Question 6.2

Developing a model to predict permeability (see Sect. 1.4) could save significant resources for a pharmaceutical company, while at the same time more rapidly identifying molecules that have a sufficient permeability to become a drug:

(a)

Start R and use these commands to load the data:

The matrix fingerprints contains the 1,107 binary molecular predictors for the 165 compounds, while permeability contains permeability response.

(b)

The fingerprint predictors indicate the presence or absence of substructures of a molecule and are often sparse meaning that relatively few of the molecules contain each substructure. Filter out the predictors that have low frequencies using the nearZeroVar function from the caret package. How many predictors are left for modeling?

Answer: 388 predictors are left for modeling after removing predictors with near zero variance.

## [1] 388

(c)

Split the data into a training and a test set, pre-process the data, and tune a PLS model. How many latent variables are optimal and what is the corresponding resampled estimate of R2?

Tune PLS model

Answer:

  1. 10 latent variables are optimal;

  2. The corresplonding resampled estimate of R2 is 0.8433209.

##      RMSE  Rsquared       MAE 
## 6.1373639 0.8433209 4.3027112

(d)

Predict the response for the test set. What is the test set estimate of R2?

The R2 of the test set is 0.3160511.

##       RMSE   Rsquared        MAE 
## 14.6767717  0.3160511 11.1698324

(e)

Try building other models discussed in this chapter. Do any have better predictive performance?

Answer: Ridge, Lasso and Elastic Net models are built as below. In summary, Elastic Net model has the best predictive performance among all.

Ridge

The optimal lambda is 0.1473684, the R2 of test set is 0.3209984

Train Ridge Model

## Warning: model fit failed for Fold06: lambda=0.00000 Error in if (zmin < gamhat) { : missing value where TRUE/FALSE needed
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
## Ridge Regression 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 119, 119, 120, 119, 121, 120, ... 
## Resampling results across tuning parameters:
## 
##   lambda      RMSE      Rsquared   MAE      
##   0.00000000  60.71006  0.4991202  29.193712
##   0.01052632  12.05791  0.4846220   8.590699
##   0.02105263  11.57500  0.5162559   8.258894
##   0.03157895  11.43398  0.5284007   8.157156
##   0.04210526  11.06693  0.5517906   7.886334
##   0.05263158  10.96832  0.5638508   7.862230
##   0.06315789  10.81088  0.5711652   7.745400
##   0.07368421  10.71966  0.5779169   7.708256
##   0.08421053  10.66994  0.5824879   7.699946
##   0.09473684  10.62469  0.5863821   7.681508
##   0.10526316  10.61000  0.5882193   7.686754
##   0.11578947  10.56765  0.5920883   7.675728
##   0.12631579  10.56695  0.5933558   7.677131
##   0.13684211  10.55660  0.5951257   7.685192
##   0.14736842  10.54805  0.5968473   7.694685
##   0.15789474  10.58958  0.5958360   7.727812
##   0.16842105  10.57866  0.5976003   7.738601
##   0.17894737  10.59367  0.5980664   7.760969
##   0.18947368  10.59047  0.5995876   7.770115
##   0.20000000  10.61157  0.5998085   7.793120
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was lambda = 0.1473684.

Lasso

Train Lasso Model

The Optimal fraction is 0.03368421, the R2 of test set is 0.3603223

## Warning: model fit failed for Fold06: fraction=0.1 Error in if (zmin < gamhat) { : missing value where TRUE/FALSE needed
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
## The lasso 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 119, 119, 120, 119, 121, 120, ... 
## Resampling results across tuning parameters:
## 
##   fraction    RMSE      Rsquared   MAE     
##   0.01000000  15.01230  0.4220646  11.56372
##   0.01473684  14.90148  0.4228490  11.32596
##   0.01947368  14.73416  0.4249298  11.08808
##   0.02421053  14.62962  0.4349871  10.87726
##   0.02894737  14.58540  0.4411191  10.68893
##   0.03368421  14.56377  0.4450647  10.50608
##   0.03842105  14.59098  0.4516374  10.38933
##   0.04315789  14.65946  0.4575359  10.36153
##   0.04789474  14.78465  0.4576551  10.45548
##   0.05263158  14.95305  0.4560809  10.58151
##   0.05736842  15.15743  0.4545849  10.71754
##   0.06210526  15.34749  0.4538233  10.83315
##   0.06684211  15.50782  0.4554049  10.93703
##   0.07157895  15.70231  0.4560171  11.07033
##   0.07631579  15.90921  0.4562893  11.20673
##   0.08105263  16.10125  0.4569274  11.33376
##   0.08578947  16.24817  0.4584387  11.43141
##   0.09052632  16.39067  0.4606762  11.52125
##   0.09526316  16.54697  0.4625776  11.61881
##   0.10000000  16.71106  0.4646594  11.72435
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was fraction = 0.03368421.

