1 Data Quality Checks


We only included participants with a gc score of 1. Those with a gc value equal to 1 designate the Good Completes on the filter supplied by Qualtrics.

For the VA version that is currently 688 participants.

gc n
1 688

For the non-VA version that is currently 388 participants.

gc n
1 388

We will filter out all except the good completes so our final sample is 688 for VA version and 388 for Non-VA version.(code shown below).

data <-  data %>%filter(gc == "1")
dataNVA <-  dataNVA %>%filter(gc == "1")

1.1 Timing

Median completion timing for the VA version is 13 minutes and 21 seconds (round to 13 minutes).

## [1] "13M 21S"

Median completion timing for the non-VA version is 11 minutes and 11 seconds (round to 11 minutes).

## [1] "11M 10.5S"

Mean completion timing for VA version is 17 minutes and 4 seconds (round to 17 minutes).

## [1] "17M 3.57000000000005S"

Mean completion timing for non-VA version is 14 minutes and 54 seconds (round to 15 minutes).

## [1] "14M 54.4072S"

Names of all variables included.


Checking the number of respondents vaccinated. 0 = no doses (362; 34%) 1 = received one dose (243; 23%) 2 = received two doses (471; 44%)

received.vaccine n percent
0 362 33.6%
1 243 22.6%
2 471 43.8%

Checking vaccination by veteran status

Veterans 0 = no doses (171; 25%) 1 = received one dose (159; 23%) 2 = received two doses (358; 52%)

Non-veterans 0 = no doses (191; 49%) 1 = received one dose (84; 22%) 2 = received two doses (113; 29%)

Group received.vaccine n percent
Non-veteran 0 191 49.2%
Non-veteran 1 84 21.6%
Non-veteran 2 113 29.1%
Veteran 0 171 24.9%
Veteran 1 159 23.1%
Veteran 2 358 52.0%

Checking the number of respondents who said they had had COVID in each group. 0 = haven’t had COVID (1017; 95%) 1 = yes, currently have COVID, (1; <.001%) 2 = yes, had COVID and recovered, (58; 5%)

covid1 n percent
0 1017 94.5%
1 1 0.1%
2 58 5.4%

Checking by vaccination status

No doses 0 = haven’t had COVID (336; 93%) 1 = yes, currently have COVID, (1; .03%) 2 = yes, had COVID and recovered, (25; 7%)

One dose 0 = haven’t had COVID (229; 94%) 1 = yes, currently have COVID, (0; <.0%) 2 = yes, had COVID and recovered, (14; 6%)

two doses 0 = haven’t had COVID (452; 96%) 1 = yes, currently have COVID, (0; 0%) 2 = yes, had COVID and recovered, (19; 4%)

received.vaccine covid1 n percent
0 0 336 92.8%
0 1 1 0.3%
0 2 25 6.9%
1 0 229 94.2%
1 2 14 5.8%
2 0 452 96.0%
2 2 19 4.0%

Checking by veteran status

Veterans 0 = haven’t had COVID (657; 96%) 1 = yes, currently have COVID, (0; 0%) 2 = yes, had COVID and recovered, (31; 5%)

Non-veterans 0 = haven’t had COVID (360; 93%) 1 = yes, currently have COVID, (1; .3%) 2 = yes, had COVID and recovered, (27; 7%)

Group covid1 n percent
Non-veteran 0 360 92.8%
Non-veteran 1 1 0.3%
Non-veteran 2 27 7.0%
Veteran 0 657 95.5%
Veteran 2 31 4.5%


2 Pre-registered analyses



2.1 Effect of vax status on risky behaviors


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q1. Going to gatherings of 10 or more people
  • Q2. Going on optional shopping trips
  • Q3. Going on optional travel
  • Q4. Having optional social visits
  • Q5. Eating inside restaurants, bars and food courts

Below are the descriptive statistics for these items.

