Introduccion

en este cuaderno se presenta el area que contiene el municipio Inirida y los 8 corregimientos del departamento de Guainia, los datos fueron tomados del DANE y de del EVA, se mostrata la distribucion de los mejores cultivos de Guainia, los cuales son la Yuca y el Patano.

library(ggplot2)
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.1.0     v dplyr   1.0.5
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(dplyr)
cultivos<- read.table(file = "Evaluaciones_Agropecuarias_Municipales_EVA.csv",header = T, sep = ";")
eva_guainia <-  filter(cultivos, DEPARTAMENTO == "GUAINIA")

se modifican los encabezados para poder manejar mejor la informacion

names(eva_guainia)<- c("ID","Departamentos","CA_Municipio","Municipio","Grupo_de_cultivo","subgrupo_de_cultivo","Cultivo","Desagregacia regional y/o sistema productivo","Ano","Periodo","Area_cultivadas_ha","Area cosechada","Produccion_T","Rendimiento","Estado_fisico poduccion","Nombre_cientifico","ciclo_de_cultivo")
head(eva_guainia)
##   ID Departamentos CA_Municipio Municipio Grupo_de_cultivo subgrupo_de_cultivo
## 1 94       GUAINIA        94001   INIRIDA         FRUTALES            AGUACATE
## 2 94       GUAINIA        94001   INIRIDA         FRUTALES            AGUACATE
## 3 94       GUAINIA        94001   INIRIDA         FRUTALES            AGUACATE
## 4 94       GUAINIA        94001   INIRIDA       HORTALIZAS             AHUYAMA
## 5 94       GUAINIA        94001   INIRIDA       HORTALIZAS             AHUYAMA
## 6 94       GUAINIA        94001   INIRIDA       HORTALIZAS             AHUYAMA
##    Cultivo Desagregacia regional y/o sistema productivo  Ano Periodo
## 1 AGUACATE                                     AGUACATE 2014    2014
## 2 AGUACATE                                     AGUACATE 2015    2015
## 3 AGUACATE                                     AGUACATE 2016    2016
## 4  AHUYAMA                                      AHUYAMA 2014   2014A
## 5  AHUYAMA                                      AHUYAMA 2014   2014B
## 6  AHUYAMA                                      AHUYAMA 2015   2015A
##   Area_cultivadas_ha Area cosechada Produccion_T Rendimiento
## 1                  1              0            0            
## 2                  1              1            1         1,5
## 3                  1              1            1         1,5
## 4                  3              2           30        13,2
## 5                  2              1           12          12
## 6                  3              3           42        13,2
##   Estado_fisico poduccion      Nombre_cientifico ciclo_de_cultivo
## 1            FRUTO FRESCO PERSEA AMERICANA MILL.       PERMANENTE
## 2            FRUTO FRESCO PERSEA AMERICANA MILL.       PERMANENTE
## 3            FRUTO FRESCO PERSEA AMERICANA MILL.       PERMANENTE
## 4        HORTALIZA FRESCA      CUCURBITA MOSHATA      TRANSITORIO
## 5        HORTALIZA FRESCA      CUCURBITA MOSHATA      TRANSITORIO
## 6        HORTALIZA FRESCA      CUCURBITA MOSHATA      TRANSITORIO
tail(eva_guainia)
##     ID Departamentos CA_Municipio     Municipio      Grupo_de_cultivo
## 157 94       GUAINIA        94343 BARRANCO MINA TUBERCULOS Y PLATANOS
## 158 94       GUAINIA        94886      CACAHUAL TUBERCULOS Y PLATANOS
## 159 94       GUAINIA        94883    SAN FELIPE TUBERCULOS Y PLATANOS
## 160 94       GUAINIA        94001       INIRIDA TUBERCULOS Y PLATANOS
## 161 94       GUAINIA        94888      MORICHAL TUBERCULOS Y PLATANOS
## 162 94       GUAINIA        94888      MORICHAL TUBERCULOS Y PLATANOS
##     subgrupo_de_cultivo Cultivo Desagregacia regional y/o sistema productivo
## 157                YUCA    YUCA                              YUCA INDUSTRIAL
## 158                YUCA    YUCA                              YUCA INDUSTRIAL
## 159                YUCA    YUCA                              YUCA INDUSTRIAL
## 160                YUCA    YUCA                              YUCA INDUSTRIAL
## 161                YUCA    YUCA                              YUCA INDUSTRIAL
## 162                YUCA    YUCA                              YUCA INDUSTRIAL
##      Ano Periodo Area_cultivadas_ha Area cosechada Produccion_T Rendimiento
## 157 2016    2016                658            658         6583          10
## 158 2016    2016                226            220           22          10
## 159 2016    2016                 69             69          685          10
## 160 2016    2016                 38             38          764          20
## 161 2017    2017                120            120           12          10
## 162 2018    2018                100            100            1          10
##     Estado_fisico poduccion Nombre_cientifico ciclo_de_cultivo
## 157        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL
## 158        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL
## 159        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL
## 160        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL
## 161        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL
## 162        TUBERCULO FRESCO MANIHOT ESCULENTA            ANUAL

