library(tidyverse)
library(readxl)
autumn <- read_excel("autumn.xlsx", na = "not answered")
glimpse(autumn)
Rows: 20
Columns: 18
$ `Participant ID` <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
$ `Dog Type` <chr> "service", "service", "service", "service", "service", "service", "serice", "companion", "companion", "companion", "companion", "…
$ Gender <chr> "M", "M", "F", "F", "F", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M"
$ `Age Range` <chr> "50-59", "20-29", "50-59", "40-49", "50-59", "70-79", "40-49", "40-49", NA, "70-79", "30-39", "70-79", "60-69", "60-69", "40-49",…
$ `Program Start- Fill in question` <chr> "Current participant", "44154", "N/A", "Jan 2020 done with AKC certs but still participating in task training", "N/A", "STILL", "…
$ `1P` <dbl> 4, 5, 5, 4, 3, 4, 4, 3, 4, 4, 5, 3, 2, 4, 5, 4, 3, 5, 4, 4
$ `2P` <dbl> 3, 5, 5, 4, 4, 4, 4, 3, 4, 4, 5, 3, 2, 4, 5, 4, 3, 5, 4, 4
$ `3P` <dbl> 5, 5, 5, 5, 4, 5, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 3, 5, 5, 5
$ `4P` <dbl> 3, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 5, 4, 5, 4, 4, 5, 4, 5
$ `5P` <dbl> 4, 5, 4, 5, 4, 4, 5, 4, 5, 4, 5, 3, 5, 5, 5, 4, 4, 5, 4, 5
$ `6P` <dbl> 4, NA, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 4, 3, 5, 4, 4
$ `1C` <dbl> 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 2, 3, 3, 2, 3, 2, 3, 4
$ `2C` <dbl> 2, 4, 5, 3, 4, 3, 3, 2, 2, 4, 4, 1, 1, 3, 3, 2, 3, 1, 2, 3
$ `3C` <dbl> 3, 4, 5, 3, 4, 5, 4, 3, 2, 3, 4, 2, 5, 4, 3, 2, 3, 1, 3, 2
$ `4C` <dbl> 2, 3, 4, 3, 3, 4, 3, 2, 2, 3, 4, 1, 3, 3, 3, 1, 3, 2, 3, 3
$ `5C` <dbl> 2, 5, 5, 4, 3, 4, 4, 3, 2, 3, 5, 1, 4, 4, 3, 3, 3, 2, 3, 2
$ `6C` <dbl> 3, 4, 4, 3, 3, 3, 3, 3, 2, 3, 4, 1, 1, 3, 3, 2, 3, 2, 3, 2
$ `DTB Rate` <dbl> 5, 1, 3, 1, 2, 1, 1, 2, 1, 3, 3, 1, 1, 3, 1, 5, 2, 1, 4, 5
autumn <- autumn %>%
rename("PreStressful" = "1P") %>%
rename("PostStressful" = "1C")
summary(autumn)
Participant ID Dog Type Gender Age Range Program Start- Fill in question PreStressful 2P 3P 4P
Min. : 1.00 Length:20 Length:20 Length:20 Length:20 Min. :2.00 Min. :2.00 Min. :3.00 Min. :2.00
1st Qu.: 5.75 Class :character Class :character Class :character Class :character 1st Qu.:3.75 1st Qu.:3.75 1st Qu.:4.00 1st Qu.:4.00
Median :10.50 Mode :character Mode :character Mode :character Mode :character Median :4.00 Median :4.00 Median :5.00 Median :4.00
Mean :10.50 Mean :3.95 Mean :3.95 Mean :4.65 Mean :4.05
3rd Qu.:15.25 3rd Qu.:4.25 3rd Qu.:4.25 3rd Qu.:5.00 3rd Qu.:4.25
Max. :20.00 Max. :5.00 Max. :5.00 Max. :5.00 Max. :5.00
