Determinar probabilidad mediante operaciones de union intersección y complemento.
Determinar probabilidad mediante operaciones de union intersección y complemento con datos simulados.
En el marco de referencia se presentan tanto ejercicios simulados como ejercicios extraídos a partir de la literatura o bibliografía señalada de probabilidad.
En algunos ejercicios presentados, se determina la probabilidad a partir de los puntos muestrales en relación al espacio muestral, en otros casos ya se da la probalidad de los eventos o conjutos.
Pendiente.
Se presentan algunos ejercicios de probabilidad y se demuestran con las funciones de \(union()\), \(intersect()\), \(setdfiff()\).
De un mazo de 52 cartas inglesas se simulan probabilidades usando funciones \(union()\) e \(intersect()\).
La variable \(S.baraja\) contiene todo el espacio muestral de la baraja inglesa a partir de los cuatro conjuntos de figuras que sería corazones, tréboles, picas y diamantes.
La variable \(N\) es la cantidad de elementos del espacio muestral, o sea 52 cartas.
Las variables reyes y ases es para identificar que existen cuatro reyes o cuatro ases en la baraja de 52 cartas y para propósito de responder a la pregunta.
La variable \(n.numero\) contiene la cantidad de barajas de agún número o denominación, por ejemplo: 4 reyes, cuatro ases, cuatro barajas con denominción de diez, cuatro de valor numérico dos, y cuatro de cada tipo de baraja \(K,K,K,K\) o \(A,A,A,A\) o 10,10,10,10
La variable \(n.figuras\) contiene la cantidad de barajas de aguna figura, es decir hay 13 de corazones rojos, trece de diamantes, trece de picas y trece de tréboles de cada tipo \(A,K,Q,J\),2,3,4,5,6,7,8,9,10
corazones <- c('K', 'Q', 'J', 10:2,'A')
treboles <- c('K', 'Q', 'J', 10:2,'A')
picas <- c('K', 'Q', 'J', 10:2,'A')
diamantes <- c('K', 'Q', 'J', 10:2,'A')
S.baraja <- c(corazones, treboles, picas, diamantes)
S.baraja
## [1] "K" "Q" "J" "10" "9" "8" "7" "6" "5" "4" "3" "2" "A" "K" "Q"
## [16] "J" "10" "9" "8" "7" "6" "5" "4" "3" "2" "A" "K" "Q" "J" "10"
## [31] "9" "8" "7" "6" "5" "4" "3" "2" "A" "K" "Q" "J" "10" "9" "8"
## [46] "7" "6" "5" "4" "3" "2" "A"
reyes <- rep("K", 4)
reyes
## [1] "K" "K" "K" "K"
ases <- rep("A", 4)
ases
## [1] "A" "A" "A" "A"
N <- length(S.baraja)
N
## [1] 52
n.numeros <- 4
n.numeros
## [1] 4
n.figuras <- 13
n.figuras
## [1] 13
prob.numero <- n.numeros / N
paste ("La probabilidad de que sea un rey es: ", round(prob.numero * 100, 2), "%")
## [1] "La probabilidad de que sea un rey es: 7.69 %"
prob.figura <- n.figuras / N
paste ("La probabilidad de que sea de corazones (rojos) es de: ", round(prob.figura * 100, 2), "%")
## [1] "La probabilidad de que sea de corazones (rojos) es de: 25 %"
¿Cuál es la probabilidad de que se extraiga una baraja de un mazo de 52 cartas inglesas y que ésta baraja sea de corazones O de tréboles?
Usando la Fórmula si son conjuntos mutuamente excluyentes y si no son mutuamente excluyentes se debe omitir o no considerar tercer término o sea la intersección.\(P(corazones \cap treboles)\)
\[P(corazones \cup treboles) = P(corazones) + P(treboles) - P(corazones \cap treboles)\]
Se reutiliza la variable prob.figura que representa el 25 % de que sea de algún tipo de figura. Los conjuntos son excluyentes porque no existen elementos en común entre corazones y tréboles.
