Ejercicio 1: Para una empresa se ha estimado un modelo que relaciona las ventas de 200 empresas, con su gasto en tv, radio, periódicos y la interacción entre tv y periódicos Dicho modelo se encuentra en “modelo_ventas.RData”
options(scipen = 999999)
load("~/Eco_trabajos/modelo_ventas.RData")
mat_x<-model.matrix(modelo_ventas)
# Matriz A
mat_A<-solve(t(mat_x)%*%mat_x)%*%t(mat_x)
# Matriz P
mat_P<-mat_x%*%mat_A
# Matriz M
mat_M<-diag(200)-mat_P
mat_A[1:4,1:4]
## 1 2 3 4
## (Intercept) -0.01128647020 0.01410377973 0.0350639188 0.0004283381
## tv -0.00006704103 0.00003094914 -0.0006120193 -0.0002120642
## periodico 0.00139818182 -0.00190724690 -0.0025468816 0.0002293243
## radio -0.00058002134 0.00064866654 -0.0001093284 -0.0001899710
mat_P[1:4,1:4]
## 1 2 3 4
## 1 0.03181459 0.00370346 0.01758786 0.02250872
## 2 0.00370346 0.02460480 0.03447285 0.01212022
## 3 0.01758786 0.03447285 0.06766822 0.02641047
## 4 0.02250872 0.01212022 0.02641047 0.02031981
mat_M[1:4,1:4]
## 1 2 3 4
## 1 0.96818541 -0.00370346 -0.01758786 -0.02250872
## 2 -0.00370346 0.97539520 -0.03447285 -0.01212022
## 3 -0.01758786 -0.03447285 0.93233178 -0.02641047
## 4 -0.02250872 -0.01212022 -0.02641047 0.97968019
Residuos_estimados<-mat_M%*%modelo_ventas$model$ventas
Comparativo<-as.data.frame(cbind(Residuos_estimados,modelo_ventas$residuals))
names(Comparativo)<-c("Residuos_estimados","modelo_ventas$residual")
head(Comparativo,n=10)
## Residuos_estimados modelo_ventas$residual
## 1 -15.933072 -15.933072
## 2 19.334106 19.334106
## 3 38.016384 38.016384
## 4 -15.426419 -15.426419
## 5 5.158145 5.158145
## 6 80.216933 80.216933
## 7 -16.348831 -16.348831
## 8 -22.894376 -22.894376
## 9 -34.402629 -34.402629
## 10 46.088670 46.088670
eigen(t(mat_x)%*%mat_x)$values
## [1] 311421698.6388 70252.5341 40973.4590 3714.3627 12.7735
Ejercicio 2: Para una empresa se desea estimar un modelo que relaciona el tiempo (en minutos) en acomodar cajas en una bodega, en función de la distancia (en metros) y del número de cajas nota: las cajas son todas iguales. Los datos se encuentra en “datos_cajas.RData”
options(scipen = 999999)
load("~/Eco_trabajos/datos_cajas.RData")
modelo_cajas<-lm(formula = Tiempo~Distancia+N_cajas,data = datos_cajas)
summary(modelo_cajas)
##
## Call:
## lm(formula = Tiempo ~ Distancia + N_cajas, data = datos_cajas)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.2716 -0.5405 0.5212 1.4051 2.9381
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3112 5.8573 0.395 0.70007
## Distancia 0.4559 0.1468 3.107 0.00908 **
## N_cajas 0.8772 0.1530 5.732 0.0000943 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.141 on 12 degrees of freedom
## Multiple R-squared: 0.7368, Adjusted R-squared: 0.6929
## F-statistic: 16.8 on 2 and 12 DF, p-value: 0.0003325
mat_x<-model.matrix(modelo_cajas)
# Matriz A
mat_A<-solve(t(mat_x)%*%mat_x)%*%t(mat_x)
# Matriz P
mat_P<-mat_x%*%mat_A
# _Matriz M
mat_M<-diag(15)-mat_P
mat_A