se ingresas el shp. de Guainia, proporcionado por el DANE

muni_guainia<- sf::read_sf ("94_GUAINIA/ADMINISTRATIVO/MGN_MPIO_POLITICO.shp")
muni_guainia
## Simple feature collection with 9 features and 9 fields
## geometry type:  POLYGON
## dimension:      XY
## bbox:           xmin: -70.94249 ymin: 1.165633 xmax: -66.84722 ymax: 4.045026
## geographic CRS: WGS 84
## # A tibble: 9 x 10
##   DPTO_CCDGO MPIO_CCDGO MPIO_CNMBR  MPIO_CRSLC   MPIO_NAREA MPIO_NANO DPTO_CNMBR
##   <chr>      <chr>      <chr>       <chr>             <dbl>     <int> <chr>     
## 1 94         94001      INÍRIDA     Decreto 159~     15970.      2017 GUAINÍA   
## 2 94         94343      BARRANCO M~ Resolución ~      9468.      2017 GUAINÍA   
## 3 94         94663      MAPIRIPANA  ACUERDO COM~      4928.      2017 GUAINÍA   
## 4 94         94883      SAN FELIPE  Resolución ~      2926.      2017 GUAINÍA   
## 5 94         94884      PUERTO COL~ Resolución ~     15701.      2017 GUAINÍA   
## 6 94         94885      LA GUADALU~ Resolución ~      1179.      2017 GUAINÍA   
## 7 94         94886      CACAHUAL    Resolución ~      2335.      2017 GUAINÍA   
## 8 94         94887      PANÁ-PANÁ ~ Resolución ~     10227.      2017 GUAINÍA   
## 9 94         94888      MORICHAL (~ 1988              8555.      2017 GUAINÍA   
## # ... with 3 more variables: Shape_Leng <dbl>, Shape_Area <dbl>,
## #   geometry <POLYGON [°]>

identificamos las clases de datos y los campiamoss a numericos

class(muni_guainia$MPIO_CCDGO)
## [1] "character"
head(muni_guainia$MPIO_CCDGO)
## [1] "94001" "94343" "94663" "94883" "94884" "94885"
class(eva_guainia$CA_Municipio)
## [1] "integer"
muni_guainia$COD_MUN <- as.double(muni_guainia$MPIO_CCDGO)
class(muni_guainia$COD_MUN)
## [1] "numeric"
head(muni_guainia$COD_MUN)
## [1] 94001 94343 94663 94883 94884 94885
eva_guainia$COD_MUN<-as.double(eva_guainia$CA_Municipio)
class(eva_guainia$COD_MUN)
## [1] "numeric"
head(eva_guainia$COD_MUN)
## [1] 94001 94001 94001 94001 94001 94001

###Yuca la yuca es otro de los productos que hacen parte de la categoria tuberculos y platano se identificaa la produccion en toneladas en el año 2016 y 2010, para hacer una comparacion con el platano