##                     vars    n mean   sd median trimmed  mad min max range skew
## current.behaviors_1    1 1076 1.89 1.31      1    1.64 0.00   1   6     5 1.41
## current.behaviors_2    2 1076 3.03 1.50      3    2.97 1.48   1   6     5 0.12
## current.behaviors_3    3 1076 2.05 1.38      1    1.82 0.00   1   6     5 1.12
## current.behaviors_4    4 1076 2.31 1.35      2    2.17 1.48   1   6     5 0.76
## current.behaviors_5    5 1076 2.47 1.56      2    2.29 1.48   1   6     5 0.61
##                     kurtosis   se
## current.behaviors_1     1.06 0.04
## current.behaviors_2    -1.06 0.05
## current.behaviors_3     0.19 0.04
## current.behaviors_4    -0.40 0.04
## current.behaviors_5    -0.94 0.05

The reliability of these items is good. Cronbach’s Alpha is .87.

## 
## Reliability analysis   
## Call: psych::alpha(x = df_Comb[, c(2:6)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.87      0.88    0.85      0.59   7 0.0061  2.3 1.2     0.59
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.89 
## 
##  Reliability if an item is dropped:
##                     raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r
## current.behaviors_1      0.85      0.85    0.82      0.59 5.8   0.0075 0.0030
## current.behaviors_2      0.86      0.86    0.83      0.61 6.3   0.0069 0.0020
## current.behaviors_3      0.85      0.85    0.81      0.58 5.6   0.0077 0.0029
## current.behaviors_4      0.83      0.83    0.79      0.55 4.9   0.0085 0.0010
## current.behaviors_5      0.85      0.85    0.81      0.59 5.7   0.0076 0.0037
##                     med.r
## current.behaviors_1  0.59
## current.behaviors_2  0.61
## current.behaviors_3  0.60
## current.behaviors_4  0.55
## current.behaviors_5  0.57
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean  sd
## current.behaviors_1 1076  0.80  0.81  0.74   0.69  1.9 1.3
## current.behaviors_2 1076  0.78  0.78  0.69   0.65  3.0 1.5
## current.behaviors_3 1076  0.82  0.82  0.76   0.71  2.0 1.4
## current.behaviors_4 1076  0.86  0.87  0.84   0.78  2.3 1.3
## current.behaviors_5 1076  0.82  0.82  0.75   0.70  2.5 1.6
## 
## Non missing response frequency for each item
##                        1    2    3    4    5    6 miss
## current.behaviors_1 0.59 0.16 0.10 0.10 0.03 0.02    0
## current.behaviors_2 0.22 0.19 0.14 0.29 0.11 0.05    0
## current.behaviors_3 0.54 0.15 0.12 0.13 0.04 0.03    0
## current.behaviors_4 0.38 0.25 0.13 0.18 0.04 0.02    0
## current.behaviors_5 0.43 0.14 0.12 0.19 0.09 0.04    0

Below are the descriptive statistics for the risky behavioral intentions scale overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1076 2.35 1.16      2    2.22 1.19   1   6     5 0.95     0.39 0.04

Checking for assumptions before running ANOVA

Plots do not look too extreme, but levene’s test is clearly significant indicating variance between groups differs

Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()

  • Levene’s Test for Homogeneity of Variance:

    DFn DFd SSn SSd F p p<.05
    2 1073 13.51 626.5 11.57 0.00001064 *

Planned ANOVA test of H1. Shows effect of vax status

Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()

  • ANOVA:

      Effect DFn DFd F p p<.05 ges
    2 received.vaccine 2 1073 3.626 0.02694 * 0.006714

Non-parametric ANOVA to test H1 in response to the significant levene’s test. Barely significant

## Coefficient covariances computed by hccm()
## Analysis of Deviance Table (Type II tests)
## 
## Response: BehavIntRisk_Avg
##                    Df      F  Pr(>F)  
## received.vaccine    2 3.1431 0.04355 *
## Residuals        1073                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Checking group means


Show least squares means (unadjusted) and CIs around means

received.vaccine lsmean SE df lower.CL upper.CL
0 2.478 0.06082 1073 2.359 2.598
1 2.244 0.07423 1073 2.099 2.39
2 2.303 0.05332 1073 2.199 2.408

Also generic means across groups and other descriptives (e.g., skew, range, etc.)

