library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.6     v stringr 1.4.0
## v tidyr   1.1.2     v forcats 0.5.1
## v readr   1.4.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(broom)
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 4.0.5
# iris flowers datasets
data(cars)
attach(cars)
dim(cars)
## [1] 50  2
head(cars)
##   speed dist
## 1     4    2
## 2     4   10
## 3     7    4
## 4     7   22
## 5     8   16
## 6     9   10
#linear regression
model <- lm(dist ~ speed, data = cars)
model
## 
## Call:
## lm(formula = dist ~ speed, data = cars)
## 
## Coefficients:
## (Intercept)        speed  
##     -17.579        3.932
summary(model)
## 
## Call:
## lm(formula = dist ~ speed, data = cars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -29.069  -9.525  -2.272   9.215  43.201 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -17.5791     6.7584  -2.601   0.0123 *  
## speed         3.9324     0.4155   9.464 1.49e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.38 on 48 degrees of freedom
## Multiple R-squared:  0.6511, Adjusted R-squared:  0.6438 
## F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12
# SE should be 5-10x smaller than coeff
#3.9/.42=9 so ok
#17.6/6.7= 2.6 intercept may vary

# beta0,beta1 coeff are significant

# Residual std error=15.4
#1Q*1.5=9.5*1.5=14.2 close to 15.4 so ok
#3Q*1.5=9.2*1.5=13.8 close to 15.4 so ok
#model accounts for 65% of variation
plot(speed,dist)
abline(model)

plot(fitted(model),resid(model))

#residuals are uniformly scattered, no patters, so #ok
qqnorm(resid(model))
qqnorm(resid(model))

#QQ plot is ok, however, may investigate points on both ends

# here is some code that gives more diagnostic #plots
model.diag.metrics <- augment(model)
head(model.diag.metrics)
## # A tibble: 6 x 8
##    dist speed .fitted .resid   .hat .sigma  .cooksd .std.resid
##   <dbl> <dbl>   <dbl>  <dbl>  <dbl>  <dbl>    <dbl>      <dbl>
## 1     2     4   -1.85   3.85 0.115    15.5 0.00459       0.266
## 2    10     4   -1.85  11.8  0.115    15.4 0.0435        0.819
## 3     4     7    9.95  -5.95 0.0715   15.5 0.00620      -0.401
## 4    22     7    9.95  12.1  0.0715   15.4 0.0255        0.813
## 5    16     8   13.9    2.12 0.0600   15.5 0.000645      0.142
## 6    10     9   17.8   -7.81 0.0499   15.5 0.00713      -0.521
ggplot(model.diag.metrics, aes(speed,dist)) +
  geom_point() +
  stat_smooth(method = lm, se = FALSE) +
  geom_segment(aes(xend = speed, yend = .fitted), color = "red", size = 0.3)
## `geom_smooth()` using formula 'y ~ x'

autoplot(model)
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.

#the shows no pattern in residual v fitted, so ok
#normal QQ plot is ok
#scale location addresses heteroscadesicity is ok
#Leverage - may investigate the 2 leverage points