Yuca_gaui <- eva_guainia %>% filter(Cultivo =="YUCA")%>%
  dplyr::select(Municipio , COD_MUN , Ano , Periodo , Produccion_T, Rendimiento )
Yuca_gaui
##        Municipio COD_MUN  Ano Periodo Produccion_T Rendimiento
## 1        INIRIDA   94001 2007    2007         6458        6,43
## 2        INIRIDA   94001 2008    2008         9615        6,59
## 3        INIRIDA   94001 2009    2009        11249           8
## 4        INIRIDA   94001  201    2010        11932           8
## 5        INIRIDA   94001 2011    2011         3589        4,26
## 6        INIRIDA   94001 2012    2012         5112        4,54
## 7        INIRIDA   94001 2013    2013         5416        4,54
## 8        INIRIDA   94001 2014    2014         7735         6,5
## 9  BARRANCO MINA   94343 2014    2014         2205         5,8
## 10       INIRIDA   94001 2015    2015          442         6,5
## 11 BARRANCO MINA   94343 2015    2015         2262         5,8
## 12       INIRIDA   94001 2016    2016           15          15
## 13 BARRANCO MINA   94343 2016    2016          290          10
## 14 BARRANCO MINA   94343 2017    2017          699          10
## 15       INIRIDA   94001 2017    2017          464          10
## 16      CACAHUAL   94886 2017    2017            2          10
## 17    SAN FELIPE   94883 2017    2017           15          10
## 18      MORICHAL   94888 2017    2017           60          10
## 19 BARRANCO MINA   94343 2018    2018          712          10
## 20       INIRIDA   94001 2018    2018            5          10
## 21      CACAHUAL   94886 2018    2018           21          10
## 22    SAN FELIPE   94883 2018    2018            1          10
## 23      MORICHAL   94888 2018    2018           50          10
## 24 BARRANCO MINA   94343 2016    2016         6583          10
## 25      CACAHUAL   94886 2016    2016           22          10
## 26    SAN FELIPE   94883 2016    2016          685          10
## 27       INIRIDA   94001 2016    2016          764          20
## 28      MORICHAL   94888 2017    2017           12          10
## 29      MORICHAL   94888 2018    2018            1          10
unique(Yuca_gaui$Ano)
##  [1] 2007 2008 2009  201 2011 2012 2013 2014 2015 2016 2017 2018
Yuca_gaui$Produccion_T<- as.numeric(Yuca_gaui$Produccion_T)

