030    0.433    0.516
##    .Viv_PrInf         0.353    0.179    1.970    0.049    0.353    0.355
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.517                               0.517    1.000
##     Viv_EvInt         0.559                               0.559    1.000
##     Viv_DiF           0.528                               0.528    1.000
##     Viv_Pla           0.517                               0.517    1.000
##     Viv_HabRC         0.912                               0.912    1.000
##     Viv_HabR          1.091                               1.091    1.000
##     Viv_PrInf         1.003                               1.003    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.693
##     Viv_EvInt         0.622
##     Viv_DiF           0.677
##     Viv_Pla           0.728
##     Viv_HabRC         0.647
##     Viv_HabR          0.484
##     Viv_PrInf         0.645
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.597    0.391    4.081    0.000    1.597    0.805
##     Viv_EvInt         1.130    0.232    4.861    0.000    1.130    0.821
##     Viv_DiF           1.792    0.406    4.414    0.000    1.792    0.919
##     Viv_Pla           1.614    0.343    4.704    0.000    1.614    0.865
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.671    0.262    2.560    0.010    0.671    0.871
##     Viv_HabR          0.506    0.182    2.784    0.005    0.506    0.703
##     Viv_PrInf         0.599    0.227    2.639    0.008    0.599    0.835
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.078    0.060    1.304    0.192    0.078    0.401
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF          -0.037    0.057   -0.649    0.516   -0.037   -0.061
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.844    0.022   37.579    0.000    0.844    0.844
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.231    0.457    0.506    0.613    0.231    0.231
##     Viv_Hard         -3.949    2.450   -1.612    0.107   -3.949   -3.949
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -3.996    0.123  -32.448    0.000   -3.996   -2.014
##     Viv_AdmT|t2      -2.827    0.081  -35.109    0.000   -2.827   -1.424
##     Viv_AdmT|t3      -1.950    0.279   -6.983    0.000   -1.950   -0.983
##     Viv_AdmT|t4       0.802    0.916    0.876    0.381    0.802    0.404
##     Viv_EvInt|t1     -3.702    0.103  -36.016    0.000   -3.702   -2.690
##     Viv_EvInt|t2     -1.837    0.315   -5.838    0.000   -1.837   -1.335
##     Viv_EvInt|t3     -1.159    0.359   -3.232    0.001   -1.159   -0.842
##     Viv_EvInt|t4      0.747    0.644    1.161    0.246    0.747    0.543
##     Viv_DiF|t1       -4.489    0.168  -26.746    0.000   -4.489   -2.302
##     Viv_DiF|t2       -3.518    0.320  -11.000    0.000   -3.518   -1.804
##     Viv_DiF|t3       -2.657    0.393   -6.769    0.000   -2.657   -1.363
##     Viv_DiF|t4        0.574    0.933    0.616    0.538    0.574    0.294
##     Viv_Pla|t1       -5.002    0.192  -26.006    0.000   -5.002   -2.680
##     Viv_Pla|t2       -3.844    0.452   -8.496    0.000   -3.844   -2.060
##     Viv_Pla|t3       -2.777    0.432   -6.434    0.000   -2.777   -1.488
##     Viv_Pla|t4        0.658    0.852    0.772    0.440    0.658    0.352
##     Viv_HabRC|t1     -4.867    0.208  -23.433    0.000   -4.867   -6.320
##     Viv_HabRC|t2     -4.148    0.155  -26.676    0.000   -4.148   -5.386
##     Viv_HabRC|t3     -3.744    0.243  -15.428    0.000   -3.744   -4.862
##     Viv_HabRC|t4     -2.520    0.676   -3.731    0.000   -2.520   -3.273
##     Viv_HabR|t1      -3.624    0.135  -26.833    0.000   -3.624   -5.035
##     Viv_HabR|t2      -2.992    0.227  -13.155    0.000   -2.992   -4.157
##     Viv_HabR|t3      -2.523    0.366   -6.891    0.000   -2.523   -3.506
##     Viv_HabR|t4      -1.657    0.658   -2.520    0.012   -1.657   -2.302
##     Viv_PrInf|t1     -4.038    0.144  -27.979    0.000   -4.038   -5.627
##     Viv_PrInf|t2     -3.417    0.244  -14.005    0.000   -3.417   -4.762
##     Viv_PrInf|t3     -3.077    0.346   -8.902    0.000   -3.077   -4.289
##     Viv_PrInf|t4     -2.067    0.698   -2.959    0.003   -2.067   -2.880
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.387    0.642    2.159    0.031    1.387    0.352
##    .Viv_EvInt         0.617    0.252    2.443    0.015    0.617    0.326
##    .Viv_DiF           0.592    0.239    2.478    0.013    0.592    0.156
##    .Viv_Pla           0.877    0.377    2.329    0.020    0.877    0.252
##    .Viv_HabRC         0.143    0.114    1.258    0.208    0.143    0.241
##    .Viv_HabR          0.262    0.186    1.408    0.159    0.262    0.506
##    .Viv_PrInf         0.156    0.115    1.355    0.175    0.156    0.302
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.504                               0.504    1.000
##     Viv_EvInt         0.727                               0.727    1.000
##     Viv_DiF           0.513                               0.513    1.000
##     Viv_Pla           0.536                               0.536    1.000
##     Viv_HabRC         1.299                               1.299    1.000
##     Viv_HabR          1.389                               1.389    1.000
##     Viv_PrInf         1.394                               1.394    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.648
##     Viv_EvInt         0.674
##     Viv_DiF           0.844
##     Viv_Pla           0.748
##     Viv_HabRC         0.759
##     Viv_HabR          0.494
##     Viv_PrInf         0.698
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.164    0.256    4.553    0.000    1.164    0.794
##     Viv_EvInt         1.148    0.218    5.258    0.000    1.148    0.789
##     Viv_DiF           1.359    0.255    5.332    0.000    1.359    0.829
##     Viv_Pla           1.314    0.231    5.691    0.000    1.314    0.800
##   Viv_Hard =~                                                           
##     Viv_HabRC         0.605    0.255    2.377    0.017    0.605    0.712
##     Viv_HabR          0.486    0.192    2.532    0.011    0.486    0.678
##     Viv_PrInf         0.553    0.222    2.490    0.013    0.553    0.762
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.178    0.147    1.215    0.224    0.178    0.566
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.219    0.107    2.045    0.041    0.219    0.267
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.828    0.029   28.563    0.000    0.828    0.828
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.421    0.553   -0.761    0.447   -0.421   -0.421
##     Viv_Hard         -3.928    2.895   -1.357    0.175   -3.928   -3.928
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -3.996    0.123  -32.448    0.000   -3.996   -2.724
##     Viv_AdmT|t2      -2.827    0.081  -35.109    0.000   -2.827   -1.927
##     Viv_AdmT|t3      -2.156    0.202  -10.690    0.000   -2.156   -1.469
##     Viv_AdmT|t4      -0.363    0.567   -0.640    0.522   -0.363   -0.247
##     Viv_EvInt|t1     -3.702    0.103  -36.016    0.000   -3.702   -2.544
##     Viv_EvInt|t2     -2.311    0.265   -8.720    0.000   -2.311   -1.588
##     Viv_EvInt|t3     -1.619    0.363   -4.456    0.000   -1.619   -1.113
##     Viv_EvInt|t4     -0.024    0.633   -0.037    0.970   -0.024   -0.016
##     Viv_DiF|t1       -4.489    0.168  -26.746    0.000   -4.489   -2.739
##     Viv_DiF|t2       -3.286    0.296  -11.096    0.000   -3.286   -2.005
##     Viv_DiF|t3       -2.601    0.360   -7.228    0.000   -2.601   -1.587
##     Viv_DiF|t4       -0.583    0.653   -0.892    0.372   -0.583   -0.355
##     Viv_Pla|t1       -5.002    0.192  -26.006    0.000   -5.002   -3.046
##     Viv_Pla|t2       -3.918    0.362  -10.834    0.000   -3.918   -2.386
##     Viv_Pla|t3       -2.869    0.390   -7.355    0.000   -2.869   -1.747
##     Viv_Pla|t4       -0.640    0.639   -1.002    0.316   -0.640   -0.390
##     Viv_HabRC|t1     -4.867    0.208  -23.433    0.000   -4.867   -5.729
##     Viv_HabRC|t2     -4.148    0.155  -26.676    0.000   -4.148   -4.882
##     Viv_HabRC|t3     -3.693    0.269  -13.744    0.000   -3.693   -4.346
##     Viv_HabRC|t4     -2.527    0.709   -3.564    0.000   -2.527   -2.974
##     Viv_HabR|t1      -3.624    0.135  -26.833    0.000   -3.624   -5.052
##     Viv_HabR|t2      -3.292    0.191  -17.209    0.000   -3.292   -4.589
##     Viv_HabR|t3      -2.955    0.291  -10.161    0.000   -2.955   -4.120
##     Viv_HabR|t4      -2.036    0.621   -3.277    0.001   -2.036   -2.839
##     Viv_PrInf|t1     -4.038    0.144  -27.979    0.000   -4.038   -5.566
##     Viv_PrInf|t2     -3.590    0.244  -14.685    0.000   -3.590   -4.949
##     Viv_PrInf|t3     -3.155    0.379   -8.314    0.000   -3.155   -4.349
##     Viv_PrInf|t4     -2.069    0.785   -2.636    0.008   -2.069   -2.852
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.797    0.335    2.376    0.018    0.797    0.370
##    .Viv_EvInt         0.800    0.300    2.666    0.008    0.800    0.378
##    .Viv_DiF           0.840    0.318    2.645    0.008    0.840    0.313
##    .Viv_Pla           0.971    0.328    2.959    0.003    0.971    0.360
##    .Viv_HabRC         0.356    0.289    1.230    0.219    0.356    0.493
##    .Viv_HabR          0.278    0.218    1.274    0.203    0.278    0.541
##    .Viv_PrInf         0.221    0.179    1.234    0.217    0.221    0.419
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.682                               0.682    1.000
##     Viv_EvInt         0.687                               0.687    1.000
##     Viv_DiF           0.610                               0.610    1.000
##     Viv_Pla           0.609                               0.609    1.000
##     Viv_HabRC         1.177                               1.177    1.000
##     Viv_HabR          1.394                               1.394    1.000
##     Viv_PrInf         1.378                               1.378    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.630
##     Viv_EvInt         0.622
##     Viv_DiF           0.687
##     Viv_Pla           0.640
##     Viv_HabRC         0.507
##     Viv_HabR          0.459
##     Viv_PrInf         0.581
lavaan::fitMeasures(invariance$fit.configural,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               339.451                44.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.018                 0.995                 0.990 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.059                 0.054                 0.065
modificationindices(invariance$fit.configural, sort.=T,maximum.number = 10)
