Helo, Welcome to My Rmd In this Rmd I would explore about Tuna
I want to visualize some graphs to inform a Tuna condition
Atlantic Bluefin Tuna now is endangered because overexploited, I want to find out current condition. 1. Which species are the most exploited? 2. Which countries exploit the most? 3. What is the solution to the current condition?
library(tidyverse)
library(readr)
library(ggthemes)
library(plotly)
Dataset is from FAO Fisheries Division
“FAO Aquaculture, Capture and Global production databases with data from 1950 to 2018”
country <- read_csv("input_fish/CL_FI_COUNTRY_GROUPS.csv")
production <- read_csv("input_fish/CL_FI_PRODUCTION_SOURCE.csv")
species <- read_csv("input_fish/CL_FI_SPECIES_GROUPS.csv")
symbol <- read_csv("input_fish/CL_FI_SYMBOL.csv")
unit <- read_csv("input_fish/CL_FI_UNIT.csv")
waterarea <- read_csv("input_fish/CL_FI_WATERAREA_GROUPS.csv")
TS <- read_csv("input_fish/TS_FI_PRODUCTION.csv")
I looking for the names of colomn
names(species) #Check colomn names
## [1] "3Alpha_Code" "Taxonomic_Code" "Identifier" "Name_En"
## [5] "Name_Fr" "Name_Es" "Name_Ar" "Name_Cn"
## [9] "Name_Ru" "Scientific_Name" "Author" "Family"
## [13] "Order" "Major_Group" "Yearbook_Group" "ISSCAAP_Group"
## [17] "CPC_Class" "CPC_Group"
I use three colomn ‘3Alpha_Code’, Name_En and Scientific_Name to extract the code
Nama_Tuna <- species %>%
select('3Alpha_Code', Name_En, Scientific_Name) %>%
filter(Name_En %in% c("Atlantic bluefin tuna", "Southern bluefin tuna", "Pacific bluefin tuna", "Bigeye tuna", "Albacore", "Longtail tuna", "Blackfin tuna", "Yellowfin tuna")) #Filtering species
Nama_Tuna
The code has been extracted, next replace the code with species names
I use Time Series dataset from 1950 to 2018
TUNA <- TS %>%
filter(SPECIES %in% c("BFT",
"PBF",
"LOT",
"BLF",
"ALB",
"SBF",
"YFT",
"BET"),
YEAR %in% 1950:2018)
I using sapply function for this step
TUNA$SPECIES <- sapply(as.character(TUNA$SPECIES), switch,
"BFT" = "Atlantic Bluefin Tuna",
"PBF" = "Pacific Bluefin Tuna",
"LOT" = "Longtail Tuna",
"BLF" = "Blackfin Tuna",
"ALB" = "Albacore",
"SBF" = "Southern Bluefin Tuna",
"YFT" = "Yellowfin Tuna",
"BET" = "Bigeye Tuna")
Now, country who harvesting Tuna. There are 21 top country I got from FAO and then I filtering from country dataset
topFAO <- country %>%
filter(Name_En %in% c("Thailand", "Spain", "Ecuador", "Taiwan Province of China", "China", "Indonesia", "Korea, Republic of", "Viet Nam", "Philippines", "Netherlands", "Mauritius", "Japan", "United States of America", "Italy", "France", "Germany", "United Kingdom", "Australia", "Canada", "Portugal", "Saudi Arabia")) %>%
select(UN_Code, Name_En)
OK, I got the code of country
TUNA <- TUNA %>%
filter(COUNTRY %in% c("036", "124", "156", "158", "218", "250", "276", "360", "380", "392", "410", "480", "528", "608", "620", "682", "704", "724", "764", "826", "840"))
After that I do the same things like before on Species
TUNA$COUNTRY <- sapply(as.character(TUNA$COUNTRY), switch,
"036" = "Australia",
"124" = "Canada",
"156" = "China",
"158" = "Taiwan Province of China",
"218" = "Ecuador",
"250" = "France",
"276" = "Germany",
"360" = "Indonesia",
"380" = "Italy",
"392" = "Japan",
"410" = "Korea, Republic of",
"480" = "Mauritius",
"528" = "Netherlands",
"608" = "Philippines",
"620" = "Portugal",
"682" = "Saudi Arabia",
"704" = "Viet Nam",
"724" = "Spain",
"764" = "Thailand",
"826" = "United Kingdom",
"840" = "United States of America")
Now, where the fish is capturing. The Fishing ground
fishing_ground <- waterarea %>%
filter(Code %in% c("77", "87", "21", "67", "61", "71", "27", "31", "51", "57", "81", "34", "37", "47", "41")) %>%
select(Code, Name_en)
TUNA$AREA <- sapply(as.character(TUNA$AREA), switch,
"77" = "Pacific, Eastern Central",
"87" = "Pacific, Southeast",
"21" = "Atlantic, Northwest",
"67" = "Pacific, Northeast",
"61" = "Pacific, Northwest",
"71" = "Pacific, Western Central",
"27" = "Atlantic, Northeast",
"31" = "Atlantic, Western Central",
"51" = "Indian Ocean, Western",
"57" = "Indian Ocean, Eastern",
"81" = "Pacific, Southwest",
"34" = "Atlantic, Eastern Central",
"37" = "Mediterranean and Black Sea",
"47" = "Atlantic, Southeast",
"41" = "Atlantic, Southwest")
Another to hervesting the Tuna is from Marine Aquaculture
TUNA$SOURCE <- sapply(as.character(TUNA$SOURCE), switch,
"3" = "Marine Aquaculture",
"4" = "Capture Fisheries")
In this step I did a little future enginering, create a new colomn ._.