Elastic Net

Train Elastic Net Model

The optimal fraction = 0.09052632 and lambda = 0.1789474, the R2 of test set is 0.3978472

## Warning: model fit failed for Fold06: lambda=0.00000, fraction=0.01000 Error in if (zmin < gamhat) { : missing value where TRUE/FALSE needed
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
## Elasticnet 
## 
## 133 samples
## 388 predictors
## 
## Pre-processing: centered (388), scaled (388) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 119, 119, 120, 119, 121, 120, ... 
## Resampling results across tuning parameters:
## 
##   lambda      fraction    RMSE      Rsquared   MAE      
##   0.00000000  0.01000000  15.01230  0.4220646  11.563724
##   0.01052632  0.01473684  13.08430  0.4724539  10.329082
##   0.02105263  0.01947368  12.95924  0.4690177  10.184203
##   0.03157895  0.02421053  12.54755  0.4763840   9.819180
##   0.04210526  0.02894737  12.47553  0.4869010   9.747347
##   0.05263158  0.03368421  12.20585  0.4972868   9.473268
##   0.06315789  0.03842105  12.08418  0.5001782   9.345039
##   0.07368421  0.04315789  11.93248  0.5041611   9.175376
##   0.08421053  0.04789474  11.80591  0.5061118   9.024356
##   0.09473684  0.05263158  11.68354  0.5055404   8.858137
##   0.10526316  0.05736842  11.60898  0.5062403   8.731185
##   0.11578947  0.06210526  11.49028  0.4990189   8.600943
##   0.12631579  0.06684211  11.44616  0.5045535   8.476450
##   0.13684211  0.07157895  11.38741  0.5042226   8.372496
##   0.14736842  0.07631579  11.34000  0.5037701   8.282322
##   0.15789474  0.08105263  11.30962  0.5002722   8.224958
##   0.16842105  0.08578947  11.28209  0.5001292   8.154987
##   0.17894737  0.09052632  11.27615  0.4978649   8.109554
##   0.18947368  0.09526316  11.27653  0.4964541   8.063385
##   0.20000000  0.10000000  11.29302  0.4932032   8.036270
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were fraction = 0.09052632 and lambda
##  = 0.1789474.

(f)

Would you recommend any of your models to replace the permeability laboratory experiment?

Answer: According to the test set prediction metrics below, the Elastic Net Model has the lowest RMSE and highest R2. I would recommend to replace the original PLS model by Elastic Net model.

Question 6.3

A chemical manufacturing process for a pharmaceutical product was discussed in Sect. 1.4. In this problem, the objective is to understand the relationship between biological measurements of the raw materials (predictors), 6.5 Computing 139 measurements of the manufacturing process (predictors), and the response of product yield. Biological predictors cannot be changed but can be used to assess the quality of the raw material before processing. On the other hand, manufacturing process predictors can be changed in the manufacturing process. Improving product yield by 1% will boostrevenue by approximately one hundred thousand dollars per batch:

(a)

Start R and use these commands to load the data:

The matrix processPredictors contains the 57 predictors (12 describing the input biological material and 45 describing the process predictors) for the 176 manufacturing runs. yield contains the percent yield for each run.

(b)

A small percentage of cells in the predictor set contain missing values. Use an imputation function to fill in these missing values (e.g., see Sect. 3.8).

Anwer: Imputd mssing values using missFroest package.

##   missForest iteration 1 in progress...done!
##   missForest iteration 2 in progress...done!
##   missForest iteration 3 in progress...done!
##   missForest iteration 4 in progress...done!
##   missForest iteration 5 in progress...done!

(c)

Split the data into a training and a test set, pre-process the data, and tune a model of your choice from this chapter. What is the optimal value of the performance metric?