##          lhs op       rhs block group level     mi    epc sepc.lv sepc.all
## 313 Viv_AdmT ~~ Viv_EvInt     2     2     1 16.743  0.306   0.306    0.260
## 312 Viv_Hard =~   Viv_Pla     2     2     1 16.472  0.487   0.487    0.252
## 327  Viv_Pla ~~ Viv_HabRC     2     2     1 15.373  0.167   0.167    0.254
## 310 Viv_Hard =~ Viv_EvInt     2     2     1 10.785 -0.347  -0.347   -0.194
## 301  Viv_Pla ~~ Viv_HabRC     1     1     1  9.957  0.279   0.279    0.279
## 286 Viv_Hard =~   Viv_Pla     1     1     1  8.883  0.465   0.465    0.250
## 317 Viv_AdmT ~~  Viv_HabR     2     2     1  6.553 -0.087  -0.087   -0.124
## 315 Viv_AdmT ~~   Viv_Pla     2     2     1  5.311 -0.188  -0.188   -0.174
## 287 Viv_AdmT ~~ Viv_EvInt     1     1     1  4.563  0.167   0.167    0.167
## 289 Viv_AdmT ~~   Viv_Pla     1     1     1  4.553 -0.186  -0.186   -0.186
##     sepc.nox
## 313    0.260
## 312    0.252
## 327    0.254
## 310   -0.194
## 301    0.279
## 286    0.250
## 317   -0.124
## 315   -0.174
## 287    0.167
## 289   -0.186
semTools::reliability(invariance$fit.configural)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8310   0.7855
## alpha.ord   0.8974   0.8670
## omega       0.8191   0.7252
## omega2      0.8191   0.7252
## omega3      0.8169   0.7248
## avevar      0.6758   0.6486
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8319   0.7612
## alpha.ord   0.9014   0.8536
## omega       0.8223   0.5081
## omega2      0.8223   0.5081
## omega3      0.8189   0.5074
## avevar      0.6822   0.6012
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8446   0.7938
## alpha.ord   0.9133   0.8695
## omega       0.8556   0.2466
## omega2      0.8556   0.2466
## omega3      0.8532   0.2461
## avevar      0.7353   0.6551
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8247   0.7078
## alpha.ord   0.8860   0.8249
## omega       0.7928   0.1783
## omega2      0.7928   0.1783
## omega3      0.7913   0.1784
## avevar      0.6470   0.5153
5.1.1.8.2 Loadings
summary(invariance$fit.loadings,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 465 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       185
##   Number of equality constraints                    48
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               149.969      96.565
##   Degrees of freedom                                59          59
##   P-value (Unknown)                                 NA       0.001
##   Scaling correction factor                                  2.141
##   Shift parameter for each group:                                 
##       2                                                      8.732
##       3                                                     13.959
##       1                                                      1.753
##       4                                                      2.066
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                           27.750      21.695
##     3                                           44.041      34.532
##     1                                           50.647      25.412
##     4                                           27.531      14.927
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57688.409   56390.095
##   Degrees of freedom                                84          84
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.024
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.999
##   Tucker-Lewis Index (TLI)                       0.998       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.028       0.018
##   90 Percent confidence interval - lower         0.023       0.011
##   90 Percent confidence interval - upper         0.034       0.025
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.487    0.073   20.295    0.000    1.487    0.830
##     Viv_EvInt         1.266    0.058   21.989    0.000    1.266    0.785
##     Viv_DiF           1.517    0.109   13.917    0.000    1.517    0.835
##     Viv_Pla           1.505    0.100   15.084    0.000    1.505    0.833
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.475    0.106   13.877    0.000    1.475    0.828
##     Viv_HabR          1.146    0.066   17.451    0.000    1.146    0.754
##     Viv_PrInf         1.378    0.065   21.304    0.000    1.378    0.809
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.411    0.039   10.550    0.000    0.411    0.411
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.221    0.051    4.287    0.000    0.221    0.221
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.831    0.012   68.843    0.000    0.831    0.831
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.075    0.190  -21.436    0.000   -4.075   -2.274
##     Viv_AdmT|t2      -2.900    0.123  -23.546    0.000   -2.900   -1.618
##     Viv_AdmT|t3      -2.105    0.087  -24.119    0.000   -2.105   -1.174
##     Viv_AdmT|t4       0.330    0.045    7.312    0.000    0.330    0.184
##     Viv_EvInt|t1     -3.623    0.154  -23.466    0.000   -3.623   -2.246
##     Viv_EvInt|t2     -2.308    0.085  -27.044    0.000   -2.308   -1.431
##     Viv_EvInt|t3     -1.552    0.063  -24.484    0.000   -1.552   -0.962
##     Viv_EvInt|t4      0.570    0.042   13.497    0.000    0.570    0.353
##     Viv_DiF|t1       -4.635    0.326  -14.206    0.000   -4.635   -2.551
##     Viv_DiF|t2       -3.298    0.185  -17.791    0.000   -3.298   -1.816
##     Viv_DiF|t3       -2.570    0.141  -18.213    0.000   -2.570   -1.414
##     Viv_DiF|t4       -0.005    0.046   -0.120    0.905   -0.005   -0.003
##     Viv_Pla|t1       -4.872    0.341  -14.309    0.000   -4.872   -2.696
##     Viv_Pla|t2       -3.877    0.222  -17.459    0.000   -3.877   -2.145
##     Viv_Pla|t3       -2.818    0.149  -18.966    0.000   -2.818   -1.559
##     Viv_Pla|t4        0.033    0.045    0.721    0.471    0.033    0.018
##     Viv_HabRC|t1     -4.698    0.332  -14.136    0.000   -4.698   -2.636
##     Viv_HabRC|t2     -3.974    0.248  -16.001    0.000   -3.974   -2.230
##     Viv_HabRC|t3     -2.709    0.152  -17.849    0.000   -2.709   -1.520
##     Viv_HabRC|t4      0.032    0.045    0.720    0.472    0.032    0.018
##     Viv_HabR|t1      -3.731    0.190  -19.617    0.000   -3.731   -2.453
##     Viv_HabR|t2      -2.552    0.107  -23.828    0.000   -2.552   -1.678
##     Viv_HabR|t3      -1.558    0.068  -22.824    0.000   -1.558   -1.024
##     Viv_HabR|t4       0.282    0.039    7.294    0.000    0.282    0.185
##     Viv_PrInf|t1     -4.020    0.192  -20.937    0.000   -4.020   -2.360
##     Viv_PrInf|t2     -2.991    0.119  -25.142    0.000   -2.991   -1.756
##     Viv_PrInf|t3     -2.158    0.085  -25.428    0.000   -2.158   -1.267
##     Viv_PrInf|t4      0.392    0.043    9.065    0.000    0.392    0.230
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.311
##    .Viv_EvInt         1.000                               1.000    0.384
##    .Viv_DiF           1.000                               1.000    0.303
##    .Viv_Pla           1.000                               1.000    0.306
##    .Viv_HabRC         1.000                               1.000    0.315
##    .Viv_HabR          1.000                               1.000    0.432
##    .Viv_PrInf         1.000                               1.000    0.345
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.558                               0.558    1.000
##     Viv_EvInt         0.620                               0.620    1.000
##     Viv_DiF           0.550                               0.550    1.000
##     Viv_Pla           0.553                               0.553    1.000
##     Viv_HabRC         0.561                               0.561    1.000
##     Viv_HabR          0.657                               0.657    1.000
##     Viv_PrInf         0.587                               0.587    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.689
##     Viv_EvInt         0.616
##     Viv_DiF           0.697
##     Viv_Pla           0.694
##     Viv_HabRC         0.685
##     Viv_HabR          0.568
##     Viv_PrInf         0.655
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.487    0.073   20.295    0.000    1.554    0.823
##     Viv_EvInt         1.266    0.058   21.989    0.000    1.322    0.784
##     Viv_DiF           1.517    0.109   13.917    0.000    1.584    0.833
##     Viv_Pla           1.505    0.100   15.084    0.000    1.572    0.858
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.475    0.106   13.877    0.000    0.881    0.806
##     Viv_HabR          1.146    0.066   17.451    0.000    0.685    0.704
##     Viv_PrInf         1.378    0.065   21.304    0.000    0.824    0.798
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.220    0.099    2.216    0.027    0.220    0.493
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.293    0.080    3.660    0.000    0.293    0.266
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.509    0.129    3.936    0.000    0.816    0.816
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.103    0.228    0.450    0.653    0.098    0.098
##     Viv_Hard         -1.101    0.391   -2.813    0.005   -1.842   -1.842
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.075    0.190  -21.436    0.000   -4.075   -2.158
##     Viv_AdmT|t2      -2.900    0.123  -23.546    0.000   -2.900   -1.536
##     Viv_AdmT|t3      -2.180    0.138  -15.797    0.000   -2.180   -1.155
##     Viv_AdmT|t4       0.221    0.348    0.636    0.525    0.221    0.117
##     Viv_EvInt|t1     -3.623    0.154  -23.466    0.000   -3.623   -2.148
##     Viv_EvInt|t2     -2.200    0.148  -14.844    0.000   -2.200   -1.304
##     Viv_EvInt|t3     -1.452    0.178   -8.164    0.000   -1.452   -0.861
##     Viv_EvInt|t4      0.621    0.328    1.894    0.058    0.621    0.368
##     Viv_DiF|t1       -4.635    0.326  -14.206    0.000   -4.635   -2.438
##     Viv_DiF|t2       -3.524    0.287  -12.270    0.000   -3.524   -1.854
##     Viv_DiF|t3       -2.627    0.257  -10.210    0.000   -2.627   -1.382
##     Viv_DiF|t4       -0.051    0.329   -0.154    0.877   -0.051   -0.027
##     Viv_Pla|t1       -4.872    0.341  -14.309    0.000   -4.872   -2.660
##     Viv_Pla|t2       -4.011    0.308  -13.038    0.000   -4.011   -2.190
##     Viv_Pla|t3       -2.842    0.240  -11.845    0.000   -2.842   -1.552
##     Viv_Pla|t4       -0.004    0.329   -0.012    0.990   -0.004   -0.002
##     Viv_HabRC|t1     -4.698    0.332  -14.136    0.000   -4.698   -4.295
##     Viv_HabRC|t2     -3.974    0.248  -16.001    0.000   -3.974   -3.633
##     Viv_HabRC|t3     -3.323    0.252  -13.164    0.000   -3.323   -3.038
##     Viv_HabRC|t4     -1.711    0.535   -3.197    0.001   -1.711   -1.564
##     Viv_HabR|t1      -3.731    0.190  -19.617    0.000   -3.731   -3.836
##     Viv_HabR|t2      -2.954    0.214  -13.809    0.000   -2.954   -3.037
##     Viv_HabR|t3      -2.348    0.289   -8.117    0.000   -2.348   -2.414
##     Viv_HabR|t4      -1.218    0.483   -2.520    0.012   -1.218   -1.253
##     Viv_PrInf|t1     -4.020    0.192  -20.937    0.000   -4.020   -3.895
##     Viv_PrInf|t2     -3.368    0.215  -15.662    0.000   -3.368   -3.264
##     Viv_PrInf|t3     -2.877    0.280  -10.274    0.000   -2.877   -2.788
##     Viv_PrInf|t4     -1.397    0.567   -2.463    0.014   -1.397   -1.354
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.151    0.282    4.083    0.000    1.151    0.323