P.corazonesUtreboles <- prob.figura + prob.figura
paste("La probabilid de que sea corazones o tréboles es del: ", round(P.corazonesUtreboles * 100,2), "%")
## [1] "La probabilid de que sea corazones o tréboles es del: 50 %"
Se repite dos veces porque en la realidad es que son figuras diferentes y por consecuencia barajas diferentes.
rep(union(corazones, treboles),2)
## [1] "K" "Q" "J" "10" "9" "8" "7" "6" "5" "4" "3" "2" "A" "K" "Q"
## [16] "J" "10" "9" "8" "7" "6" "5" "4" "3" "2" "A"
n <- length(rep(union(corazones, treboles),2))
prob <- n/N
paste("La probabilid de que sea corazones o tréboles es del: ", round(prob * 100, 2), "%")
## [1] "La probabilid de que sea corazones o tréboles es del: 50 %"
¿Cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación rey “K” o as “A” y que sea de figura de corazones rojos?
Para responder a la pregunta: ¿cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación rey “K” y que sea de figura de corazones rojos? se necesita una intersección.
intersect(reyes, corazones)
## [1] "K"
prob <- length(intersect(reyes, corazones)) / N
paste ("La probabilidad de que se extraiga una carta que sea rey 'R' y sea de corazones es del: ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se extraiga una carta que sea rey 'R' y sea de corazones es del: 1.92 %"
¿cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación as “A” y que sea de figura de corazones rojos? se necesita una intersección.
intersect(ases, corazones)
## [1] "A"
prob <- length(intersect(ases, corazones)) / N
paste ("La probabilidad de que se extraiga una carta que sea as 'A' y sea de corazones es del: ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se extraiga una carta que sea as 'A' y sea de corazones es del: 1.92 %"
Al final del semestre John se va a graduar en la facultad de ingeniería industrial de una universidad. Después de tener entrevistas en dos empresas en donde quiere trabajar, determina que la probabilidad que tiene de lograr una oferta de empleo en la empresa A con su probabilidad P(A) de 0.8, y que la probabilidad de obtenerla en la empresa B P(B) es 0.6. Si, por otro lado, considera que la probabilidad de recibir ofertas de ambas empresas es \(P(A\cap B)\) es 0.5,
¿qué probabilidad tiene de obtener al menos una oferta de esas dos empresas?. Para determinar esta probabilidad, se utiliza la fórmula de la regla aditiva de la probabilidad entendiendo que son conjuntos no mutuamente excluyentes (Walpole, Myers, and Myers 2012a).
\[P(A \cup B)=P(A) + P(B) - P(A\cap B) P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 0.8 + 0.6 – 0.5 = 0.9\]
prob.AUB <- 0.8 + 0.6 - 0.5
paste("La probabilidad de recibir ofertas de una u otra empresa es de : ", prob.AUB)
## [1] "La probabilidad de recibir ofertas de una u otra empresa es de : 0.9"
¿Cuál es la probabilidad de obtener un total de 7 u 11 cuando se lanza un par de dados?, es decir, ¿cuál es la probabilidad de \(P(siete \cup once)\) (Walpole, Myers, and Myers 2012a).
Sea \(siete\) el evento de que resulte la suma en 7 y \(once\) el evento de que salga la suma de los dos dados en 11.
¿Cuántos hay que sumen siete en relación al total de eventos?, con ello se puede determinar su probabilidad?
Se puede reutilizar funciones y elementos del caso 7 en el ejercicio de lanzar dos dados. Se reutiliza una función llamada \(f.contar.dados(S.espacio.muestral, inicial = 7, final = 7)\) y \(f.contar.dados(S.espacio.muestral, inicial = 11, final = 11)\) para determinar cuántas ocasiones hay de cada suma.