convercion de formato largo a ancho

Yuca_gaui %>% replace ( is.na (.) ,0 ) -> Yuca_guai2
Yuca_gaui %>% 
  group_by( Municipio,COD_MUN,Ano) %>% 
  summarise(Produccion_T=sum(Produccion_T))->Yuca_guai2
## `summarise()` has grouped output by 'Municipio', 'COD_MUN'. You can override using the `.groups` argument.
head(Yuca_guai2)
## # A tibble: 6 x 4
## # Groups:   Municipio, COD_MUN [2]
##   Municipio     COD_MUN   Ano Produccion_T
##   <chr>           <dbl> <int>        <dbl>
## 1 BARRANCO MINA   94343  2014         2205
## 2 BARRANCO MINA   94343  2015         2262
## 3 BARRANCO MINA   94343  2016         6873
## 4 BARRANCO MINA   94343  2017          699
## 5 BARRANCO MINA   94343  2018          712
## 6 CACAHUAL        94886  2016           22
Yuca_guai2 %>% 
  group_by(COD_MUN)%>%
  gather("Produccion_T", key = variable, value = numero) %>%
  unite(combi,variable,Ano)%>%
  pivot_wider(names_from = combi, values_from = numero, values_fill = 0)->
  Yuca_gaui3
Yuca_gaui3
## # A tibble: 5 x 14
## # Groups:   COD_MUN [5]
##   Municipio     COD_MUN Produccion_T_2014 Produccion_T_2015 Produccion_T_2016
##   <chr>           <dbl>             <dbl>             <dbl>             <dbl>
## 1 BARRANCO MINA   94343              2205              2262              6873
## 2 CACAHUAL        94886                 0                 0                22
## 3 INIRIDA         94001              7735               442               779
## 4 MORICHAL        94888                 0                 0                 0
## 5 SAN FELIPE      94883                 0                 0               685
## # ... with 9 more variables: Produccion_T_2017 <dbl>, Produccion_T_2018 <dbl>,
## #   Produccion_T_201 <dbl>, Produccion_T_2007 <dbl>, Produccion_T_2008 <dbl>,
## #   Produccion_T_2009 <dbl>, Produccion_T_2011 <dbl>, Produccion_T_2012 <dbl>,
## #   Produccion_T_2013 <dbl>
mun_Yuca_gaui<- left_join( muni_guainia , Yuca_gaui3 ,  by ="COD_MUN")
summary(mun_Yuca_gaui)
##   DPTO_CCDGO         MPIO_CCDGO         MPIO_CNMBR         MPIO_CRSLC       
##  Length:9           Length:9           Length:9           Length:9          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    MPIO_NAREA      MPIO_NANO     DPTO_CNMBR          Shape_Leng   
##  Min.   : 1179   Min.   :2017   Length:9           Min.   :1.751  
##  1st Qu.: 2926   1st Qu.:2017   Class :character   1st Qu.:4.030  
##  Median : 8555   Median :2017   Mode  :character   Median :6.826  
##  Mean   : 7921   Mean   :2017                      Mean   :5.903  
##  3rd Qu.:10227   3rd Qu.:2017                      3rd Qu.:7.805  
##  Max.   :15970   Max.   :2017                      Max.   :9.257  
##                                                                   
##    Shape_Area               geometry    COD_MUN       Municipio        
##  Min.   :0.09434   POLYGON      :9   Min.   :94001   Length:9          
##  1st Qu.:0.23461   epsg:4326    :0   1st Qu.:94663   Class :character  
##  Median :0.69179   +proj=long...:0   Median :94884   Mode  :character  
##  Mean   :0.63866                     Mean   :94702                     
##  3rd Qu.:0.82504                     3rd Qu.:94886                     
##  Max.   :1.28699                     Max.   :94888                     
##                                                                        
##  Produccion_T_2014 Produccion_T_2015 Produccion_T_2016 Produccion_T_2017
##  Min.   :   0      Min.   :   0.0    Min.   :   0      Min.   :  2.0    
##  1st Qu.:   0      1st Qu.:   0.0    1st Qu.:  22      1st Qu.: 15.0    
##  Median :   0      Median :   0.0    Median : 685      Median : 72.0    
##  Mean   :1988      Mean   : 540.8    Mean   :1672      Mean   :250.4    
##  3rd Qu.:2205      3rd Qu.: 442.0    3rd Qu.: 779      3rd Qu.:464.0    
##  Max.   :7735      Max.   :2262.0    Max.   :6873      Max.   :699.0    
##  NA's   :4         NA's   :4         NA's   :4         NA's   :4        
##  Produccion_T_2018 Produccion_T_201 Produccion_T_2007 Produccion_T_2008
##  Min.   :  1       Min.   :    0    Min.   :   0      Min.   :   0     
##  1st Qu.:  5       1st Qu.:    0    1st Qu.:   0      1st Qu.:   0     
##  Median : 21       Median :    0    Median :   0      Median :   0     
##  Mean   :158       Mean   : 2386    Mean   :1292      Mean   :1923     
##  3rd Qu.: 51       3rd Qu.:    0    3rd Qu.:   0      3rd Qu.:   0     
##  Max.   :712       Max.   :11932    Max.   :6458      Max.   :9615     
##  NA's   :4         NA's   :4        NA's   :4         NA's   :4        
##  Produccion_T_2009 Produccion_T_2011 Produccion_T_2012 Produccion_T_2013
##  Min.   :    0     Min.   :   0.0    Min.   :   0      Min.   :   0     
##  1st Qu.:    0     1st Qu.:   0.0    1st Qu.:   0      1st Qu.:   0     
##  Median :    0     Median :   0.0    Median :   0      Median :   0     
##  Mean   : 2250     Mean   : 717.8    Mean   :1022      Mean   :1083     
##  3rd Qu.:    0     3rd Qu.:   0.0    3rd Qu.:   0      3rd Qu.:   0     
##  Max.   :11249     Max.   :3589.0    Max.   :5112      Max.   :5416     
##  NA's   :4         NA's   :4         NA's   :4         NA's   :4