##    .Viv_EvInt         1.098    0.215    5.096    0.000    1.098    0.386
##    .Viv_DiF           1.105    0.270    4.095    0.000    1.105    0.306
##    .Viv_Pla           0.884    0.251    3.515    0.000    0.884    0.263
##    .Viv_HabRC         0.419    0.215    1.948    0.051    0.419    0.351
##    .Viv_HabR          0.477    0.191    2.501    0.012    0.477    0.504
##    .Viv_PrInf         0.387    0.175    2.204    0.028    0.387    0.363
##     Viv_Soft          1.091    0.206    5.292    0.000    1.000    1.000
##     Viv_Hard          0.357    0.158    2.261    0.024    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.530                               0.530    1.000
##     Viv_EvInt         0.593                               0.593    1.000
##     Viv_DiF           0.526                               0.526    1.000
##     Viv_Pla           0.546                               0.546    1.000
##     Viv_HabRC         0.914                               0.914    1.000
##     Viv_HabR          1.028                               1.028    1.000
##     Viv_PrInf         0.969                               0.969    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.677
##     Viv_EvInt         0.614
##     Viv_DiF           0.694
##     Viv_Pla           0.737
##     Viv_HabRC         0.649
##     Viv_HabR          0.496
##     Viv_PrInf         0.637
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.487    0.073   20.295    0.000    1.554    0.780
##     Viv_EvInt         1.266    0.058   21.989    0.000    1.322    0.939
##     Viv_DiF           1.517    0.109   13.917    0.000    1.585    0.828
##     Viv_Pla           1.505    0.100   15.084    0.000    1.573    0.867
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.475    0.106   13.877    0.000    0.695    0.872
##     Viv_HabR          1.146    0.066   17.451    0.000    0.540    0.665
##     Viv_PrInf         1.378    0.065   21.304    0.000    0.650    0.852
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.111    0.072    1.555    0.120    0.111    0.471
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF          -0.099    0.110   -0.895    0.371   -0.099   -0.190
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.415    0.213    1.946    0.052    0.842    0.842
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.229    0.494    0.463    0.643    0.219    0.219
##     Viv_Hard         -1.637    0.412   -3.969    0.000   -3.473   -3.473
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.075    0.190  -21.436    0.000   -4.075   -2.046
##     Viv_AdmT|t2      -2.900    0.123  -23.546    0.000   -2.900   -1.456
##     Viv_AdmT|t3      -1.988    0.274   -7.264    0.000   -1.988   -0.998
##     Viv_AdmT|t4       0.776    0.823    0.943    0.346    0.776    0.389
##     Viv_EvInt|t1     -3.623    0.154  -23.466    0.000   -3.623   -2.573
##     Viv_EvInt|t2     -1.858    0.274   -6.777    0.000   -1.858   -1.319
##     Viv_EvInt|t3     -1.163    0.345   -3.372    0.001   -1.163   -0.826
##     Viv_EvInt|t4      0.787    0.735    1.071    0.284    0.787    0.559
##     Viv_DiF|t1       -4.635    0.326  -14.206    0.000   -4.635   -2.420
##     Viv_DiF|t2       -3.515    0.346  -10.163    0.000   -3.515   -1.835
##     Viv_DiF|t3       -2.669    0.347   -7.682    0.000   -2.669   -1.394
##     Viv_DiF|t4        0.505    0.777    0.649    0.516    0.505    0.263
##     Viv_Pla|t1       -4.872    0.341  -14.309    0.000   -4.872   -2.687
##     Viv_Pla|t2       -3.752    0.442   -8.480    0.000   -3.752   -2.070
##     Viv_Pla|t3       -2.716    0.360   -7.553    0.000   -2.716   -1.498
##     Viv_Pla|t4        0.621    0.799    0.778    0.437    0.621    0.342
##     Viv_HabRC|t1     -4.698    0.332  -14.136    0.000   -4.698   -5.894
##     Viv_HabRC|t2     -3.974    0.248  -16.001    0.000   -3.974   -4.986
##     Viv_HabRC|t3     -3.548    0.276  -12.857    0.000   -3.548   -4.451
##     Viv_HabRC|t4     -2.281    0.639   -3.570    0.000   -2.281   -2.861
##     Viv_HabR|t1      -3.731    0.190  -19.617    0.000   -3.731   -4.595
##     Viv_HabR|t2      -2.998    0.241  -12.430    0.000   -2.998   -3.692
##     Viv_HabR|t3      -2.469    0.352   -7.010    0.000   -2.469   -3.041
##     Viv_HabR|t4      -1.492    0.615   -2.427    0.015   -1.492   -1.837
##     Viv_PrInf|t1     -4.020    0.192  -20.937    0.000   -4.020   -5.270
##     Viv_PrInf|t2     -3.373    0.257  -13.139    0.000   -3.373   -4.422
##     Viv_PrInf|t3     -3.011    0.344   -8.752    0.000   -3.011   -3.948
##     Viv_PrInf|t4     -1.937    0.677   -2.859    0.004   -1.937   -2.540
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.554    0.667    2.332    0.020    1.554    0.392
##    .Viv_EvInt         0.234    0.203    1.153    0.249    0.234    0.118
##    .Viv_DiF           1.156    0.512    2.259    0.024    1.156    0.315
##    .Viv_Pla           0.814    0.440    1.850    0.064    0.814    0.248
##    .Viv_HabRC         0.152    0.136    1.116    0.264    0.152    0.239
##    .Viv_HabR          0.367    0.205    1.795    0.073    0.367    0.557
##    .Viv_PrInf         0.160    0.115    1.395    0.163    0.160    0.275
##     Viv_Soft          1.092    0.476    2.295    0.022    1.000    1.000
##     Viv_Hard          0.222    0.153    1.448    0.148    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.502                               0.502    1.000
##     Viv_EvInt         0.710                               0.710    1.000
##     Viv_DiF           0.522                               0.522    1.000
##     Viv_Pla           0.552                               0.552    1.000
##     Viv_HabRC         1.255                               1.255    1.000
##     Viv_HabR          1.232                               1.232    1.000
##     Viv_PrInf         1.311                               1.311    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.608
##     Viv_EvInt         0.882
##     Viv_DiF           0.685
##     Viv_Pla           0.752
##     Viv_HabRC         0.761
##     Viv_HabR          0.443
##     Viv_PrInf         0.725
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.487    0.073   20.295    0.000    1.329    0.842
##     Viv_EvInt         1.266    0.058   21.989    0.000    1.131    0.760
##     Viv_DiF           1.517    0.109   13.917    0.000    1.355    0.771
##     Viv_Pla           1.505    0.100   15.084    0.000    1.345    0.809
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.475    0.106   13.877    0.000    0.674    0.749
##     Viv_HabR          1.146    0.066   17.451    0.000    0.524    0.604
##     Viv_PrInf         1.378    0.065   21.304    0.000    0.630    0.780
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.252    0.185    1.367    0.172    0.252    0.611
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.419    0.165    2.534    0.011    0.419    0.386
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.341    0.137    2.491    0.013    0.835    0.835
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.250    0.334   -0.749    0.454   -0.280   -0.280
##     Viv_Hard         -1.415    0.531   -2.666    0.008   -3.096   -3.096
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.075    0.190  -21.436    0.000   -4.075   -2.583
##     Viv_AdmT|t2      -2.900    0.123  -23.546    0.000   -2.900   -1.838
##     Viv_AdmT|t3      -2.163    0.200  -10.795    0.000   -2.163   -1.371
##     Viv_AdmT|t4      -0.235    0.516   -0.456    0.649   -0.235   -0.149
##     Viv_EvInt|t1     -3.623    0.154  -23.466    0.000   -3.623   -2.434
##     Viv_EvInt|t2     -2.186    0.218  -10.014    0.000   -2.186   -1.469
##     Viv_EvInt|t3     -1.479    0.280   -5.282    0.000   -1.479   -0.993
##     Viv_EvInt|t4      0.154    0.487    0.315    0.753    0.154    0.103
##     Viv_DiF|t1       -4.635    0.326  -14.206    0.000   -4.635   -2.636
##     Viv_DiF|t2       -3.290    0.332   -9.910    0.000   -3.290   -1.871
##     Viv_DiF|t3       -2.556    0.338   -7.570    0.000   -2.556   -1.453
##     Viv_DiF|t4       -0.391    0.506   -0.772    0.440   -0.391   -0.222
##     Viv_Pla|t1       -4.872    0.341  -14.309    0.000   -4.872   -2.932
##     Viv_Pla|t2       -3.782    0.373  -10.151    0.000   -3.782   -2.275
##     Viv_Pla|t3       -2.720    0.314   -8.666    0.000   -2.720   -1.637
##     Viv_Pla|t4       -0.464    0.492   -0.943    0.346   -0.464   -0.279
##     Viv_HabRC|t1     -4.698    0.332  -14.136    0.000   -4.698   -5.217
##     Viv_HabRC|t2     -3.974    0.248  -16.001    0.000   -3.974   -4.413
##     Viv_HabRC|t3     -3.482    0.298  -11.675    0.000   -3.482   -3.867
##     Viv_HabRC|t4     -2.246    0.703   -3.197    0.001   -2.246   -2.495
##     Viv_HabR|t1      -3.731    0.190  -19.617    0.000   -3.731   -4.300
##     Viv_HabR|t2      -3.294    0.223  -14.781    0.000   -3.294   -3.796
##     Viv_HabR|t3      -2.886    0.296   -9.764    0.000   -2.886   -3.327
##     Viv_HabR|t4      -1.775    0.586   -3.027    0.002   -1.775   -2.046
##     Viv_PrInf|t1     -4.020    0.192  -20.937    0.000   -4.020   -4.977
##     Viv_PrInf|t2     -3.530    0.267  -13.230    0.000   -3.530   -4.370
##     Viv_PrInf|t3     -3.045    0.383   -7.955    0.000   -3.045   -3.771
##     Viv_PrInf|t4     -1.836    0.773   -2.374    0.018   -1.836   -2.273
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.722    0.368    1.964    0.050    0.722    0.290