Primero hay que cargar las funciones.
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/misfunciones.r")
# source("../funciones/misfunciones.r")
Se utiliza \(N\) para total de espacio muestra y \(n.siente\) para los eventos que la suma sea siete.
Con la llamada de la función \(f.contar.dados()\), se muestran los puntos muestrales ya sumando los dos dados y con ella, también se obtiene la cantidad de ocasiones de que la suma sea siete y más adelante se indentifica para cuando la suma sea once.
S.espacio.muestral <- as.character(c(11:16, 21:26, 31:36, 41:46, 51:56, 61:66))
S.espacio.muestral
## [1] "11" "12" "13" "14" "15" "16" "21" "22" "23" "24" "25" "26" "31" "32" "33"
## [16] "34" "35" "36" "41" "42" "43" "44" "45" "46" "51" "52" "53" "54" "55" "56"
## [31] "61" "62" "63" "64" "65" "66"
N <- length(S.espacio.muestral)
N
## [1] 36
n.siete <- f.contar.dados(S.espacio.muestral, inicial = 7, final = 7)
## [1] 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8
## [26] 8 9 9 9 9 10 10 10 11 11 12
n.siete
## [1] 6
prob.siete <- n.siete / N
prob.siete
## [1] 0.1666667
¿Cuantos eventos hay que sumen once en relación al total para identificar? con la respuesta se debe encontrar su probabilidad?
n.once <- f.contar.dados(S.espacio.muestral, inicial = 11, final = 11)
## [1] 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8
## [26] 8 9 9 9 9 10 10 10 11 11 12
n.once
## [1] 2
prob.once <- n.once / N
prob.once
## [1] 0.05555556
Ahora bien, para la suma que sea siete de los 36 puntos muestrales ocurre un total de 6 ocasiones y sólo 2 de ellos ocurre para la suma de once
Son conjuntos mutuamente excluyentes porque no hay condiciones de que haya eventos comunes o es siete o es once en el lanzamiento de dos dados simultáneamente.
\[P(siete \cup once) = P(siente) + P(once)\]
prob <- prob.siete + prob.once
paste("La probabilidad de la suma sea siete un nces es: ", prob)
## [1] "La probabilidad de la suma sea siete un nces es: 0.222222222222222"
S.espacio.muestral
## [1] "11" "12" "13" "14" "15" "16" "21" "22" "23" "24" "25" "26" "31" "32" "33"
## [16] "34" "35" "36" "41" "42" "43" "44" "45" "46" "51" "52" "53" "54" "55" "56"
## [31] "61" "62" "63" "64" "65" "66"
sietes <- f.sumar.dados(S.espacio.muestral, 7, 7)
## [1] 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8
## [26] 8 9 9 9 9 10 10 10 11 11 12
onces <- f.sumar.dados(S.espacio.muestral, 11, 11)
## [1] 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8
## [26] 8 9 9 9 9 10 10 10 11 11 12
Se presentan los conjuntos de sietes y onces respectivamente y la unión de los mismos.
sietes
## [1] 16 17 18 19 20 21
onces
## [1] 34 35
Se determina la probabilidad de la unión de los conjuntos sietes y onces y se contesta a la pregunta del ejercicio de:
sietesUonces <- union(sietes, onces)
n <- length(sietesUonces)
prob <- n/N
paste("La probabilidad de la suma sea siete un nces es: ", round(prob * 100, 2))
## [1] "La probabilidad de la suma sea siete un nces es: 22.22"
Las probabilidades de que un individuo que compra un automóvil nuevo elija uno de color verde, uno blanco, uno rojo o uno azul son 0.09, 0.15, 0.21 y 0.23, respectivamente,¿cuál es la probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores?. (Walpole, Myers, and Myers 2012b).