Build Elastic Net Model

Answer: Elastic Net model is selected. The optimal fraction = 0.2928571 and lambda = 0.8571429

## Elasticnet 
## 
## 132 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 118, 118, 119, 118, 120, 119, ... 
## Resampling results across tuning parameters:
## 
##   lambda      fraction    RMSE      Rsquared   MAE      
##   0.00000000  0.01000000  1.636748  0.5573480  1.3397154
##   0.06122449  0.03020408  1.734346  0.5364780  1.4130006
##   0.12244898  0.05040816  1.681241  0.5592217  1.3716636
##   0.18367347  0.07061224  1.629231  0.5743009  1.3312113
##   0.24489796  0.09081633  1.575004  0.5898296  1.2901447
##   0.30612245  0.11102041  1.520786  0.6032852  1.2489968
##   0.36734694  0.13122449  1.469543  0.6111888  1.2105562
##   0.42857143  0.15142857  1.421375  0.6168614  1.1732333
##   0.48979592  0.17163265  1.376023  0.6188092  1.1352478
##   0.55102041  0.19183673  1.335158  0.6175534  1.0984173
##   0.61224490  0.21204082  1.298877  0.6136621  1.0635302
##   0.67346939  0.23224490  1.267583  0.6105534  1.0324245
##   0.73469388  0.25244898  1.244009  0.5993529  1.0143852
##   0.79591837  0.27265306  1.232483  0.5826778  1.0028098
##   0.85714286  0.29285714  1.227267  0.5723389  0.9929597
##   0.91836735  0.31306122  1.230552  0.5636743  0.9856738
##   0.97959184  0.33326531  1.238759  0.5585420  0.9786307
##   1.04081633  0.35346939  1.253779  0.5543045  0.9813659
##   1.10204082  0.37367347  1.276632  0.5505213  0.9917693
##   1.16326531  0.39387755  1.301474  0.5492610  1.0024707
##   1.22448980  0.41408163  1.329210  0.5486168  1.0215773
##   1.28571429  0.43428571  1.378793  0.5429651  1.0510728
##   1.34693878  0.45448980  1.452609  0.5352128  1.0903272
##   1.40816327  0.47469388  1.530811  0.5309380  1.1322185
##   1.46938776  0.49489796  1.612047  0.5283869  1.1774640
##   1.53061224  0.51510204  1.703980  0.5250787  1.2296456
##   1.59183673  0.53530612  1.804569  0.5207456  1.2843487
##   1.65306122  0.55551020  1.931867  0.5152172  1.3463801
##   1.71428571  0.57571429  2.091702  0.5071234  1.4186604
##   1.77551020  0.59591837  2.253616  0.5008438  1.4912837
##   1.83673469  0.61612245  2.412064  0.4963841  1.5679324
##   1.89795918  0.63632653  2.573079  0.4921721  1.6488214
##   1.95918367  0.65653061  2.738963  0.4874789  1.7318588
##   2.02040816  0.67673469  2.909691  0.4825764  1.8187355
##   2.08163265  0.69693878  3.081605  0.4777622  1.9057896
##   2.14285714  0.71714286  3.253474  0.4730963  1.9908441
##   2.20408163  0.73734694  3.427221  0.4684424  2.0752630
##   2.26530612  0.75755102  3.590375  0.4639830  2.1578821
##   2.32653061  0.77775510  3.742582  0.4600084  2.2377147
##   2.38775510  0.79795918  3.892234  0.4563995  2.3157919
##   2.44897959  0.81816327  4.034053  0.4531192  2.3922832
##   2.51020408  0.83836735  4.170594  0.4502717  2.4668428
##   2.57142857  0.85857143  4.305503  0.4475778  2.5404821
##   2.63265306  0.87877551  4.434366  0.4450682  2.6128498
##   2.69387755  0.89897959  4.557350  0.4427987  2.6826484
##   2.75510204  0.91918367  4.677790  0.4406556  2.7508181
##   2.81632653  0.93938776  4.794734  0.4385366  2.8175590
##   2.87755102  0.95959184  4.906069  0.4365229  2.8832045
##   2.93877551  0.97979592  5.013615  0.4345610  2.9471459
##   3.00000000  1.00000000  5.119666  0.4326595  3.0104908
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were fraction = 0.2928571 and lambda
##  = 0.8571429.

(d)

Predict the response for the test set.What is the value of the performance metric and how does this compare with the resampled performance metric on the training set?

Answer: The R2 for the training set and test set are 0.6384729 and 0.4907965 respectively. The model has better performance on the training set.

(e)

Which predictors are most important in the model you have trained? Do either the biological or process predictors dominate the list?

Answer:

The top 20 important predictors are as below. The process predictors domiate the list.

(f)

Explore the relationships between each of the top predictors and the response. How could this information be helpful in improving yield in future runs of the manufacturing process?

Answer: As observed from the correlation plot, all biological material (BM) predictors have postive correlationship with the response variable Yield, while the manufacturing process (MP) predictors are overallly have overall smaller positive correlation with Yield than those of BMs, or have negative correslation with Yield. In future runs of manufacturing process, those individual MP predictors with small absolute value of correlation values can be further analysed and improvement actions can be taken to such MP steps in order to increase the yield so as to boost revenue.