##    .Viv_EvInt         0.937    0.306    3.063    0.002    0.937    0.423
##    .Viv_DiF           1.255    0.430    2.916    0.004    1.255    0.406
##    .Viv_Pla           0.953    0.434    2.196    0.028    0.953    0.345
##    .Viv_HabRC         0.356    0.320    1.112    0.266    0.356    0.439
##    .Viv_HabR          0.478    0.282    1.694    0.090    0.478    0.636
##    .Viv_PrInf         0.255    0.189    1.354    0.176    0.255    0.391
##     Viv_Soft          0.798    0.250    3.194    0.001    1.000    1.000
##     Viv_Hard          0.209    0.151    1.386    0.166    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.634                               0.634    1.000
##     Viv_EvInt         0.672                               0.672    1.000
##     Viv_DiF           0.569                               0.569    1.000
##     Viv_Pla           0.602                               0.602    1.000
##     Viv_HabRC         1.111                               1.111    1.000
##     Viv_HabR          1.153                               1.153    1.000
##     Viv_PrInf         1.238                               1.238    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.710
##     Viv_EvInt         0.577
##     Viv_DiF           0.594
##     Viv_Pla           0.655
##     Viv_HabRC         0.561
##     Viv_HabR          0.364
##     Viv_PrInf         0.609
lavaan::fitMeasures(invariance$fit.loadings,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##                96.565                59.000                 0.001 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.023                 0.999                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.018                 0.011                 0.025
modificationindices(invariance$fit.loadings, sort.=T,maximum.number = 10)
##           lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 357  Viv_Hard  =~ Viv_EvInt     3     3     1 37.42 -0.331  -0.156   -0.111
## 182 Viv_EvInt  ~1               3     3     1 36.80  1.017   1.017    0.723
## 175 Viv_EvInt ~*~ Viv_EvInt     3     3     1 36.80  0.185   0.185    1.000
## 358  Viv_Hard  =~   Viv_DiF     3     3     1 27.40  0.374   0.176    0.092
## 176   Viv_DiF ~*~   Viv_DiF     3     3     1 26.94 -0.123  -0.123   -1.000
## 183   Viv_DiF  ~1               3     3     1 26.94 -1.178  -1.178   -0.615
## 334  Viv_AdmT  ~~ Viv_EvInt     2     2     1 21.68  0.292   0.292    0.260
## 322   Viv_Pla  ~~ Viv_HabRC     1     1     1 14.42  0.274   0.274    0.274
## 380  Viv_Soft  =~  Viv_HabR     4     4     1 13.09  0.105   0.094    0.108
## 242  Viv_HabR ~*~  Viv_HabR     4     4     1 12.26 -0.240  -0.240   -1.000
##     sepc.nox
## 357   -0.111
## 182    0.723
## 175    1.000
## 358    0.092
## 176   -1.000
## 183   -0.615
## 334    0.260
## 322    0.274
## 380    0.108
## 242   -1.000
semTools::reliability(invariance$fit.loadings)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8310   0.7855
## alpha.ord   0.8974   0.8670
## omega       0.8192   0.7295
## omega2      0.8192   0.7295
## omega3      0.8170   0.7301
## avevar      0.6769   0.6424
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8319   0.7612
## alpha.ord   0.9014   0.8536
## omega       0.8195   0.5377
## omega2      0.8195   0.5377
## omega3      0.8149   0.5372
## avevar      0.6833   0.6000
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8446   0.7938
## alpha.ord   0.9133   0.8695
## omega       0.8658   0.3007
## omega2      0.8658   0.3007
## omega3      0.8638   0.2987
## avevar      0.7088   0.6380
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8247   0.7078
## alpha.ord   0.8860   0.8249
## omega       0.7795   0.2659
## omega2      0.7795   0.2659
## omega3      0.7781   0.2653
## avevar      0.6337   0.5081
5.1.1.8.3 Thresholds
summary(invariance$fit.thresholds,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 221 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       185
##   Number of equality constraints                   105
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               511.232     149.511
##   Degrees of freedom                               116         116
##   P-value (Unknown)                                 NA       0.020
##   Scaling correction factor                                  6.338
##   Shift parameter for each group:                                 
##       2                                                     22.680
##       3                                                     36.256
##       1                                                      4.552
##       4                                                      5.367
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          120.516      41.694
##     3                                           78.220      48.596
##     1                                          136.439      26.078
##     4                                          176.056      33.143
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57688.409   56390.095
##   Degrees of freedom                                84          84
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.024
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.993       0.999
##   Tucker-Lewis Index (TLI)                       0.995       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042       0.012
##   90 Percent confidence interval - lower         0.039       0.005
##   90 Percent confidence interval - upper         0.046       0.018
##   P-value RMSEA <= 0.05                          1.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022       0.022
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.493    0.064   23.437    0.000    1.493    0.831
##     Viv_EvInt         1.308    0.053   24.664    0.000    1.308    0.794
##     Viv_DiF           1.470    0.080   18.410    0.000    1.470    0.827
##     Viv_Pla           1.496    0.081   18.484    0.000    1.496    0.831
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.482    0.089   16.689    0.000    1.482    0.829
##     Viv_HabR          1.060    0.046   22.851    0.000    1.060    0.728
##     Viv_PrInf         1.441    0.065   22.040    0.000    1.441    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.449    0.032   13.992    0.000    0.449    0.449
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.215    0.045    4.764    0.000    0.215    0.215
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.834    0.012   70.818    0.000    0.834    0.834
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.081    0.162  -25.153    0.000   -4.081   -2.271
##     Viv_AdmT|t2      -2.899    0.113  -25.561    0.000   -2.899   -1.613
##     Viv_AdmT|t3      -2.134    0.087  -24.547    0.000   -2.134   -1.188
##     Viv_AdmT|t4       0.272    0.043    6.384    0.000    0.272    0.152
##     Viv_EvInt|t1     -3.753    0.137  -27.344    0.000   -3.753   -2.280
##     Viv_EvInt|t2     -2.281    0.086  -26.459    0.000   -2.281   -1.386
##     Viv_EvInt|t3     -1.512    0.063  -24.174    0.000   -1.512   -0.918
##     Viv_EvInt|t4      0.604    0.044   13.770    0.000    0.604    0.367
##     Viv_DiF|t1       -4.485    0.233  -19.255    0.000   -4.485   -2.522
##     Viv_DiF|t2       -3.315    0.163  -20.362    0.000   -3.315   -1.864
##     Viv_DiF|t3       -2.516    0.127  -19.823    0.000   -2.516   -1.415
##     Viv_DiF|t4       -0.010    0.040   -0.258    0.797   -0.010   -0.006
##     Viv_Pla|t1       -4.835    0.265  -18.212    0.000   -4.835   -2.687
##     Viv_Pla|t2       -3.897    0.206  -18.885    0.000   -3.897   -2.166
##     Viv_Pla|t3       -2.788    0.150  -18.608    0.000   -2.788   -1.549
##     Viv_Pla|t4        0.028    0.041    0.673    0.501    0.028    0.015
##     Viv_HabRC|t1     -4.878    0.270  -18.036    0.000   -4.878   -2.728
##     Viv_HabRC|t2     -3.796    0.216  -17.600    0.000   -3.796   -2.123
##     Viv_HabRC|t3     -2.671    0.149  -17.932    0.000   -2.671   -1.494
##     Viv_HabRC|t4      0.018    0.043    0.421    0.674    0.018    0.010
##     Viv_HabR|t1      -3.587    0.137  -26.135    0.000   -3.587   -2.461
##     Viv_HabR|t2      -2.444    0.089  -27.571    0.000   -2.444   -1.677
##     Viv_HabR|t3      -1.529    0.059  -25.935    0.000   -1.529   -1.049
##     Viv_HabR|t4       0.218    0.034    6.381    0.000    0.218    0.150
##     Viv_PrInf|t1     -4.170    0.166  -25.162    0.000   -4.170   -2.377
##     Viv_PrInf|t2     -3.047    0.120  -25.371    0.000   -3.047   -1.737
##     Viv_PrInf|t3     -2.179    0.090  -24.290    0.000   -2.179   -1.243
##     Viv_PrInf|t4      0.401    0.046    8.807    0.000    0.401    0.229
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.310
##    .Viv_EvInt         1.000                               1.000    0.369
##    .Viv_DiF           1.000                               1.000    0.316
##    .Viv_Pla           1.000                               1.000    0.309
##    .Viv_HabRC         1.000                               1.000    0.313
##    .Viv_HabR          1.000                               1.000    0.471
##    .Viv_PrInf         1.000                               1.000    0.325
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.557                               0.557    1.000
##     Viv_EvInt         0.607                               0.607    1.000
##     Viv_DiF           0.562                               0.562    1.000
##     Viv_Pla           0.556                               0.556    1.000
##     Viv_HabRC         0.559                               0.559    1.000
##     Viv_HabR          0.686                               0.686    1.000
##     Viv_PrInf         0.570                               0.570    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.690
##     Viv_EvInt         0.631
##     Viv_DiF           0.684
##     Viv_Pla           0.691
##     Viv_HabRC         0.687
##     Viv_HabR          0.529
##     Viv_PrInf         0.675
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.493    0.064   23.437    0.000    1.558    0.822
##     Viv_EvInt         1.308    0.053   24.664    0.000    1.365    0.777
##     Viv_DiF           1.470    0.080   18.410    0.000    1.535    0.837
##     Viv_Pla           1.496    0.081   18.484    0.000    1.561    0.861
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.482    0.089   16.689    0.000    1.465    0.805
##     Viv_HabR          1.060    0.046   22.851    0.000    1.048    0.712
##     Viv_PrInf         1.441    0.065   22.040    0.000    1.423    0.795
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.540    0.071    7.571    0.000    0.540    0.484
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.304    0.060    5.106    0.000    0.304    0.274
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.840    0.050   16.697    0.000    0.815    0.815
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.118    0.036    3.326    0.001    0.113    0.113
##     Viv_Hard          0.120    0.039    3.104    0.002    0.122    0.122
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.081    0.162  -25.153    0.000   -4.081   -2.152