5P 6P PostStressful 2C 3C 4C 5C 6C DTB Rate
Min. :3.00 Min. :3.000 Min. :2 Min. :1.00 Min. :1.00 Min. :1.00 Min. :1.00 Min. :1.00 Min. :1.0
1st Qu.:4.00 1st Qu.:4.000 1st Qu.:3 1st Qu.:2.00 1st Qu.:2.75 1st Qu.:2.00 1st Qu.:2.75 1st Qu.:2.00 1st Qu.:1.0
Median :4.50 Median :4.000 Median :3 Median :3.00 Median :3.00 Median :3.00 Median :3.00 Median :3.00 Median :2.0
Mean :4.45 Mean :4.316 Mean :3 Mean :2.75 Mean :3.25 Mean :2.75 Mean :3.25 Mean :2.75 Mean :2.3
3rd Qu.:5.00 3rd Qu.:5.000 3rd Qu.:3 3rd Qu.:3.25 3rd Qu.:4.00 3rd Qu.:3.00 3rd Qu.:4.00 3rd Qu.:3.00 3rd Qu.:3.0
Max. :5.00 Max. :5.000 Max. :4 Max. :5.00 Max. :5.00 Max. :4.00 Max. :5.00 Max. :4.00 Max. :5.0
NA's :1
autumn %>%
pivot_longer(cols = c(PreStressful, PostStressful), names_to = "Time", values_to = "Rating") %>%
ggplot(aes(x = Time, y = Rating)) +
geom_boxplot(width = .5) +
geom_jitter(width = .1) +
labs(title = "Prior to enrollment, did you experience memories, thoughts, or images that reminded you of previous stressful military situation",
x = "Time")

mean(autumn$PreStressful)
[1] 3.95
mean(autumn$PostStressful)
[1] 3
t.test(autumn$PreStressful, autumn$PostStressful, paired = T)
Paired t-test
data: autumn$PreStressful and autumn$PostStressful
t = 5.1461, df = 19, p-value = 5.742e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.5636176 1.3363824
sample estimates:
mean of the differences
0.95
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KHJlYWR4bCkKYGBgCgpgYGB7cn0KYXV0dW1uIDwtIHJlYWRfZXhjZWwoImF1dHVtbi54bHN4IiwgbmEgPSAibm90IGFuc3dlcmVkIikKYGBgCgpgYGB7cn0KZ2xpbXBzZShhdXR1bW4pCmBgYAoKYGBge3J9CmF1dHVtbiA8LSBhdXR1bW4gJT4lIAogIHJlbmFtZSgiUHJlU3RyZXNzZnVsIiA9ICIxUCIpICU+JSAKICByZW5hbWUoIlBvc3RTdHJlc3NmdWwiID0gIjFDIikKYGBgCgoKYGBge3J9CnN1bW1hcnkoYXV0dW1uKQpgYGAKCgpgYGB7cn0KYXV0dW1uICU+JSAKICBwaXZvdF9sb25nZXIoY29scyA9IGMoUHJlU3RyZXNzZnVsLCBQb3N0U3RyZXNzZnVsKSwgbmFtZXNfdG8gPSAiVGltZSIsIHZhbHVlc190byA9ICJSYXRpbmciKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gVGltZSwgeSA9IFJhdGluZykpICsKICBnZW9tX2JveHBsb3Qod2lkdGggPSAuNSkgKwogIGdlb21faml0dGVyKHdpZHRoID0gLjEpICsKICBsYWJzKHRpdGxlID0gIlByaW9yIHRvIGVucm9sbG1lbnQsIGRpZCB5b3UgZXhwZXJpZW5jZSBtZW1vcmllcywgdGhvdWdodHMsIG9yIGltYWdlcyB0aGF0IHJlbWluZGVkIHlvdSBvZiBwcmV2aW91cyBzdHJlc3NmdWwgbWlsaXRhcnkgc2l0dWF0aW9uIiwKICAgICAgIHggPSAiVGltZSIpCmBgYAoKCgpgYGB7cn0KbWVhbihhdXR1bW4kUHJlU3RyZXNzZnVsKQptZWFuKGF1dHVtbiRQb3N0U3RyZXNzZnVsKQp0LnRlc3QoYXV0dW1uJFByZVN0cmVzc2Z1bCwgYXV0dW1uJFBvc3RTdHJlc3NmdWwsIHBhaXJlZCA9IFQpCmBgYAoK