TUNA <- TUNA %>%
select(-UNIT, -SYMBOL)
Thunnus <- TUNA
Thunnus <- Thunnus %>%
mutate(FIN = SPECIES)
Next, species grouping by their sub-genus
Thunnus$FIN <- sapply(as.character(Thunnus$FIN), switch,
"Atlantic Bluefin Tuna" = "Bluefin",
"Pacific Bluefin Tuna" = "Bluefin",
"Longtail Tuna" = "Yellowfin",
"Blackfin Tuna" ="Yellowfin",
"Albacore" = "Bluefin",
"Southern Bluefin Tuna" = "Bluefin",
"Yellowfin Tuna" = "Yellowfin",
"Bigeye Tuna" = "Bluefin")
Thunnus <- Thunnus %>%
rename(Country = COUNTRY,
Fishing_Ground = AREA,
Source = SOURCE,
Species = SPECIES,
Year = YEAR,
Quantity = QUANTITY,
Fin = FIN)
Thunnus$Year <- as.factor(Thunnus$Year)
Thunnus$Fin <- as.factor(Thunnus$Fin)
Thunnus$Species <- as.factor(Thunnus$Species)
Thunnus$Fishing_Ground <- as.factor(Thunnus$Fishing_Ground)
Thunnus %>%
select(Country, Species, Source, Year, Quantity, Fishing_Ground) %>%
filter(Year == 2018,
Fishing_Ground == "Pacific, Southeast") %>%
group_by(Species) %>%
summarise(Quantity = sum(Quantity)) %>%
#arrange(QUANTITY) %>%
ggplot(mapping = aes(x = Quantity,
y = reorder(Species, Quantity))) +
geom_col(mapping = aes(fill = Species)) +
theme(legend.position = "none")
Pacific, Southeast is the closest ocean to Indonesia, it could be that Indonesian fishermen catch tuna at this fishing ground. The species most frequently capture is Yellowfin Tuna, which is NT IUCN status or near threatened. However, if they are almost threatened, then are they the most worthy of exploitation?
Thunnus %>%
select(Species, Fin, Year, Quantity) %>%
filter(Year == 2018) %>%
group_by(Fin) %>%
summarise(Quantity = sum(Quantity)) %>%
plot_ly(labels = ~Fin,
values = ~Quantity,
type = 'pie')
Thunnus %>%
select(Species, Fin, Year, Quantity) %>%
filter(Year == 2018) %>%
group_by(Species) %>%
summarise(Quantity = sum(Quantity)) %>%
plot_ly(labels = ~Species,
values = ~Quantity,
type = 'pie')
Thunnus %>%
select(Country, Species, Source, Year, Quantity) %>%
filter(Year == 2018) %>%
group_by(Country) %>%
summarise(Quantity = sum(Quantity)) %>%
#arrange(QUANTITY) %>%
ggplot(mapping = aes(x = Quantity,
y = reorder(Country, Quantity))) +
geom_col(mapping = aes(fill = Country)) +
theme(legend.position = "none")
Thunnus %>%
filter(Source == "Capture Fisheries",
Year %in% 1950:2018) %>%
select(Species, Fin, Year, Quantity) %>%
group_by(Fin, Year) %>%
summarise(Quantity = sum(Quantity)) %>%
arrange(-Year) %>%
ggplot(mapping = aes(x = Year,
y = Quantity,
color = Fin,
group = Fin)) +
geom_line() +
geom_point() +
geom_vline(xintercept = 31, linetype="dashed",
color = "blue", size= 1) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, size = 7, vjust =0.5, margin=margin(5,0,0,0)))
Thunnus %>%
filter(Source == "Capture Fisheries",
Year %in% 1988:2018,
Fin == "Yellowfin") %>%
select(Species, Fin, Year, Quantity) %>%
group_by(Fin, Year) %>%
summarise(Quantity = sum(Quantity)) %>%
arrange(-Year) %>%
ggplot(mapping = aes(x = Year,
y = Quantity,
color = Fin,
group = Fin)) +
geom_line() +
geom_point() +
geom_smooth(method = "lm") +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, size = 7, vjust =0.5, margin=margin(5,0,0,0)))
Thunnus %>%
filter(Source == "Capture Fisheries",
Year %in% 1988:2018,
Fin == "Bluefin") %>%
select(Species, Fin, Year, Quantity) %>%
group_by(Fin, Year) %>%
summarise(Quantity = sum(Quantity)) %>%
arrange(-Year) %>%
ggplot(mapping = aes(x = Year,
y = Quantity,
color = Fin,
group = Fin)) +
geom_line() +
geom_point() +
geom_smooth(method = "lm") +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, size = 7, vjust =0.5, margin=margin(5,0,0,0)))
Thunnus %>%
select(Source, Year, Quantity) %>%
filter(Year == 2018) %>%
group_by(Source) %>%
summarise(Quantity = sum(Quantity)) %>%
plot_ly(labels = ~Source,
values = ~Quantity,
type = 'pie',
title = "Total Catch by Source in 2018",
textinfo = "none")
Thunnus %>%
filter(Source == "Marine Aquaculture",
Year %in% 1980:2018) %>%
select(Species, Fin, Year, Quantity) %>%
group_by(Fin, Year) %>%
summarise(Quantity = sum(Quantity)) %>%
arrange(-Year) %>%
ggplot(mapping = aes(x = Year,
y = Quantity,
color = Fin,
group = Fin)) +
geom_line()+
geom_point() +
geom_vline(xintercept = 31, linetype="dashed",
color = "blue", size= 1) +
theme(legend.position = "none",
axis.text.x = element_text(angle = 90, size = 7, vjust =0.5, margin=margin(5,0,0,0)))