##     Viv_AdmT|t2      -2.899    0.113  -25.561    0.000   -2.899   -1.529
##     Viv_AdmT|t3      -2.134    0.087  -24.547    0.000   -2.134   -1.126
##     Viv_AdmT|t4       0.272    0.043    6.384    0.000    0.272    0.144
##     Viv_EvInt|t1     -3.753    0.137  -27.344    0.000   -3.753   -2.137
##     Viv_EvInt|t2     -2.281    0.086  -26.459    0.000   -2.281   -1.299
##     Viv_EvInt|t3     -1.512    0.063  -24.174    0.000   -1.512   -0.861
##     Viv_EvInt|t4      0.604    0.044   13.770    0.000    0.604    0.344
##     Viv_DiF|t1       -4.485    0.233  -19.255    0.000   -4.485   -2.445
##     Viv_DiF|t2       -3.315    0.163  -20.362    0.000   -3.315   -1.807
##     Viv_DiF|t3       -2.516    0.127  -19.823    0.000   -2.516   -1.372
##     Viv_DiF|t4       -0.010    0.040   -0.258    0.797   -0.010   -0.006
##     Viv_Pla|t1       -4.835    0.265  -18.212    0.000   -4.835   -2.667
##     Viv_Pla|t2       -3.897    0.206  -18.885    0.000   -3.897   -2.150
##     Viv_Pla|t3       -2.788    0.150  -18.608    0.000   -2.788   -1.538
##     Viv_Pla|t4        0.028    0.041    0.673    0.501    0.028    0.015
##     Viv_HabRC|t1     -4.878    0.270  -18.036    0.000   -4.878   -2.680
##     Viv_HabRC|t2     -3.796    0.216  -17.600    0.000   -3.796   -2.086
##     Viv_HabRC|t3     -2.671    0.149  -17.932    0.000   -2.671   -1.468
##     Viv_HabRC|t4      0.018    0.043    0.421    0.674    0.018    0.010
##     Viv_HabR|t1      -3.587    0.137  -26.135    0.000   -3.587   -2.438
##     Viv_HabR|t2      -2.444    0.089  -27.571    0.000   -2.444   -1.661
##     Viv_HabR|t3      -1.529    0.059  -25.935    0.000   -1.529   -1.039
##     Viv_HabR|t4       0.218    0.034    6.381    0.000    0.218    0.148
##     Viv_PrInf|t1     -4.170    0.166  -25.162    0.000   -4.170   -2.329
##     Viv_PrInf|t2     -3.047    0.120  -25.371    0.000   -3.047   -1.701
##     Viv_PrInf|t3     -2.179    0.090  -24.290    0.000   -2.179   -1.217
##     Viv_PrInf|t4      0.401    0.046    8.807    0.000    0.401    0.224
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.169    0.125    9.353    0.000    1.169    0.325
##    .Viv_EvInt         1.221    0.124    9.875    0.000    1.221    0.396
##    .Viv_DiF           1.010    0.154    6.576    0.000    1.010    0.300
##    .Viv_Pla           0.849    0.148    5.742    0.000    0.849    0.258
##    .Viv_HabRC         1.168    0.187    6.230    0.000    1.168    0.352
##    .Viv_HabR          1.068    0.112    9.549    0.000    1.068    0.493
##    .Viv_PrInf         1.180    0.124    9.551    0.000    1.180    0.368
##     Viv_Soft          1.089    0.071   15.375    0.000    1.000    1.000
##     Viv_Hard          0.976    0.074   13.200    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.527                               0.527    1.000
##     Viv_EvInt         0.570                               0.570    1.000
##     Viv_DiF           0.545                               0.545    1.000
##     Viv_Pla           0.552                               0.552    1.000
##     Viv_HabRC         0.549                               0.549    1.000
##     Viv_HabR          0.680                               0.680    1.000
##     Viv_PrInf         0.558                               0.558    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.675
##     Viv_EvInt         0.604
##     Viv_DiF           0.700
##     Viv_Pla           0.742
##     Viv_HabRC         0.648
##     Viv_HabR          0.507
##     Viv_PrInf         0.632
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.493    0.064   23.437    0.000    1.425    0.795
##     Viv_EvInt         1.308    0.053   24.664    0.000    1.249    0.913
##     Viv_DiF           1.470    0.080   18.410    0.000    1.404    0.848
##     Viv_Pla           1.496    0.081   18.484    0.000    1.429    0.860
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.482    0.089   16.689    0.000    1.428    0.891
##     Viv_HabR          1.060    0.046   22.851    0.000    1.022    0.693
##     Viv_PrInf         1.441    0.065   22.040    0.000    1.388    0.828
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.319    0.099    3.212    0.001    0.319    0.412
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF          -0.077    0.085   -0.906    0.365   -0.077   -0.157
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.770    0.111    6.918    0.000    0.837    0.837
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.043    0.064   -0.675    0.500   -0.045   -0.045
##     Viv_Hard         -0.302    0.061   -4.967    0.000   -0.313   -0.313
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.081    0.162  -25.153    0.000   -4.081   -2.277
##     Viv_AdmT|t2      -2.899    0.113  -25.561    0.000   -2.899   -1.617
##     Viv_AdmT|t3      -2.134    0.087  -24.547    0.000   -2.134   -1.191
##     Viv_AdmT|t4       0.272    0.043    6.384    0.000    0.272    0.152
##     Viv_EvInt|t1     -3.753    0.137  -27.344    0.000   -3.753   -2.744
##     Viv_EvInt|t2     -2.281    0.086  -26.459    0.000   -2.281   -1.668
##     Viv_EvInt|t3     -1.512    0.063  -24.174    0.000   -1.512   -1.105
##     Viv_EvInt|t4      0.604    0.044   13.770    0.000    0.604    0.442
##     Viv_DiF|t1       -4.485    0.233  -19.255    0.000   -4.485   -2.710
##     Viv_DiF|t2       -3.315    0.163  -20.362    0.000   -3.315   -2.003
##     Viv_DiF|t3       -2.516    0.127  -19.823    0.000   -2.516   -1.520
##     Viv_DiF|t4       -0.010    0.040   -0.258    0.797   -0.010   -0.006
##     Viv_Pla|t1       -4.835    0.265  -18.212    0.000   -4.835   -2.912
##     Viv_Pla|t2       -3.897    0.206  -18.885    0.000   -3.897   -2.347
##     Viv_Pla|t3       -2.788    0.150  -18.608    0.000   -2.788   -1.679
##     Viv_Pla|t4        0.028    0.041    0.673    0.501    0.028    0.017
##     Viv_HabRC|t1     -4.878    0.270  -18.036    0.000   -4.878   -3.042
##     Viv_HabRC|t2     -3.796    0.216  -17.600    0.000   -3.796   -2.367
##     Viv_HabRC|t3     -2.671    0.149  -17.932    0.000   -2.671   -1.666
##     Viv_HabRC|t4      0.018    0.043    0.421    0.674    0.018    0.011
##     Viv_HabR|t1      -3.587    0.137  -26.135    0.000   -3.587   -2.433
##     Viv_HabR|t2      -2.444    0.089  -27.571    0.000   -2.444   -1.658
##     Viv_HabR|t3      -1.529    0.059  -25.935    0.000   -1.529   -1.037
##     Viv_HabR|t4       0.218    0.034    6.381    0.000    0.218    0.148
##     Viv_PrInf|t1     -4.170    0.166  -25.162    0.000   -4.170   -2.487
##     Viv_PrInf|t2     -3.047    0.120  -25.371    0.000   -3.047   -1.817
##     Viv_PrInf|t3     -2.179    0.090  -24.290    0.000   -2.179   -1.300
##     Viv_PrInf|t4      0.401    0.046    8.807    0.000    0.401    0.239
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.181    0.227    5.212    0.000    1.181    0.368
##    .Viv_EvInt         0.311    0.135    2.311    0.021    0.311    0.166
##    .Viv_DiF           0.768    0.222    3.453    0.001    0.768    0.280
##    .Viv_Pla           0.717    0.200    3.574    0.000    0.717    0.260
##    .Viv_HabRC         0.531    0.224    2.369    0.018    0.531    0.207
##    .Viv_HabR          1.130    0.174    6.509    0.000    1.130    0.520
##    .Viv_PrInf         0.883    0.159    5.553    0.000    0.883    0.314
##     Viv_Soft          0.912    0.140    6.528    0.000    1.000    1.000
##     Viv_Hard          0.928    0.132    7.051    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.558                               0.558    1.000
##     Viv_EvInt         0.731                               0.731    1.000
##     Viv_DiF           0.604                               0.604    1.000
##     Viv_Pla           0.602                               0.602    1.000
##     Viv_HabRC         0.624                               0.624    1.000
##     Viv_HabR          0.678                               0.678    1.000
##     Viv_PrInf         0.597                               0.597    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.632
##     Viv_EvInt         0.834
##     Viv_DiF           0.720
##     Viv_Pla           0.740
##     Viv_HabRC         0.793
##     Viv_HabR          0.480
##     Viv_PrInf         0.686
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.493    0.064   23.437    0.000    1.499    0.844
##     Viv_EvInt         1.308    0.053   24.664    0.000    1.313    0.755
##     Viv_DiF           1.470    0.080   18.410    0.000    1.477    0.770
##     Viv_Pla           1.496    0.081   18.484    0.000    1.502    0.812
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.482    0.089   16.689    0.000    1.395    0.733
##     Viv_HabR          1.060    0.046   22.851    0.000    0.998    0.665
##     Viv_PrInf         1.441    0.065   22.040    0.000    1.356    0.758
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.819    0.202    4.063    0.000    0.819    0.565
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.549    0.157    3.490    0.000    0.549    0.393
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.787    0.079   10.009    0.000    0.832    0.832
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft         -0.006    0.060   -0.102    0.919   -0.006   -0.006
##     Viv_Hard          0.276    0.077    3.571    0.000    0.293    0.293
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.081    0.162  -25.153    0.000   -4.081   -2.297
##     Viv_AdmT|t2      -2.899    0.113  -25.561    0.000   -2.899   -1.631
##     Viv_AdmT|t3      -2.134    0.087  -24.547    0.000   -2.134   -1.201
##     Viv_AdmT|t4       0.272    0.043    6.384    0.000    0.272    0.153
##     Viv_EvInt|t1     -3.753    0.137  -27.344    0.000   -3.753   -2.158
##     Viv_EvInt|t2     -2.281    0.086  -26.459    0.000   -2.281   -1.312
##     Viv_EvInt|t3     -1.512    0.063  -24.174    0.000   -1.512   -0.869
##     Viv_EvInt|t4      0.604    0.044   13.770    0.000    0.604    0.347
##     Viv_DiF|t1       -4.485    0.233  -19.255    0.000   -4.485   -2.338
##     Viv_DiF|t2       -3.315    0.163  -20.362    0.000   -3.315   -1.728
##     Viv_DiF|t3       -2.516    0.127  -19.823    0.000   -2.516   -1.311
##     Viv_DiF|t4       -0.010    0.040   -0.258    0.797   -0.010   -0.005
##     Viv_Pla|t1       -4.835    0.265  -18.212    0.000   -4.835   -2.613
##     Viv_Pla|t2       -3.897    0.206  -18.885    0.000   -3.897   -2.106
##     Viv_Pla|t3       -2.788    0.150  -18.608    0.000   -2.788   -1.507
##     Viv_Pla|t4        0.028    0.041    0.673    0.501    0.028    0.015
##     Viv_HabRC|t1     -4.878    0.270  -18.036    0.000   -4.878   -2.563
##     Viv_HabRC|t2     -3.796    0.216  -17.600    0.000   -3.796   -1.994
##     Viv_HabRC|t3     -2.671    0.149  -17.932    0.000   -2.671   -1.403
##     Viv_HabRC|t4      0.018    0.043    0.421    0.674    0.018    0.010
##     Viv_HabR|t1      -3.587    0.137  -26.135    0.000   -3.587   -2.392
##     Viv_HabR|t2      -2.444    0.089  -27.571    0.000   -2.444   -1.630
##     Viv_HabR|t3      -1.529    0.059  -25.935    0.000   -1.529   -1.019
##     Viv_HabR|t4       0.218    0.034    6.381    0.000    0.218    0.146
##     Viv_PrInf|t1     -4.170    0.166  -25.162    0.000   -4.170   -2.329
##     Viv_PrInf|t2     -3.047    0.120  -25.371    0.000   -3.047   -1.702
##     Viv_PrInf|t3     -2.179    0.090  -24.290    0.000   -2.179   -1.217
##     Viv_PrInf|t4      0.401    0.046    8.807    0.000    0.401    0.224
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.911    0.220    4.146    0.000    0.911    0.288