## 
##  Descriptive statistics by group 
## group: 0
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 362 2.48 1.32      2    2.33 1.19   1   6     5 0.84    -0.15 0.07
## ------------------------------------------------------------ 
## group: 1
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.24 1.11      2    2.11 1.19   1   6     5 1.03     0.71 0.07
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471  2.3 1.04    2.2     2.2 1.19   1   6     5 0.89     0.39 0.05

Plotting means for visual inspection

Following significant main effect of vaccination status, running pairwise comparisons with Bonferroni correction for multiple testing.


## Loading required package: rstatix
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
## 
##     select
## The following objects are masked from 'package:plyr':
## 
##     desc, mutate
## The following object is masked from 'package:stats':
## 
##     filter
## Loading required package: ggpubr
## 
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
## 
##     mutate
variables group1 group2 n1 n2 p p.signif p.adj p.adj.signif effsize magnitude
BehavIntRisk_Avg 0 1 362 243 0.0149 * 0.0447 * 0.1914 negligible
BehavIntRisk_Avg 0 2 362 471 0.0305 * 0.0915 ns 0.1475 negligible
BehavIntRisk_Avg 1 2 243 471 0.521 ns 1 ns -0.0546 negligible


2.2 Effect of getting a vaccine on mask wearing


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q6. Practicing good hygiene such as washing your hands, especially after touching frequently used items or surfaces
  • Q7. Wearing a mask over your nose and mouth when you are in a public place (e.g., store)
  • Q8. Wearing a mask over your nose and mouth when you are outdoors

Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)


Below are the descriptive statistics for these items.

##                     vars    n mean   sd median trimmed  mad min max range  skew
## current.behaviors_6    1 1076 5.40 0.90      6    5.58 0.00   1   6     5 -2.13
## current.behaviors_7    2 1076 5.68 0.84      6    5.89 0.00   1   6     5 -3.51
## current.behaviors_8    3 1076 4.04 1.73      4    4.17 2.97   1   6     5 -0.46
##                     kurtosis   se
## current.behaviors_6     5.99 0.03
## current.behaviors_7    13.76 0.03
## current.behaviors_8    -1.07 0.05

The reliability of these items is poor Cronbach’s Alpha is .54. We pre-registered that if Alpha was ≤.7 we would instead use a single item for this measure.

## 
## Reliability analysis   
## Call: psych::alpha(x = df_Comb[, c(7:9)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.54      0.61    0.52      0.35 1.6 0.021    5 0.88     0.37
## 
##  lower alpha upper     95% confidence boundaries
## 0.5 0.54 0.58 
## 
##  Reliability if an item is dropped:
##                     raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## current.behaviors_6      0.45      0.54    0.37      0.37 1.20    0.025    NA
## current.behaviors_7      0.38      0.44    0.28      0.28 0.79    0.031    NA
## current.behaviors_8      0.55      0.55    0.38      0.38 1.23    0.027    NA
##                     med.r
## current.behaviors_6  0.37
## current.behaviors_7  0.28
## current.behaviors_8  0.38
## 
##  Item statistics 
##                        n raw.r std.r r.cor r.drop mean   sd
## current.behaviors_6 1076  0.64  0.74  0.51   0.37  5.4 0.90
## current.behaviors_7 1076  0.69  0.78  0.60   0.46  5.7 0.84
## current.behaviors_8 1076  0.87  0.74  0.51   0.39  4.0 1.73
## 
## Non missing response frequency for each item
##                        1    2    3    4    5    6 miss
## current.behaviors_6 0.01 0.01 0.02 0.08 0.31 0.58    0
## current.behaviors_7 0.01 0.01 0.01 0.03 0.13 0.81    0
## current.behaviors_8 0.13 0.10 0.11 0.20 0.18 0.28    0