Sean V, B, R y A los eventos de que un comprador seleccione respectivamente algún color de un automóvil de entre verde, blanco, rojo o azul. Como estos cuatro eventos son mutuamente excluyentes, la probabilidad es:
\[P(V ∪ B ∪ R ∪ A) = P(V) + P(B) + P(R) + P(A)= 0.09 + 0.15 + 0.21 + 0.23 = 0.68.\]
Solo se suman las probabilidades:
prob.V <- 0.09
prob.B <- 0.15
prob.R <- 0.21
prob.A <- 0.23
prob <- sum(prob.V, prob.B, prob.R, prob.A)
paste ("La probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores es:", prob)
## [1] "La probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores es: 0.68"
En un juego de dominó existen 28 fichas. Cada ficha tiene dos lados con puntos entre cero y seis. Las siguientes tablas identifican cada ficha de dominó y la suma de los puntos de cada una. El cero significa la fichas “güeras” en el contexto de dominó.
Fichas del cero al tres:
Fichas del cuatro al seis:
Determine probabilidades al extraer una sola ficha de dominó sumando los puntos de los lados de la ficha.
Para este caso se utilizan funciones previamente realizadas y cargadas que se encuentra en la dirección URL“https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/misfunciones.r”))"
Se presentan las fichas de dominó.
S <- f.fichas.domino()
S
## [1] "00" "01" "02" "03" "04" "05" "06" "11" "12" "13" "14" "15" "16" "22" "23"
## [16] "24" "25" "26" "33" "34" "35" "36" "44" "45" "46" "55" "56" "66"
Se presenta la tabla de distribución y sus probabilidades
S.distribucion <- f.distribucion.fichas.domino(S, 0,12)
S.distribucion
## sumas Freq prob acum
## 1 0 1 0.03571429 0.03571429
## 2 1 1 0.03571429 0.07142857
## 3 2 2 0.07142857 0.14285714
## 4 3 2 0.07142857 0.21428571
## 5 4 3 0.10714286 0.32142857
## 6 5 3 0.10714286 0.42857143
## 7 6 4 0.14285714 0.57142857
## 8 7 3 0.10714286 0.67857143
## 9 8 3 0.10714286 0.78571429
## 10 9 2 0.07142857 0.85714286
## 11 10 2 0.07142857 0.92857143
## 12 11 1 0.03571429 0.96428571
## 13 12 1 0.03571429 1.00000000
Con lo anterior, ya se puede contestar las siguientes preguntas:
¿Cuál es la probabilidad de que la suma sea exactamente cuatro?.
¿Cuál es la probabilidad de que la suma sea exactamente seis?
¿Cuál es la probabilidad de que la suma sea exactamente ocho?
¿Cuál es la probabilidad de que la suma sea exactamente doce?
¿Cuál es la probabilidad de que la suma sea entre cero y seis? es decir la suma de las probabilidad de cero a seis.
¿Cuál es la probabilidad que al menos la suma sea nueve?, el complemento a partir de ocho.
De la literatura de (Walpole, Myers, and Myers 2012a). En un grupo de 100 estudiantes graduados de preparatoria, 54 estudiaron matemáticas, 69 estudiaron historia y 35 cursaron matemáticas e historia. Si se selecciona al azar uno de estos estudiantes, calcule la probabilidad de que
El estudiante haya cursado matemáticas o historia;
Para obtener la probabilidad: \(P(M U H)=(54)+(69)–(35)=88/100=0.88\), lo que da un resultado de 88% de probabilidad que un estudiante haya estudiado matemáticas o historia.
El estudiante no haya llevado ninguna de estas materias;
Para obtener la probabilidad: \(P(M’∩H’)=(54)-(69)+(35)=12/100=0.12\), lo que da un resultado de 12% de probabilidad que un estudiante no haya estudiado ninguna de las materias.
El estudiante haya cursado historia pero no matemáticas.
Para obtener la probabilidad: \(P(H∩M’)=(69)-(35)=34/100=0.34\), lo que da un resultado de 34% de probabilidad que un estudiante haya estudiado historia pero no matemáticas.