##    .Viv_EvInt         1.299    0.227    5.730    0.000    1.299    0.430
##    .Viv_DiF           1.502    0.307    4.895    0.000    1.502    0.408
##    .Viv_Pla           1.167    0.317    3.677    0.000    1.167    0.341
##    .Viv_HabRC         1.675    0.468    3.577    0.000    1.675    0.462
##    .Viv_HabR          1.253    0.228    5.490    0.000    1.253    0.557
##    .Viv_PrInf         1.366    0.276    4.942    0.000    1.366    0.426
##     Viv_Soft          1.008    0.112    8.965    0.000    1.000    1.000
##     Viv_Hard          0.886    0.118    7.536    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.563                               0.563    1.000
##     Viv_EvInt         0.575                               0.575    1.000
##     Viv_DiF           0.521                               0.521    1.000
##     Viv_Pla           0.540                               0.540    1.000
##     Viv_HabRC         0.525                               0.525    1.000
##     Viv_HabR          0.667                               0.667    1.000
##     Viv_PrInf         0.559                               0.559    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.712
##     Viv_EvInt         0.570
##     Viv_DiF           0.592
##     Viv_Pla           0.659
##     Viv_HabRC         0.538
##     Viv_HabR          0.443
##     Viv_PrInf         0.574
lavaan::fitMeasures(invariance$fit.thresholds,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               149.511               116.000                 0.020 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.022                 0.999                 1.000 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.012                 0.005                 0.018
modificationindices(invariance$fit.thresholds, sort.=T,maximum.number = 10)
##           lhs  op       rhs block group level    mi    epc sepc.lv sepc.all
## 249  Viv_HabR  ~1               4     4     1 48.31  0.446   0.446    0.297
## 391  Viv_AdmT  ~~ Viv_EvInt     2     2     1 25.56  0.325   0.325    0.272
## 414  Viv_Hard  =~ Viv_EvInt     3     3     1 24.18 -0.221  -0.213   -0.156
## 250 Viv_PrInf  ~1               4     4     1 22.84 -0.398  -0.398   -0.223
## 175 Viv_EvInt ~*~ Viv_EvInt     3     3     1 20.62  0.139   0.139    1.000
## 119 Viv_EvInt  ~1               2     2     1 18.43 -0.137  -0.137   -0.078
## 186  Viv_HabR  ~1               3     3     1 15.97 -0.220  -0.220   -0.149
## 176   Viv_DiF ~*~   Viv_DiF     3     3     1 14.88 -0.100  -0.100   -1.000
## 415  Viv_Hard  =~   Viv_DiF     3     3     1 14.29  0.197   0.190    0.115
## 379   Viv_Pla  ~~ Viv_HabRC     1     1     1 13.60  0.267   0.267    0.267
##     sepc.nox
## 249    0.297
## 391    0.272
## 414   -0.156
## 250   -0.223
## 175    1.000
## 119   -0.078
## 186   -0.149
## 176   -1.000
## 415    0.115
## 379    0.267
semTools::reliability(invariance$fit.thresholds)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8310   0.7855
## alpha.ord   0.8974   0.8670
## omega       0.8206   0.7216
## omega2      0.8206   0.7216
## omega3      0.8189   0.7215
## avevar      0.6758   0.6428
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8319   0.7612
## alpha.ord   0.9014   0.8536
## omega       0.8187   0.6946
## omega2      0.8187   0.6946
## omega3      0.8136   0.6945
## avevar      0.6813   0.6067
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8446   0.7938
## alpha.ord   0.9133   0.8695
## omega       0.8583   0.7278
## omega2      0.8583   0.7278
## omega3      0.8571   0.7255
## avevar      0.7186   0.6633
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8247   0.7078
## alpha.ord   0.8860   0.8249
## omega       0.7844   0.6248
## omega2      0.7844   0.6248
## omega3      0.7831   0.6257
## avevar      0.6328   0.5270
5.1.1.8.4 Partial Invariance - Means
summary(invariance$fit.means,rsquare=T,fit=T,standardized=T)
## lavaan 0.6-8 ended normally after 197 iterations
## 
##   Estimator                                        ULS
##   Optimization method                           NLMINB
##   Number of model parameters                       179
##   Number of equality constraints                   105
##                                                       
##   Number of observations per group:                   
##     2                                             2506
##     3                                             4006
##     1                                              503
##     4                                              593
##   Number of missing patterns per group:               
##     2                                                1
##     3                                                1
##     1                                                1
##     4                                                1
##                                                       
## Model Test User Model:
##                                               Standard      Robust
##   Test Statistic                               910.089     207.916
##   Degrees of freedom                               122         122
##   P-value (Unknown)                                 NA       0.000
##   Scaling correction factor                                  6.688
##   Shift parameter for each group:                                 
##       2                                                     23.664
##       3                                                     37.829
##       1                                                      4.750
##       4                                                      5.600
##        simple second-order correction                             
##   Test statistic for each group:
##     2                                          179.581      50.514
##     3                                          149.081      60.119
##     1                                          342.171      55.910
##     4                                          239.256      41.372
## 
## Model Test Baseline Model:
## 
##   Test statistic                             57688.409   56390.095
##   Degrees of freedom                                84          84
##   P-value                                           NA       0.000
##   Scaling correction factor                                  1.024
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986       0.998
##   Tucker-Lewis Index (TLI)                       0.991       0.999
##                                                                   
##   Robust Comparative Fit Index (CFI)                            NA
##   Robust Tucker-Lewis Index (TLI)                               NA
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.058       0.019
##   90 Percent confidence interval - lower         0.055       0.015
##   90 Percent confidence interval - upper         0.062       0.024
##   P-value RMSEA <= 0.05                          0.000       1.000
##                                                                   
##   Robust RMSEA                                                  NA
##   90 Percent confidence interval - lower                        NA
##   90 Percent confidence interval - upper                        NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021       0.021
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model        Unstructured
## 
## 
## Group 1 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.482    0.063   23.437    0.000    1.482    0.829
##     Viv_EvInt         1.314    0.054   24.493    0.000    1.314    0.796
##     Viv_DiF           1.469    0.079   18.490    0.000    1.469    0.827
##     Viv_Pla           1.502    0.082   18.367    0.000    1.502    0.832
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.495    0.090   16.565    0.000    1.495    0.831
##     Viv_HabR          1.047    0.045   23.127    0.000    1.047    0.723
##     Viv_PrInf         1.446    0.066   21.846    0.000    1.446    0.822
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.454    0.032   14.194    0.000    0.454    0.454
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.213    0.045    4.682    0.000    0.213    0.213
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.834    0.012   70.828    0.000    0.834    0.834
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.043    0.162  -24.961    0.000   -4.043   -2.261
##     Viv_AdmT|t2      -2.896    0.113  -25.687    0.000   -2.896   -1.620
##     Viv_AdmT|t3      -2.155    0.085  -25.305    0.000   -2.155   -1.205
##     Viv_AdmT|t4       0.181    0.026    6.879    0.000    0.181    0.101
##     Viv_EvInt|t1     -3.750    0.139  -26.891    0.000   -3.750   -2.271
##     Viv_EvInt|t2     -2.307    0.086  -26.670    0.000   -2.307   -1.397
##     Viv_EvInt|t3     -1.552    0.061  -25.490    0.000   -1.552   -0.940
##     Viv_EvInt|t4      0.525    0.030   17.724    0.000    0.525    0.318
##     Viv_DiF|t1       -4.461    0.232  -19.262    0.000   -4.461   -2.510
##     Viv_DiF|t2       -3.320    0.163  -20.399    0.000   -3.320   -1.868
##     Viv_DiF|t3       -2.539    0.127  -20.024    0.000   -2.539   -1.429
##     Viv_DiF|t4       -0.094    0.026   -3.612    0.000   -0.094   -0.053
##     Viv_Pla|t1       -4.829    0.267  -18.097    0.000   -4.829   -2.676
##     Viv_Pla|t2       -3.911    0.209  -18.747    0.000   -3.911   -2.167
##     Viv_Pla|t3       -2.822    0.152  -18.545    0.000   -2.822   -1.564
##     Viv_Pla|t4       -0.060    0.026   -2.315    0.021   -0.060   -0.033
##     Viv_HabRC|t1     -4.885    0.273  -17.903    0.000   -4.885   -2.716
##     Viv_HabRC|t2     -3.820    0.219  -17.454    0.000   -3.820   -2.124
##     Viv_HabRC|t3     -2.713    0.153  -17.753    0.000   -2.713   -1.509
##     Viv_HabRC|t4     -0.070    0.026   -2.706    0.007   -0.070   -0.039
##     Viv_HabR|t1      -3.545    0.134  -26.411    0.000   -3.545   -2.448
##     Viv_HabR|t2      -2.441    0.087  -27.913    0.000   -2.441   -1.686
##     Viv_HabR|t3      -1.555    0.058  -26.947    0.000   -1.555   -1.074
##     Viv_HabR|t4       0.137    0.021    6.562    0.000    0.137    0.095
##     Viv_PrInf|t1     -4.158    0.167  -24.859    0.000   -4.158   -2.365
##     Viv_PrInf|t2     -3.066    0.121  -25.293    0.000   -3.066   -1.744
##     Viv_PrInf|t3     -2.219    0.089  -24.798    0.000   -2.219   -1.262
##     Viv_PrInf|t4      0.300    0.027   11.177    0.000    0.300    0.170
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.000                               1.000    0.313