mapa de la poduccion en toneladas de la yYUca en el 2010

library(leaflet)
bins<- c(0,1492,2984,4476,5968,7460,8952,10444,11936)
pal <- colorBin("YlOrRd", domain = mun_Yuca_gaui$Produccion_T_201, bins = bins)
map<-leaflet(data = mun_Yuca_gaui)%>%
  addTiles()%>%
  addPolygons(label = ~Produccion_T_201,
              popup = ~MPIO_CNMBR,
               fillColor = ~ pal(Produccion_T_201),
              color="#444444",
              weight = 1, 
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "red",weight =2,bringToFront = TRUE )
              )%>%
  addProviderTiles(providers$OpenStreetMap)%>%
  addLegend("bottomright", pal= pal, values = ~Produccion_T_201,
            title = "Produccion en Toneladas de Yuca 2010 [Ton](DANE,2018)",opacity = 1)
map

mapa de la produccion en toneladas de la tuca en eñl 2016

library(leaflet)
bins<- c(0,860,1720,2580,3440,4300,5160,6020,6880)
pal <- colorBin("YlOrRd", domain = mun_Yuca_gaui$Produccion_T_2016, bins = bins)
map<-leaflet(data = mun_Yuca_gaui)%>%
  addTiles()%>%
  addPolygons(label = ~Produccion_T_2016,
              popup = ~MPIO_CNMBR,
               fillColor = ~ pal(Produccion_T_2016),
              color="#444444",
              weight = 1, 
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "red",weight =2,bringToFront = TRUE )
              )%>%
  addProviderTiles(providers$OpenStreetMap)%>%
  addLegend("bottomright", pal= pal, values = ~Produccion_T_2016,
            title = "Produccion en Toneladas de Yuca 2016 [Ton](DANE,2018)",opacity = 1)
map

###Area de siembra de la Yuca identificamos la area cultivada en los años 2010 y 2016

Yuca_gaui_hasem <- eva_guainia %>% filter(Cultivo =="YUCA")%>%
  dplyr::select(Municipio , COD_MUN , Ano , Periodo , Produccion_T, Rendimiento,Area_cultivadas_ha)
Yuca_gaui_hasem
##        Municipio COD_MUN  Ano Periodo Produccion_T Rendimiento
## 1        INIRIDA   94001 2007    2007         6458        6,43
## 2        INIRIDA   94001 2008    2008         9615        6,59
## 3        INIRIDA   94001 2009    2009        11249           8
## 4        INIRIDA   94001  201    2010        11932           8
## 5        INIRIDA   94001 2011    2011         3589        4,26
## 6        INIRIDA   94001 2012    2012         5112        4,54
## 7        INIRIDA   94001 2013    2013         5416        4,54
## 8        INIRIDA   94001 2014    2014         7735         6,5
## 9  BARRANCO MINA   94343 2014    2014         2205         5,8
## 10       INIRIDA   94001 2015    2015          442         6,5
## 11 BARRANCO MINA   94343 2015    2015         2262         5,8
## 12       INIRIDA   94001 2016    2016           15          15
## 13 BARRANCO MINA   94343 2016    2016          290          10
## 14 BARRANCO MINA   94343 2017    2017          699          10
## 15       INIRIDA   94001 2017    2017          464          10
## 16      CACAHUAL   94886 2017    2017            2          10
## 17    SAN FELIPE   94883 2017    2017           15          10
## 18      MORICHAL   94888 2017    2017           60          10
## 19 BARRANCO MINA   94343 2018    2018          712          10
## 20       INIRIDA   94001 2018    2018            5          10
## 21      CACAHUAL   94886 2018    2018           21          10
## 22    SAN FELIPE   94883 2018    2018            1          10
## 23      MORICHAL   94888 2018    2018           50          10
## 24 BARRANCO MINA   94343 2016    2016         6583          10
## 25      CACAHUAL   94886 2016    2016           22          10
## 26    SAN FELIPE   94883 2016    2016          685          10
## 27       INIRIDA   94001 2016    2016          764          20
## 28      MORICHAL   94888 2017    2017           12          10
## 29      MORICHAL   94888 2018    2018            1          10
##    Area_cultivadas_ha
## 1                1546
## 2                2492
## 3                1407
## 4                1491
## 5                 842
## 6                1125
## 7                1192
## 8                1192
## 9                 380
## 10                684
## 11                390
## 12                105
## 13                 32
## 14                712
## 15                464
## 16                202
## 17                166
## 18                  6
## 19                712
## 20                500
## 21                210
## 22                100
## 23                  5
## 24                658
## 25                226
## 26                 69
## 27                 38
## 28                120
## 29                100
unique(Yuca_gaui_hasem $Ano)
##  [1] 2007 2008 2009  201 2011 2012 2013 2014 2015 2016 2017 2018
Yuca_gaui_hasem$Area_cultivadas_ha<- as.numeric(Yuca_gaui_hasem$Area_cultivadas_ha)