## 1 2 3 4 5
## (Intercept) 0.459747079 0.505626389 -0.317731768 0.707001469 0.053149816
## Distancia -0.003015297 -0.009318829 0.018819615 -0.019989342 -0.006641453
## N_cajas -0.017147338 -0.009890695 -0.007919488 -0.004479623 0.011082085
## 6 7 8 9 10
## (Intercept) -0.166576988 0.633594572 -0.125532551 0.1260628274 -0.90735239
## Distancia 0.006550474 -0.009903692 0.009409808 0.0003379213 0.02334256
## N_cajas 0.002768355 -0.016090251 -0.003959744 -0.0038254420 0.01780152
## 11 12 13 14 15
## (Intercept) 0.277217608 0.368482344 0.487274665 -0.3674581822 -0.73350489
## Distancia -0.011931220 -0.007473259 -0.006797416 0.0001559637 0.01645417
## N_cajas 0.006862401 -0.005142468 -0.012793352 0.0238754370 0.01885861
mat_P
## 1 2 3 4 5 6
## 1 0.19781478 0.127154573 0.16766180 0.062524965 -0.03527291 0.057620774
## 2 0.12715457 0.124295239 0.03396629 0.140073563 0.05334477 0.038710181
## 3 0.16766180 0.033966286 0.35585795 -0.137368460 -0.10168744 0.123125512
## 4 0.06252497 0.140073563 -0.13736846 0.257600846 0.15524536 0.006698639
## 5 -0.03527291 0.053344771 -0.10168744 0.155245361 0.18408997 0.046742309
## 6 0.05762077 0.038710181 0.12312551 0.006698639 0.04674231 0.086318088
## 7 0.17558129 0.144648497 0.07654437 0.133523089 0.01345706 0.036955589
## 8 0.11716423 0.050316476 0.21126231 -0.035350897 -0.01751039 0.094896089
## 9 0.09794605 0.077129229 0.10132526 0.055636570 0.03786105 0.067680430
## 10 -0.02906036 -0.056765574 0.20436525 -0.131155907 0.05122193 0.136694350
## 11 -0.01209498 0.081873124 -0.13140718 0.199703669 0.18629079 0.030873007
## 12 0.09285990 0.104513848 0.01812731 0.131114317 0.07550894 0.044246890
## 13 0.15541865 0.125438973 0.08744449 0.109054124 0.01789770 0.046274418
## 14 -0.12402490 -0.005427535 -0.12246527 0.112857904 0.23285894 0.067134558
## 15 -0.05129385 -0.039271650 0.11324781 -0.060157783 0.09995191 0.116029165
## 7 8 9 10 11 12
## 1 0.17558129 0.11716423 0.09794605 -0.02906036 -0.01209498 0.092859897
## 2 0.14464850 0.05031648 0.07712923 -0.05676557 0.08187312 0.104513848
## 3 0.07654437 0.21126231 0.10132526 0.20436525 -0.13140718 0.018127310
## 4 0.13352309 -0.03535090 0.05563657 -0.13115591 0.19970367 0.131114317
## 5 0.01345706 -0.01751039 0.03786105 0.05122193 0.18629079 0.075508940
## 6 0.03695559 0.09489609 0.06768043 0.13669435 0.03087301 0.044246890
## 7 0.18301556 0.07160552 0.08894348 -0.08682757 0.04935470 0.112467995
## 8 0.07160552 0.13896449 0.08399596 0.13551596 -0.03237026 0.042396988
## 9 0.08894348 0.08399596 0.07465547 0.05440619 0.04101064 0.069478345
## 10 -0.08682757 0.13551596 0.05440619 0.34795579 -0.01326471 -0.021162536
## 11 0.04935470 -0.03237026 0.04101064 -0.01326471 0.20329083 0.095597926
## 12 0.11246799 0.04239699 0.06947834 -0.02116254 0.09559793 0.094228911
## 13 0.15702161 0.07705558 0.08545596 -0.04568349 0.04428588 0.099852268
## 14 -0.07689788 -0.02789930 0.01907176 0.16357209 0.20867158 0.042323339
## 15 -0.07939330 0.08995724 0.04540362 0.29018859 0.04818497 -0.001554438
## 13 14 15
## 1 0.15541865 -0.124024902 -0.051293849
## 2 0.12543897 -0.005427535 -0.039271650
## 3 0.08744449 -0.122465266 0.113247813
## 4 0.10905412 0.112857904 -0.060157783
## 5 0.01789770 0.232858944 0.099951911
## 6 0.04627442 0.067134558 0.116029165
## 7 0.15702161 -0.076897883 -0.079393301
## 8 0.07705558 -0.027899299 0.089957240
## 9 0.08545596 0.019071756 0.045403621
## 10 -0.04568349 0.163572088 0.290188586
## 11 0.04428588 0.208671580 0.048184973
## 12 0.09985227 0.042323339 -0.001554438
## 13 0.13743085 -0.052866482 -0.044080529
## 14 -0.05286648 0.352392093 0.210699107
## 15 -0.04408053 0.210699107 0.262089133
mat_M