##    .Viv_EvInt         1.000                               1.000    0.367
##    .Viv_DiF           1.000                               1.000    0.317
##    .Viv_Pla           1.000                               1.000    0.307
##    .Viv_HabRC         1.000                               1.000    0.309
##    .Viv_HabR          1.000                               1.000    0.477
##    .Viv_PrInf         1.000                               1.000    0.324
##     Viv_Soft          1.000                               1.000    1.000
##     Viv_Hard          1.000                               1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.559                               0.559    1.000
##     Viv_EvInt         0.606                               0.606    1.000
##     Viv_DiF           0.563                               0.563    1.000
##     Viv_Pla           0.554                               0.554    1.000
##     Viv_HabRC         0.556                               0.556    1.000
##     Viv_HabR          0.691                               0.691    1.000
##     Viv_PrInf         0.569                               0.569    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.687
##     Viv_EvInt         0.633
##     Viv_DiF           0.683
##     Viv_Pla           0.693
##     Viv_HabRC         0.691
##     Viv_HabR          0.523
##     Viv_PrInf         0.676
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.482    0.063   23.437    0.000    1.475    0.823
##     Viv_EvInt         1.314    0.054   24.493    0.000    1.308    0.779
##     Viv_DiF           1.469    0.079   18.490    0.000    1.462    0.836
##     Viv_Pla           1.502    0.082   18.367    0.000    1.495    0.859
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.495    0.090   16.565    0.000    1.410    0.805
##     Viv_HabR          1.047    0.045   23.127    0.000    0.988    0.706
##     Viv_PrInf         1.446    0.066   21.846    0.000    1.364    0.798
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.505    0.063    7.993    0.000    0.505    0.491
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.273    0.054    5.074    0.000    0.273    0.270
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.766    0.041   18.735    0.000    0.816    0.816
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.043    0.162  -24.961    0.000   -4.043   -2.255
##     Viv_AdmT|t2      -2.896    0.113  -25.687    0.000   -2.896   -1.615
##     Viv_AdmT|t3      -2.155    0.085  -25.305    0.000   -2.155   -1.202
##     Viv_AdmT|t4       0.181    0.026    6.879    0.000    0.181    0.101
##     Viv_EvInt|t1     -3.750    0.139  -26.891    0.000   -3.750   -2.235
##     Viv_EvInt|t2     -2.307    0.086  -26.670    0.000   -2.307   -1.375
##     Viv_EvInt|t3     -1.552    0.061  -25.490    0.000   -1.552   -0.925
##     Viv_EvInt|t4      0.525    0.030   17.724    0.000    0.525    0.313
##     Viv_DiF|t1       -4.461    0.232  -19.262    0.000   -4.461   -2.552
##     Viv_DiF|t2       -3.320    0.163  -20.399    0.000   -3.320   -1.899
##     Viv_DiF|t3       -2.539    0.127  -20.024    0.000   -2.539   -1.452
##     Viv_DiF|t4       -0.094    0.026   -3.612    0.000   -0.094   -0.054
##     Viv_Pla|t1       -4.829    0.267  -18.097    0.000   -4.829   -2.775
##     Viv_Pla|t2       -3.911    0.209  -18.747    0.000   -3.911   -2.247
##     Viv_Pla|t3       -2.822    0.152  -18.545    0.000   -2.822   -1.621
##     Viv_Pla|t4       -0.060    0.026   -2.315    0.021   -0.060   -0.034
##     Viv_HabRC|t1     -4.885    0.273  -17.903    0.000   -4.885   -2.789
##     Viv_HabRC|t2     -3.820    0.219  -17.454    0.000   -3.820   -2.181
##     Viv_HabRC|t3     -2.713    0.153  -17.753    0.000   -2.713   -1.549
##     Viv_HabRC|t4     -0.070    0.026   -2.706    0.007   -0.070   -0.040
##     Viv_HabR|t1      -3.545    0.134  -26.411    0.000   -3.545   -2.534
##     Viv_HabR|t2      -2.441    0.087  -27.913    0.000   -2.441   -1.745
##     Viv_HabR|t3      -1.555    0.058  -26.947    0.000   -1.555   -1.112
##     Viv_HabR|t4       0.137    0.021    6.562    0.000    0.137    0.098
##     Viv_PrInf|t1     -4.158    0.167  -24.859    0.000   -4.158   -2.432
##     Viv_PrInf|t2     -3.066    0.121  -25.293    0.000   -3.066   -1.793
##     Viv_PrInf|t3     -2.219    0.089  -24.798    0.000   -2.219   -1.298
##     Viv_PrInf|t4      0.300    0.027   11.177    0.000    0.300    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.038    0.112    9.237    0.000    1.038    0.323
##    .Viv_EvInt         1.106    0.113    9.745    0.000    1.106    0.393
##    .Viv_DiF           0.919    0.139    6.626    0.000    0.919    0.301
##    .Viv_Pla           0.794    0.137    5.813    0.000    0.794    0.262
##    .Viv_HabRC         1.080    0.169    6.374    0.000    1.080    0.352
##    .Viv_HabR          0.981    0.098   10.009    0.000    0.981    0.501
##    .Viv_PrInf         1.064    0.112    9.495    0.000    1.064    0.364
##     Viv_Soft          0.990    0.057   17.238    0.000    1.000    1.000
##     Viv_Hard          0.890    0.059   14.986    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.558                               0.558    1.000
##     Viv_EvInt         0.596                               0.596    1.000
##     Viv_DiF           0.572                               0.572    1.000
##     Viv_Pla           0.575                               0.575    1.000
##     Viv_HabRC         0.571                               0.571    1.000
##     Viv_HabR          0.715                               0.715    1.000
##     Viv_PrInf         0.585                               0.585    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.677
##     Viv_EvInt         0.607
##     Viv_DiF           0.699
##     Viv_Pla           0.738
##     Viv_HabRC         0.648
##     Viv_HabR          0.499
##     Viv_PrInf         0.636
## 
## 
## Group 3 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.482    0.063   23.437    0.000    1.441    0.792
##     Viv_EvInt         1.314    0.054   24.493    0.000    1.277    0.914
##     Viv_DiF           1.469    0.079   18.490    0.000    1.428    0.848
##     Viv_Pla           1.502    0.082   18.367    0.000    1.460    0.862
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.495    0.090   16.565    0.000    1.633    0.900
##     Viv_HabR          1.047    0.045   23.127    0.000    1.144    0.690
##     Viv_PrInf         1.446    0.066   21.846    0.000    1.580    0.824
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.396    0.124    3.189    0.001    0.396    0.417
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF          -0.082    0.088   -0.929    0.353   -0.082   -0.163
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.888    0.115    7.728    0.000    0.836    0.836
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.043    0.162  -24.961    0.000   -4.043   -2.223
##     Viv_AdmT|t2      -2.896    0.113  -25.687    0.000   -2.896   -1.593
##     Viv_AdmT|t3      -2.155    0.085  -25.305    0.000   -2.155   -1.185
##     Viv_AdmT|t4       0.181    0.026    6.879    0.000    0.181    0.099
##     Viv_EvInt|t1     -3.750    0.139  -26.891    0.000   -3.750   -2.685
##     Viv_EvInt|t2     -2.307    0.086  -26.670    0.000   -2.307   -1.652
##     Viv_EvInt|t3     -1.552    0.061  -25.490    0.000   -1.552   -1.111
##     Viv_EvInt|t4      0.525    0.030   17.724    0.000    0.525    0.376
##     Viv_DiF|t1       -4.461    0.232  -19.262    0.000   -4.461   -2.650
##     Viv_DiF|t2       -3.320    0.163  -20.399    0.000   -3.320   -1.972
##     Viv_DiF|t3       -2.539    0.127  -20.024    0.000   -2.539   -1.508
##     Viv_DiF|t4       -0.094    0.026   -3.612    0.000   -0.094   -0.056
##     Viv_Pla|t1       -4.829    0.267  -18.097    0.000   -4.829   -2.852
##     Viv_Pla|t2       -3.911    0.209  -18.747    0.000   -3.911   -2.309
##     Viv_Pla|t3       -2.822    0.152  -18.545    0.000   -2.822   -1.666
##     Viv_Pla|t4       -0.060    0.026   -2.315    0.021   -0.060   -0.035
##     Viv_HabRC|t1     -4.885    0.273  -17.903    0.000   -4.885   -2.691
##     Viv_HabRC|t2     -3.820    0.219  -17.454    0.000   -3.820   -2.104
##     Viv_HabRC|t3     -2.713    0.153  -17.753    0.000   -2.713   -1.495
##     Viv_HabRC|t4     -0.070    0.026   -2.706    0.007   -0.070   -0.039
##     Viv_HabR|t1      -3.545    0.134  -26.411    0.000   -3.545   -2.137
##     Viv_HabR|t2      -2.441    0.087  -27.913    0.000   -2.441   -1.472
##     Viv_HabR|t3      -1.555    0.058  -26.947    0.000   -1.555   -0.938
##     Viv_HabR|t4       0.137    0.021    6.562    0.000    0.137    0.083
##     Viv_PrInf|t1     -4.158    0.167  -24.859    0.000   -4.158   -2.169
##     Viv_PrInf|t2     -3.066    0.121  -25.293    0.000   -3.066   -1.600
##     Viv_PrInf|t3     -2.219    0.089  -24.798    0.000   -2.219   -1.158
##     Viv_PrInf|t4      0.300    0.027   11.177    0.000    0.300    0.156
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          1.231    0.248    4.971    0.000    1.231    0.372