convercion de formato largo a ancho

Yuca_gaui_hasem %>% replace ( is.na (.) ,0 ) -> Yuca_gaui_hasem2
Yuca_gaui_hasem %>% 
  group_by( Municipio,COD_MUN,Ano) %>% 
  summarise(Area_cultivadas_ha=sum(Area_cultivadas_ha))->Yuca_gaui_hasem2
## `summarise()` has grouped output by 'Municipio', 'COD_MUN'. You can override using the `.groups` argument.
head(Yuca_gaui_hasem2)
## # A tibble: 6 x 4
## # Groups:   Municipio, COD_MUN [2]
##   Municipio     COD_MUN   Ano Area_cultivadas_ha
##   <chr>           <dbl> <int>              <dbl>
## 1 BARRANCO MINA   94343  2014                380
## 2 BARRANCO MINA   94343  2015                390
## 3 BARRANCO MINA   94343  2016                690
## 4 BARRANCO MINA   94343  2017                712
## 5 BARRANCO MINA   94343  2018                712
## 6 CACAHUAL        94886  2016                226
Yuca_gaui_hasem2 %>% 
  group_by(COD_MUN)%>%
  gather("Area_cultivadas_ha", key = variable, value = numero) %>%
  unite(combi,variable,Ano)%>%
  pivot_wider(names_from = combi, values_from = numero, values_fill = 0)->
  Yuca_gaui_hasem3
Yuca_gaui_hasem3
## # A tibble: 5 x 14
## # Groups:   COD_MUN [5]
##   Municipio   COD_MUN Area_cultivadas_ha~ Area_cultivadas_ha~ Area_cultivadas_h~
##   <chr>         <dbl>               <dbl>               <dbl>              <dbl>
## 1 BARRANCO M~   94343                 380                 390                690
## 2 CACAHUAL      94886                   0                   0                226
## 3 INIRIDA       94001                1192                 684                143
## 4 MORICHAL      94888                   0                   0                  0
## 5 SAN FELIPE    94883                   0                   0                 69
## # ... with 9 more variables: Area_cultivadas_ha_2017 <dbl>,
## #   Area_cultivadas_ha_2018 <dbl>, Area_cultivadas_ha_201 <dbl>,
## #   Area_cultivadas_ha_2007 <dbl>, Area_cultivadas_ha_2008 <dbl>,
## #   Area_cultivadas_ha_2009 <dbl>, Area_cultivadas_ha_2011 <dbl>,
## #   Area_cultivadas_ha_2012 <dbl>, Area_cultivadas_ha_2013 <dbl>
mun_Yuca_gaui_hasem<- left_join( muni_guainia ,Yuca_gaui_hasem3 ,  by ="COD_MUN")
summary(mun_Yuca_gaui_hasem)
##   DPTO_CCDGO         MPIO_CCDGO         MPIO_CNMBR         MPIO_CRSLC       
##  Length:9           Length:9           Length:9           Length:9          
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##    MPIO_NAREA      MPIO_NANO     DPTO_CNMBR          Shape_Leng   
##  Min.   : 1179   Min.   :2017   Length:9           Min.   :1.751  
##  1st Qu.: 2926   1st Qu.:2017   Class :character   1st Qu.:4.030  
##  Median : 8555   Median :2017   Mode  :character   Median :6.826  
##  Mean   : 7921   Mean   :2017                      Mean   :5.903  
##  3rd Qu.:10227   3rd Qu.:2017                      3rd Qu.:7.805  
##  Max.   :15970   Max.   :2017                      Max.   :9.257  
##                                                                   
##    Shape_Area               geometry    COD_MUN       Municipio        
##  Min.   :0.09434   POLYGON      :9   Min.   :94001   Length:9          
##  1st Qu.:0.23461   epsg:4326    :0   1st Qu.:94663   Class :character  
##  Median :0.69179   +proj=long...:0   Median :94884   Mode  :character  
##  Mean   :0.63866                     Mean   :94702                     
##  3rd Qu.:0.82504                     3rd Qu.:94886                     
##  Max.   :1.28699                     Max.   :94888                     
##                                                                        
##  Area_cultivadas_ha_2014 Area_cultivadas_ha_2015 Area_cultivadas_ha_2016
##  Min.   :   0.0          Min.   :  0.0           Min.   :  0.0          
##  1st Qu.:   0.0          1st Qu.:  0.0           1st Qu.: 69.0          
##  Median :   0.0          Median :  0.0           Median :143.0          
##  Mean   : 314.4          Mean   :214.8           Mean   :225.6          
##  3rd Qu.: 380.0          3rd Qu.:390.0           3rd Qu.:226.0          
##  Max.   :1192.0          Max.   :684.0           Max.   :690.0          
##  NA's   :4               NA's   :4               NA's   :4              
##  Area_cultivadas_ha_2017 Area_cultivadas_ha_2018 Area_cultivadas_ha_201
##  Min.   :126             Min.   :100.0           Min.   :   0.0        
##  1st Qu.:166             1st Qu.:105.0           1st Qu.:   0.0        
##  Median :202             Median :210.0           Median :   0.0        
##  Mean   :334             Mean   :325.4           Mean   : 298.2        
##  3rd Qu.:464             3rd Qu.:500.0           3rd Qu.:   0.0        
##  Max.   :712             Max.   :712.0           Max.   :1491.0        
##  NA's   :4               NA's   :4               NA's   :4             
##  Area_cultivadas_ha_2007 Area_cultivadas_ha_2008 Area_cultivadas_ha_2009
##  Min.   :   0.0          Min.   :   0.0          Min.   :   0.0         
##  1st Qu.:   0.0          1st Qu.:   0.0          1st Qu.:   0.0         
##  Median :   0.0          Median :   0.0          Median :   0.0         
##  Mean   : 309.2          Mean   : 498.4          Mean   : 281.4         
##  3rd Qu.:   0.0          3rd Qu.:   0.0          3rd Qu.:   0.0         
##  Max.   :1546.0          Max.   :2492.0          Max.   :1407.0         
##  NA's   :4               NA's   :4               NA's   :4              
##  Area_cultivadas_ha_2011 Area_cultivadas_ha_2012 Area_cultivadas_ha_2013
##  Min.   :  0.0           Min.   :   0            Min.   :   0.0         
##  1st Qu.:  0.0           1st Qu.:   0            1st Qu.:   0.0         
##  Median :  0.0           Median :   0            Median :   0.0         
##  Mean   :168.4           Mean   : 225            Mean   : 238.4         
##  3rd Qu.:  0.0           3rd Qu.:   0            3rd Qu.:   0.0         
##  Max.   :842.0           Max.   :1125            Max.   :1192.0         
##  NA's   :4               NA's   :4               NA's   :4