## 1 2 3 4 5 6
## 1 0.80218522 -0.127154573 -0.16766180 -0.062524965 0.03527291 -0.057620774
## 2 -0.12715457 0.875704761 -0.03396629 -0.140073563 -0.05334477 -0.038710181
## 3 -0.16766180 -0.033966286 0.64414205 0.137368460 0.10168744 -0.123125512
## 4 -0.06252497 -0.140073563 0.13736846 0.742399154 -0.15524536 -0.006698639
## 5 0.03527291 -0.053344771 0.10168744 -0.155245361 0.81591003 -0.046742309
## 6 -0.05762077 -0.038710181 -0.12312551 -0.006698639 -0.04674231 0.913681912
## 7 -0.17558129 -0.144648497 -0.07654437 -0.133523089 -0.01345706 -0.036955589
## 8 -0.11716423 -0.050316476 -0.21126231 0.035350897 0.01751039 -0.094896089
## 9 -0.09794605 -0.077129229 -0.10132526 -0.055636570 -0.03786105 -0.067680430
## 10 0.02906036 0.056765574 -0.20436525 0.131155907 -0.05122193 -0.136694350
## 11 0.01209498 -0.081873124 0.13140718 -0.199703669 -0.18629079 -0.030873007
## 12 -0.09285990 -0.104513848 -0.01812731 -0.131114317 -0.07550894 -0.044246890
## 13 -0.15541865 -0.125438973 -0.08744449 -0.109054124 -0.01789770 -0.046274418
## 14 0.12402490 0.005427535 0.12246527 -0.112857904 -0.23285894 -0.067134558
## 15 0.05129385 0.039271650 -0.11324781 0.060157783 -0.09995191 -0.116029165
## 7 8 9 10 11 12
## 1 -0.17558129 -0.11716423 -0.09794605 0.02906036 0.01209498 -0.092859897
## 2 -0.14464850 -0.05031648 -0.07712923 0.05676557 -0.08187312 -0.104513848
## 3 -0.07654437 -0.21126231 -0.10132526 -0.20436525 0.13140718 -0.018127310
## 4 -0.13352309 0.03535090 -0.05563657 0.13115591 -0.19970367 -0.131114317
## 5 -0.01345706 0.01751039 -0.03786105 -0.05122193 -0.18629079 -0.075508940
## 6 -0.03695559 -0.09489609 -0.06768043 -0.13669435 -0.03087301 -0.044246890
## 7 0.81698444 -0.07160552 -0.08894348 0.08682757 -0.04935470 -0.112467995
## 8 -0.07160552 0.86103551 -0.08399596 -0.13551596 0.03237026 -0.042396988
## 9 -0.08894348 -0.08399596 0.92534453 -0.05440619 -0.04101064 -0.069478345
## 10 0.08682757 -0.13551596 -0.05440619 0.65204421 0.01326471 0.021162536
## 11 -0.04935470 0.03237026 -0.04101064 0.01326471 0.79670917 -0.095597926
## 12 -0.11246799 -0.04239699 -0.06947834 0.02116254 -0.09559793 0.905771089
## 13 -0.15702161 -0.07705558 -0.08545596 0.04568349 -0.04428588 -0.099852268
## 14 0.07689788 0.02789930 -0.01907176 -0.16357209 -0.20867158 -0.042323339
## 15 0.07939330 -0.08995724 -0.04540362 -0.29018859 -0.04818497 0.001554438
## 13 14 15
## 1 -0.15541865 0.124024902 0.051293849
## 2 -0.12543897 0.005427535 0.039271650
## 3 -0.08744449 0.122465266 -0.113247813
## 4 -0.10905412 -0.112857904 0.060157783
## 5 -0.01789770 -0.232858944 -0.099951911
## 6 -0.04627442 -0.067134558 -0.116029165
## 7 -0.15702161 0.076897883 0.079393301
## 8 -0.07705558 0.027899299 -0.089957240
## 9 -0.08545596 -0.019071756 -0.045403621
## 10 0.04568349 -0.163572088 -0.290188586
## 11 -0.04428588 -0.208671580 -0.048184973
## 12 -0.09985227 -0.042323339 0.001554438
## 13 0.86256915 0.052866482 0.044080529
## 14 0.05286648 0.647607907 -0.210699107
## 15 0.04408053 -0.210699107 0.737910867
Residuos_estimados<-mat_M%*%modelo_cajas$model$Tiempo