A los obreros de las fábricas se les motiva constantemente a practicar la tolerancia cero para prevenir accidentes en el lugar de trabajo. Los accidentes pueden ocurrir porque el ambiente o las condiciones laborales son inseguros.
Por otro lado, los accidentes pueden ocurrir por negligencia (condicione sinseguras) o fallas humanas.
También el horario de trabajo de 7:00 a.m. a 3:00 p.m. (turno matutino), de 3:00 p.m. a 11:00 p.m. (turno vespertino) y de 11:00 p.m. a 7:00 a.m. (turno nocturno) podría ser otro factor.
Se tienen los porcentajes (probabilidades) de los accidentes por la combinación de condiciones son los que siguen:
accidentenocturno<-(0.02+0.30)
paste("La probabilidad de un accidente nocturno es de ", round(accidentenocturno*100), "%")
## [1] "La probabilidad de un accidente nocturno es de 32 %"
fallahumana <- 0.32 +0.25 + 0.30
paste("La probabilidad de un accidente por una falla humana es de: ", round(fallahumana*100, 2),"%")
## [1] "La probabilidad de un accidente por una falla humana es de: 87 %"
fallainseguridad <- 0.05+ 0.06 + 0.02
paste("La probabilidad de un accidente por condiciones inseguras es de: ", round(fallainseguridad*100, 2),"%")
## [1] "La probabilidad de un accidente por condiciones inseguras es de: 13 %"
vesponoct <- 0.06 + 0.25 + 0.02 + 0.30
paste("La probabilidad de un accidente en el turno vespertinos o nocturnos es de: ", round(vesponoct*100, 2),"%")
## [1] "La probabilidad de un accidente en el turno vespertinos o nocturnos es de: 63 %"
Se solicita una descripción de al menos 200 palabras de los ejercicios del caso.
En este caso se vieron los siguientes conceptos:
Unión. Quiere decir que implica unir los datos de dos eventos o conjuntos diferentes a uno solo para encontrar la probabilidad de una unión esta se interpreta con la siguiente fórmula: \(P(A∪B)=P(A)+P(B)\)
Intersección. Esta operación identifica los puntos muestrales o elementos que están en dos conjuntos y permite encontrar la probabilidad conjunta, también puede medir la probabilidad de que dos o más eventos sucedan al mismo tiempo.
Complemento. Este concepto se refiere a calcular la probabilidad de que el evento NO ocurra. Un conjunto de un evento es mutuamente excluyente del conjunto de origen, por lo que la unión de un conjunto con su complemento da como resultado el 100% del espacio muestral.
En cuanto al desarrollo, aprendí a aplicar estos conceptos en algunos problemas. En el caso de dados se puede sacar la probabilidad de que la suma de los números que tiene una ficha de dominó sea, por ejemplo, seis; primero se presentan las fichas de dominó, después se saca la probabilidad de que la suma de sus números sean de cero a doce, a partir de ahí se puede sacar el porcentaje, dividiendo la cantidad de veces que se puede obtener la suma de algun número entre el número de fichas que se muestran y después multiplicar el resultado por cien.
En el problema de estudiantes se utiliza la fórmula de intersección: \(P(A∪B)=P(A)+P(B)-P(M \cap H)\).
Y finalmente en el problema de los obreros, se suman los porcentajes o probabilidades que vienen en la imagen y se multiplican por cien, dependiendo de lo que se desee saber, en este caso: el porcentaje de los accidentes que ocurren en el turno nocturno, la probabilidad de un accidente por falla humana, accidentes debido a las condiciones inseguras y los accidentes ocurridos en el turno nocturno o vespertino.
Lind, Douglas, William Marchal, and Samuel Wathen. 2015. Estadística Aplicada a Los Negocios y La Economía. Decimo Sexta. México, D.F.: McGraw-Hill. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson. ———. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.