Mapa del area cultivada de yuca en el año 2010

library(leaflet)
bins<- c(0,187,374,561,748,935,1122,1309,1496)
pal <- colorBin("YlOrRd", domain = mun_Yuca_gaui_hasem$Area_cultivadas_ha_201, bins = bins)
map<-leaflet(data = mun_Yuca_gaui_hasem)%>%
  addTiles()%>%
  addPolygons(label = ~Area_cultivadas_ha_201,
              popup = ~MPIO_CNMBR,
               fillColor = ~ pal(Area_cultivadas_ha_201),
              color="#444444",
              weight = 1, 
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "red",weight =2,bringToFront = TRUE )
              )%>%
  addProviderTiles(providers$OpenStreetMap)%>%
  addLegend("bottomright", pal= pal, values = ~Area_cultivadas_ha_201,
            title = "Area sembrada  de Yuca  2010[Ha](DANE,2018)",opacity = 1)
map

Mapa del area cultivada del Yuca en el año 2016

library(leaflet)
bins<- c(0,87,174,261,348,435,522,609,696)
pal <- colorBin("YlOrRd", domain = mun_Yuca_gaui_hasem$Area_cultivadas_ha_2016, bins = bins)
map<-leaflet(data = mun_Yuca_gaui_hasem)%>%
  addTiles()%>%
  addPolygons(label = ~Area_cultivadas_ha_2016,
              popup = ~MPIO_CNMBR,
               fillColor = ~ pal(Area_cultivadas_ha_2016),
              color="#444444",
              weight = 1, 
              smoothFactor = 0.5,
              opacity = 1.0,
              fillOpacity = 0.5,
              highlightOptions = highlightOptions(color = "red",weight =2,bringToFront = TRUE )
              )%>%
  addProviderTiles(providers$OpenStreetMap)%>%
  addLegend("bottomright", pal= pal, values = ~Area_cultivadas_ha_2016,
            title = "Area sembrada  de Yuca  2016[Ha](DANE,2018)",opacity = 1)
map
sessionInfo()
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19042)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Spanish_Colombia.1252  LC_CTYPE=Spanish_Colombia.1252   
## [3] LC_MONETARY=Spanish_Colombia.1252 LC_NUMERIC=C                     
## [5] LC_TIME=Spanish_Colombia.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] leaflet_2.0.4.1 forcats_0.5.1   stringr_1.4.0   dplyr_1.0.5    
##  [5] purrr_0.3.4     readr_1.4.0     tidyr_1.1.3     tibble_3.1.0   
##  [9] tidyverse_1.3.0 sf_0.9-7        ggplot2_3.3.3  
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.6              lubridate_1.7.10        leaflet.providers_1.9.0
##  [4] class_7.3-18            assertthat_0.2.1        digest_0.6.27          
##  [7] utf8_1.1.4              R6_2.5.0                cellranger_1.1.0       
## [10] backports_1.2.1         reprex_1.0.0            evaluate_0.14          
## [13] e1071_1.7-5             httr_1.4.2              pillar_1.5.1           
## [16] rlang_0.4.10            readxl_1.3.1            rstudioapi_0.13        
## [19] rmarkdown_2.7           htmlwidgets_1.5.3       munsell_0.5.0          
## [22] proxy_0.4-25            broom_0.7.5             compiler_4.0.4         
## [25] modelr_0.1.8            xfun_0.22               pkgconfig_2.0.3        
## [28] htmltools_0.5.1.1       tidyselect_1.1.0        fansi_0.4.2            
## [31] crayon_1.4.1            dbplyr_2.1.0            withr_2.4.1            
## [34] grid_4.0.4              jsonlite_1.7.2          gtable_0.3.0           
## [37] lifecycle_1.0.0         DBI_1.1.1               magrittr_2.0.1         
## [40] units_0.7-0             scales_1.1.1            KernSmooth_2.23-18     
## [43] cli_2.3.1               stringi_1.5.3           farver_2.1.0           
## [46] fs_1.5.0                xml2_1.3.2              ellipsis_0.3.1         
## [49] generics_0.1.0          vctrs_0.3.6             RColorBrewer_1.1-2     
## [52] tools_4.0.4             glue_1.4.2              hms_1.0.0              
## [55] crosstalk_1.1.1         yaml_2.2.1              colorspace_2.0-0       
## [58] classInt_0.4-3          rvest_1.0.0             knitr_1.31             
## [61] haven_2.3.1