Checking for assumptions before running ANOVA

Plots do not look too extreme, but levene’s test is clearly significant indicating variance between groups differs

Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()

  • Levene’s Test for Homogeneity of Variance:

    DFn DFd SSn SSd F p p<.05
    2 1073 47.01 708.1 35.62 1.056e-15 *

Planned ANOVA test of H2. Shows effect of vax status on mask wearing in public

Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()

  • ANOVA:

      Effect DFn DFd F p p<.05 ges
    2 received.vaccine 2 1073 35.62 1.056e-15 * 0.06225

Non-parametric ANOVA to test H2 in response to the significant levene’s test. Remained significant

## Coefficient covariances computed by hccm()
## Analysis of Deviance Table (Type II tests)
## 
## Response: current.behaviors_7
##                    Df      F         Pr(>F)    
## received.vaccine    2 22.563 0.000000000252 ***
## Residuals        1073                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Checking group means


Show least squares means (unadjusted) and CIs around means

received.vaccine lsmean SE df lower.CL upper.CL
0 5.384 0.0427 1073 5.3 5.468
1 5.823 0.05211 1073 5.721 5.925
2 5.828 0.03743 1073 5.755 5.901

Also generic means across groups and other descriptives (e.g., skew, range, etc.)

## 
##  Descriptive statistics by group 
## group: 0
##    vars   n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 362 5.38 1.2      6    5.68   0   1   6     5 -2.25     4.54 0.06
## ------------------------------------------------------------ 
## group: 1
##    vars   n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 243 5.82 0.5      6    5.95   0   3   6     3 -3.39    13.17 0.03
## ------------------------------------------------------------ 
## group: 2
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 471 5.83 0.53      6    5.95   0   1   6     5 -5.04    35.05 0.02

Plotting means for visual inspection


Following significant main effect of vaccination status, running pairwise comparisons with Bonferroni correction for multiple testing.

variables group1 group2 n1 n2 p p.signif p.adj p.adj.signif effsize magnitude
current.behaviors_7 0 1 362 243 0.00000000011 **** 0.00000000033 **** -0.48 small
current.behaviors_7 0 2 362 471 0.0000000000000125 **** 0.0000000000000375 **** -0.48 small
current.behaviors_7 1 2 243 471 0.938 ns 1 ns -0.009688 negligible

3 Demographics



3.1 Had CV19



Checking the number of respondents who said they had had COVID in December 2020. * 0 = haven’t had COVID (1037; 97%) * 1 = yes, currently have COVID, (5; .5%) * 2 = yes, had COVID and recovered, (33; 3%)

and in March 2021. * 0 = haven’t had COVID (1037; 97%) * 1 = yes, currently have COVID, (5; .5%) * 2 = yes, had COVID and recovered, (33; 3%)

covid1.y n percent
0 1037 96.5%
1 5 0.5%
2 33 3.1%
covid1.x n percent
0 1016 94.5%
1 1 0.1%
2 58 5.4%

Checking who said they had COVID by vaccination status in December 2020

No doses 0 = haven’t had COVID (343; 95%) 1 = yes, currently have COVID, (4; 1%) 2 = yes, had COVID and recovered, (14; 4%)

One dose 0 = haven’t had COVID (236; 97%) 1 = yes, currently have COVID, (0; <.0%) 2 = yes, had COVID and recovered, (7; 3%)

two doses 0 = haven’t had COVID (458; 97%) 1 = yes, currently have COVID, (1; <1%) 2 = yes, had COVID and recovered, (12; 3%)

received.vaccine covid1.y n percent
0 0 343 95.0%
0 1 4 1.1%
0 2 14 3.9%
1 0 236 97.1%
1 2 7 2.9%
2 0 458 97.2%
2 1 1 0.2%
2 2 12 2.5%