##    .Viv_EvInt         0.320    0.134    2.383    0.017    0.320    0.164
##    .Viv_DiF           0.795    0.229    3.471    0.001    0.795    0.281
##    .Viv_Pla           0.736    0.200    3.678    0.000    0.736    0.257
##    .Viv_HabRC         0.627    0.276    2.272    0.023    0.627    0.190
##    .Viv_HabR          1.442    0.221    6.525    0.000    1.442    0.524
##    .Viv_PrInf         1.179    0.214    5.508    0.000    1.179    0.321
##     Viv_Soft          0.945    0.126    7.498    0.000    1.000    1.000
##     Viv_Hard          1.194    0.157    7.584    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.550                               0.550    1.000
##     Viv_EvInt         0.716                               0.716    1.000
##     Viv_DiF           0.594                               0.594    1.000
##     Viv_Pla           0.591                               0.591    1.000
##     Viv_HabRC         0.551                               0.551    1.000
##     Viv_HabR          0.603                               0.603    1.000
##     Viv_PrInf         0.522                               0.522    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.628
##     Viv_EvInt         0.836
##     Viv_DiF           0.719
##     Viv_Pla           0.743
##     Viv_HabRC         0.810
##     Viv_HabR          0.476
##     Viv_PrInf         0.679
## 
## 
## Group 4 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Viv_Soft =~                                                           
##     Viv_AdmT          1.482    0.063   23.437    0.000    1.492    0.842
##     Viv_EvInt         1.314    0.054   24.493    0.000    1.323    0.756
##     Viv_DiF           1.469    0.079   18.490    0.000    1.479    0.769
##     Viv_Pla           1.502    0.082   18.367    0.000    1.512    0.813
##   Viv_Hard =~                                                           
##     Viv_HabRC         1.495    0.090   16.565    0.000    1.268    0.732
##     Viv_HabR          1.047    0.045   23.127    0.000    0.889    0.656
##     Viv_PrInf         1.446    0.066   21.846    0.000    1.227    0.764
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .Viv_HabRC ~~                                                          
##    .Viv_HabR          0.693    0.159    4.372    0.000    0.693    0.573
##  .Viv_EvInt ~~                                                          
##    .Viv_DiF           0.551    0.160    3.453    0.001    0.551    0.392
##   Viv_Soft ~~                                                           
##     Viv_Hard          0.712    0.063   11.395    0.000    0.834    0.834
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.000                               0.000    0.000
##    .Viv_EvInt         0.000                               0.000    0.000
##    .Viv_DiF           0.000                               0.000    0.000
##    .Viv_Pla           0.000                               0.000    0.000
##    .Viv_HabRC         0.000                               0.000    0.000
##    .Viv_HabR          0.000                               0.000    0.000
##    .Viv_PrInf         0.000                               0.000    0.000
##     Viv_Soft          0.000                               0.000    0.000
##     Viv_Hard          0.000                               0.000    0.000
## 
## Thresholds:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT|t1      -4.043    0.162  -24.961    0.000   -4.043   -2.280
##     Viv_AdmT|t2      -2.896    0.113  -25.687    0.000   -2.896   -1.634
##     Viv_AdmT|t3      -2.155    0.085  -25.305    0.000   -2.155   -1.216
##     Viv_AdmT|t4       0.181    0.026    6.879    0.000    0.181    0.102
##     Viv_EvInt|t1     -3.750    0.139  -26.891    0.000   -3.750   -2.143
##     Viv_EvInt|t2     -2.307    0.086  -26.670    0.000   -2.307   -1.319
##     Viv_EvInt|t3     -1.552    0.061  -25.490    0.000   -1.552   -0.887
##     Viv_EvInt|t4      0.525    0.030   17.724    0.000    0.525    0.300
##     Viv_DiF|t1       -4.461    0.232  -19.262    0.000   -4.461   -2.320
##     Viv_DiF|t2       -3.320    0.163  -20.399    0.000   -3.320   -1.727
##     Viv_DiF|t3       -2.539    0.127  -20.024    0.000   -2.539   -1.321
##     Viv_DiF|t4       -0.094    0.026   -3.612    0.000   -0.094   -0.049
##     Viv_Pla|t1       -4.829    0.267  -18.097    0.000   -4.829   -2.597
##     Viv_Pla|t2       -3.911    0.209  -18.747    0.000   -3.911   -2.103
##     Viv_Pla|t3       -2.822    0.152  -18.545    0.000   -2.822   -1.517
##     Viv_Pla|t4       -0.060    0.026   -2.315    0.021   -0.060   -0.032
##     Viv_HabRC|t1     -4.885    0.273  -17.903    0.000   -4.885   -2.819
##     Viv_HabRC|t2     -3.820    0.219  -17.454    0.000   -3.820   -2.204
##     Viv_HabRC|t3     -2.713    0.153  -17.753    0.000   -2.713   -1.566
##     Viv_HabRC|t4     -0.070    0.026   -2.706    0.007   -0.070   -0.041
##     Viv_HabR|t1      -3.545    0.134  -26.411    0.000   -3.545   -2.615
##     Viv_HabR|t2      -2.441    0.087  -27.913    0.000   -2.441   -1.801
##     Viv_HabR|t3      -1.555    0.058  -26.947    0.000   -1.555   -1.147
##     Viv_HabR|t4       0.137    0.021    6.562    0.000    0.137    0.101
##     Viv_PrInf|t1     -4.158    0.167  -24.859    0.000   -4.158   -2.589
##     Viv_PrInf|t2     -3.066    0.121  -25.293    0.000   -3.066   -1.909
##     Viv_PrInf|t3     -2.219    0.089  -24.798    0.000   -2.219   -1.381
##     Viv_PrInf|t4      0.300    0.027   11.177    0.000    0.300    0.187
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .Viv_AdmT          0.916    0.223    4.097    0.000    0.916    0.291
##    .Viv_EvInt         1.310    0.231    5.662    0.000    1.310    0.428
##    .Viv_DiF           1.509    0.311    4.858    0.000    1.509    0.408
##    .Viv_Pla           1.172    0.313    3.737    0.000    1.172    0.339
##    .Viv_HabRC         1.395    0.371    3.758    0.000    1.395    0.464
##    .Viv_HabR          1.048    0.186    5.636    0.000    1.048    0.570
##    .Viv_PrInf         1.075    0.218    4.923    0.000    1.075    0.417
##     Viv_Soft          1.014    0.102    9.931    0.000    1.000    1.000
##     Viv_Hard          0.720    0.079    9.134    0.000    1.000    1.000
## 
## Scales y*:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     Viv_AdmT          0.564                               0.564    1.000
##     Viv_EvInt         0.572                               0.572    1.000
##     Viv_DiF           0.520                               0.520    1.000
##     Viv_Pla           0.538                               0.538    1.000
##     Viv_HabRC         0.577                               0.577    1.000
##     Viv_HabR          0.738                               0.738    1.000
##     Viv_PrInf         0.623                               0.623    1.000
## 
## R-Square:
##                    Estimate
##     Viv_AdmT          0.709
##     Viv_EvInt         0.572
##     Viv_DiF           0.592
##     Viv_Pla           0.661
##     Viv_HabRC         0.536
##     Viv_HabR          0.430
##     Viv_PrInf         0.583
lavaan::fitMeasures(invariance$fit.means,c("chisq.scaled","df.scaled","pvalue.scaled","srmr","cfi.scaled","tli.scaled","rmsea.scaled","rmsea.ci.lower.scaled","rmsea.ci.upper.scaled"))
##          chisq.scaled             df.scaled         pvalue.scaled 
##               207.916               122.000                 0.000 
##                  srmr            cfi.scaled            tli.scaled 
##                 0.021                 0.998                 0.999 
##          rmsea.scaled rmsea.ci.lower.scaled rmsea.ci.upper.scaled 
##                 0.019                 0.015                 0.024
modificationindices(invariance$fit.means, sort.=T,maximum.number = 10)
##           lhs op rhs block group level     mi    epc sepc.lv sepc.all sepc.nox
## 189  Viv_Hard ~1         3     3     1 191.37 -0.439  -0.402   -0.402   -0.402
## 125  Viv_Soft ~1         2     2     1 101.90  0.123   0.124    0.124    0.124
## 186  Viv_HabR ~1         3     3     1 101.56 -0.594  -0.594   -0.358   -0.358
## 249  Viv_HabR ~1         4     4     1 100.59  0.472   0.472    0.348    0.348
## 252  Viv_Hard ~1         4     4     1  62.57  0.204   0.241    0.241    0.241
## 126  Viv_Hard ~1         2     2     1  59.30  0.112   0.119    0.119    0.119
## 187 Viv_PrInf ~1         3     3     1  54.35 -0.512  -0.512   -0.267   -0.267
## 62   Viv_Soft ~1         1     1     1  41.88 -0.084  -0.084   -0.084   -0.084
## 120   Viv_DiF ~1         2     2     1  39.11  0.218   0.218    0.125    0.125
## 63   Viv_Hard ~1         1     1     1  38.72 -0.097  -0.097   -0.097   -0.097
semTools::reliability(invariance$fit.means)
## For constructs with categorical indicators, Zumbo et al.`s (2007) "ordinal alpha" is calculated in addition to the standard alpha, which treats ordinal variables as numeric. See Chalmers (2018) for a critique of "alpha.ord". Likewise, average variance extracted is calculated from polychoric (polyserial) not Pearson correlations.
## $`2`
##           Viv_Soft Viv_Hard
## alpha       0.8310   0.7855
## alpha.ord   0.8974   0.8670
## omega       0.8206   0.7201
## omega2      0.8206   0.7201
## omega3      0.8189   0.7197
## avevar      0.6758   0.6438
## 
## $`3`
##           Viv_Soft Viv_Hard
## alpha       0.8319   0.7612
## alpha.ord   0.9014   0.8536
## omega       0.8163   0.6886
## omega2      0.8163   0.6886
## omega3      0.8114   0.6882
## avevar      0.6816   0.6069
## 
## $`1`
##           Viv_Soft Viv_Hard
## alpha       0.8446   0.7938
## alpha.ord   0.9133   0.8695
## omega       0.8599   0.7368
## omega2      0.8599   0.7368
## omega3      0.8584   0.7339
## avevar      0.7187   0.6659
## 
## $`4`
##           Viv_Soft Viv_Hard
## alpha       0.8247   0.7078
## alpha.ord   0.8860   0.8249
## omega       0.7842   0.6129
## omega2      0.7842   0.6129
## omega3      0.7828   0.6136
## avevar      0.6327   0.5259
5.1.1.8.5 Checking Latent Differences
partial<-partialInvarianceCat(invariance,type="means",return.fit = F)
partial
## $estimates
##            poolest mean:2 mean:3   mean:1    mean:4 std:2  std:3   std:1
## Viv_Soft~1       0      0 0.1181 -0.04287 -0.006166     0 0.1157 -0.0420
## Viv_Hard~1       0      0 0.1201 -0.30166  0.276174     0 0.1217 -0.3057
##                std:4 diff_std:3 vs. 2 diff_std:1 vs. 2 diff_std:4 vs. 2
## Viv_Soft~1 -0.006041           0.1157          -0.0420        -0.006041
## Viv_Hard~1  0.279875           0.1217          -0.3057         0.279875
## 
## $results
##            free.chi free.df     free.p  free.cfi fix.chi fix.df       fix.p
## Viv_Soft~1    6.648       3 0.08400006 -0.001778   7.446      3 0.058954598
## Viv_Hard~1   23.021       3 0.00003998 -0.005042  26.562      3 0.000007273
##              fix.cfi wald.chi wald.df wald.p
## Viv_Soft~1 -0.001778       NA      NA     NA
## Viv_Hard~1 -0.005042       NA      NA     NA

5.1.2 Predicting Latent as Factor Scores

#data_predict <- predict(fit)
#data <- cbind(data,data_predict)
write.csv(data,"data_CFA_cleyton.csv")
#names(data)