Comparativo<-as.data.frame(cbind(Residuos_estimados,modelo_cajas$residuals))
names(Comparativo)<-c("Residusos_estimado","Modelo_cajas$residuals")
head(Comparativo,n=10)
## Residusos_estimado Modelo_cajas$residuals
## 1 -0.7608713 -0.7608713
## 2 0.1327095 0.1327095
## 3 -0.3200790 -0.3200790
## 4 2.9381318 2.9381318
## 5 -9.2715743 -9.2715743
## 6 0.7655710 0.7655710
## 7 1.3084025 1.3084025
## 8 -2.0933728 -2.0933728
## 9 1.4318218 1.4318218
## 10 0.5212280 0.5212280
options(scipen = 999999)
eigen(t(mat_x)%*%mat_x)$values
## [1] 16976.7781334 709.9345923 0.2872743
Ejercicio 3: Para los EEUU se ha estimado un modelo que relaciona el “número de crímenes” en un estado con el “Nivel de pobreza” y la cantidad de solteros en el mismo. Dicho modelo se encuentra en “modelo_estimado.RData”
options(scipen = 999999)
load("~/Eco_trabajos/modelo_estimado.RData")
mat_x<-model.matrix(modelo_estimado_1)
mat_A<-solve(t(mat_x)%*%mat_x)%*%t(mat_x)
mat_P<-mat_x%*%mat_A
mat_M<-diag(51)-mat_P
mat_A[,1:4]
## 1 2 3 4
## (Intercept) -0.12023796 0.007496216 0.043732382 -0.019624196
## poverty -0.01182361 0.003994776 0.008825494 0.000303668
## single 0.02723384 -0.003960021 -0.013241432 0.003081729
mat_P[1:4,1:4]
## 1 2 3 4
## 1 0.16161108 -0.01277963 -0.06530809 0.02720791
## 2 -0.01277963 0.03146508 0.04501952 0.02109951
## 3 -0.06530809 0.04501952 0.07855895 0.01942366
## 4 0.02720791 0.02109951 0.01942366 0.02234121
mat_M[1:4,1:4]
## 1 2 3 4
## 1 0.83838892 0.01277963 0.06530809 -0.02720791
## 2 0.01277963 0.96853492 -0.04501952 -0.02109951
## 3 0.06530809 -0.04501952 0.92144105 -0.01942366
## 4 -0.02720791 -0.02109951 -0.01942366 0.97765879
Residuos_estimados<-mat_M%*%modelo_estimado_1$model$crime
Comparativo<-as.data.frame(cbind(Residuos_estimados,modelo_estimado_1$residuals))
names(Comparativo)<-c("Residuos_estimados","modelo_estimado$residuals")
head(Comparativo,n=10)
## Residuos_estimados modelo_estimado$residuals
## 1 -311.70552 -311.70552
## 2 116.80291 116.80291
## 3 45.25394 45.25394
## 4 -34.44604 -34.44604
## 5 243.00035 243.00035
## 6 -145.11556 -145.11556
## 7 86.13208 86.13208
## 8 88.30923 88.30923
## 9 689.82331 689.82331
## 10 -163.28540 -163.28540
eigen(t(mat_x)%*%mat_x)$values
## [1] 17956.580914 279.157317 1.681762
Ejercicio 4: Dentro del archivo “Investiment_Equation.xlsx” se encuentran datos para estimar una función de inversión, para un país, y contiene las siguientes variables: InvReal=Inversión Real en millones de USS, Trend=tendencia, Inflation=inflación, PNBr=Producto Nacional Bruto Real en USS, Interest=Tasa de interés Se solicita: a) Estima la ecuación de inversión, presenta sus resultados en formato APA.
options(scipen = 999999)
library(stargazer)
library(readxl)
Investiment_Equation <- read_excel("C:/Users/IRMA/Desktop/C-I-2021/Econometria/Investiment_Equation.xlsx")
funcion_Inversion<-lm(InvReal~Trend+Inflation+PNBr+Interest,data = Investiment_Equation)
stargazer(funcion_Inversion,title = "Ecuación de Inversión",type = "html",digits = 8)
| Dependent variable: | |
| InvReal | |
| Trend | -0.01637845*** |
| (0.00194114) | |
| Inflation | 0.00002291 |
| (0.00133035) | |
| PNBr | 0.66454700*** |
| (0.05411848) | |
| Interest | -0.24032170* |
| (0.12033660) | |
| Constant | -0.50335230*** |
| (0.05423952) | |
| Observations | 15 |
| R2 | 0.97299900 |
| Adjusted R2 | 0.96219860 |
| Residual Std. Error | 0.00662875 (df = 10) |
| F Statistic | 90.08923000*** (df = 4; 10) |
| Note: | p<0.1; p<0.05; p<0.01 |
mat_x<-model.matrix(funcion_Inversion)
mat_M<-diag(15)-mat_x%*%solve(t(mat_x)%*%mat_x)%*%t(mat_x)
# Residuos
mat_M%*%funcion_Inversion$model$InvReal
## [,1]
## 1 -0.0100602233
## 2 -0.0009290882
## 3 0.0029656679
## 4 0.0078576839
## 5 0.0028109133
## 6 0.0006259732
## 7 0.0075909286
## 8 -0.0055352778
## 9 -0.0037254127
## 10 0.0006953129
## 11 0.0019904770
## 12 -0.0001288433
## 13 -0.0101976729
## 14 0.0068712384
## 15 -0.0008316770
confint(funcion_Inversion,parm = "PNBr",level = 0.93 )
## 3.5 % 96.5 %
## PNBr 0.554777 0.774317
Interpretación: El 93% de la estimación de la función de inversión por cada $ 1 que aumente el PNBrla inversión aumentará entre 0.55 y 0.77 USS.
Ejercicio 5: Dentro del archivo “consumption_equation.RData” se encuentran objetos relacionados a una función de consumo, que se construyó usando las variables: C=Consumo en millones de US$, Yd=Ingreso disponible, W=Riqueza, I=Tasa de interés
options(scipen = 999999)
load("C:/Users/IRMA/Desktop/C-I-2021/Econometria/consumption_equation.RData")
Residuos_Consumo<-(diag(54)-P)%*%C
head(Residuos_Consumo,n=10)
## [,1]
## 1 -5.859103
## 2 2.605057
## 3 45.765735
## 4 31.102448
## 5 -21.037889
## 6 7.008120
## 7 17.859663
## 8 10.705631
## 9 22.002328
## 10 -2.689665
Var_error<-(t(Residuos_Consumo)%*%Residuos_Consumo/(54-4))[1,1]
VarCovar<-Var_error*solve(XX)
VarCovar
## (Intercept) Yd W I
## (Intercept) 164.522304918 -0.09333539523 0.009670913575 10.5186890800
## Yd -0.093335395 0.00018911268 -0.000032769561 -0.0072901023
## W 0.009670914 -0.00003276956 0.000006165749 0.0004193421
## I 10.518689080 -0.00729010228 0.000419342092 5.3203789879
Consumo_estimado<-P%*%C
head(Consumo_estimado,n=10)
## [,1]
## 1 982.2591
## 2 995.4949
## 3 979.5343
## 4 1059.7976
## 5 1128.1379
## 6 1135.3919
## 7 1179.3403
## 8 1211.1944
## 9 1288.3977
## 10 1351.4897
Ejercicio 6: Dentro del archivo “datos_ventas.RData” se encuebtra los datos para estimar una función de ventas, para una empresa, y contiene las siguientes variables: ventas=Ventas en millones de UsS, tv=gasto en publicidad en TV en millones de USS, radio=gasto en publicidad en radio en millones de USS, periodico= gasto en publicidad en periodicos en millones de USS, se solicita:
library(stargazer)
options(scipen = 999999)
load("C:/Users/IRMA/Desktop/C-I-2021/Econometria/datos_ventas.RData")
modelo_ventas<-lm(formula = ventas~tv+radio+periodico,data = datos_ventas)
stargazer(modelo_ventas,title = "Ecuación de ventas", type = "html",digits = 8)
| Dependent variable: | |
| ventas | |
| tv | 0.04503377 |
| (0.11795900) | |
| radio | -3.44959300*** |
| (0.20612340) | |
| periodico | 18.48504000*** |
| (0.56342000) | |
| Constant | -33.28854000*** |
| (7.17224500) | |
| Observations | 200 |
| R2 | 0.84666810 |
| Adjusted R2 | 0.84432120 |
| Residual Std. Error | 33.87478000 (df = 196) |
| F Statistic | 360.75750000*** (df = 3; 196) |
| Note: | p<0.1; p<0.05; p<0.01 |