Checking who said they had COVID by veteran status in December 2020

Veterans 0 = haven’t had COVID (667; 97%) 1 = yes, currently have COVID, (1; <1%) 2 = yes, had COVID and recovered, (20; 3%)

Non-veterans 0 = haven’t had COVID (370; 96%) 1 = yes, currently have COVID, (4; 1%) 2 = yes, had COVID and recovered, (13; 3%)

Group covid1.y n percent
Non-veteran 0 370 95.6%
Non-veteran 1 4 1.0%
Non-veteran 2 13 3.4%
Veteran 0 667 96.9%
Veteran 1 1 0.1%
Veteran 2 20 2.9%


3.2 Age



Age of sample based on raw coding, grouped by survey labels, collapsed into fewer age groups, younger than 55 or 55+

age n percent
2 0.2%
1 14 1.3%
2 38 3.5%
3 47 4.4%
4 54 5.0%
5 133 12.4%
6 545 50.7%
7 223 20.7%
8 19 1.8%
age1 n percent
2 0.2%
18 to 24 14 1.3%
25 to 34 38 3.5%
35 to 44 47 4.4%
45 to 54 54 5.0%
55 to 64 133 12.4%
65 to 74 545 50.7%
75 to 84 223 20.7%
85 or older 19 1.8%
age2 n percent
2 0.2%
18 to 34 52 4.8%
35 to 54 101 9.4%
55 to 74 678 63.1%
75 or older 242 22.5%
age_FCT1 n percent
Younger than 55 155 14.4%
55 or older 920 85.6%

3.3 Gender


Gender of sample based on raw coding, grouped by survey labels


Gender of sample with different groupings

gender n percent
1 231 21.5%
2 841 78.2%
5 3 0.3%
Gender_CHR n percent
Female 231 21.5%
Male 841 78.2%
Non-binary/third gender 3 0.3%


3.4 Income



Overall descriptives for sample income and then frequencies

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1075 6.36 2.33      7    6.57 1.48   1  10     9 -0.66    -0.43 0.07
income2a n percent
$0 - $49k 242 22.5%
$50K to $99K 416 38.7%
$100K and more 376 35.0%
Prefer to not say 41 3.8%

3.5 Race/Ethnicity



Race and ethnicity frequencies

LatinxCHR n percent
Hispanic 109 10.1%
No response 1 0.1%
Non-hispanic 965 89.8%
LatinxCHR RaceCHR count freq
Non-hispanic American Indian or Alaskan Native 4 4 (0.4%)
Non-hispanic Asian or Asian American 28 28 (2.9%)
Non-hispanic Black or African American 88 88 (9.1%)
Non-hispanic Multiple 11 11 (1.1%)
Non-hispanic Native Hawaiian or other Pacific Islander 2 2 (0.2%)
Non-hispanic Other 14 14 (1.5%)
Non-hispanic White or European American 818 818 (84.8%)
No response White or European American 1 1 (100.0%)
Hispanic 5,6 1 1 (0.9%)
Hispanic American Indian or Alaskan Native 2 2 (1.8%)
Hispanic Asian or Asian American 1 1 (0.9%)
Hispanic Black or African American 6 6 (5.5%)
Hispanic Multiple 2 2 (1.8%)
Hispanic Other 6 6 (5.5%)
Hispanic White or European American 91 91 (83.5%)


3.6 Region


How participants best described the place where they live

ruralUrban1 n percent
Rural 182 16.9%
Small (less than 100,000) 180 16.7%
Suburban near large city 519 48.3%
Mid sized city (100,000 to 1million) 102 9.5%
large city more than 1million 88 8.2%
Other 4 0.4%


4 Exploratory analyses



4.1 Vax status: Risky behavior over time


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q1. Going to gatherings of 10 or more people
  • Q2. Going on optional shopping trips
  • Q3. Going on optional travel
  • Q4. Having optional social visits
  • Q5. Eating inside restaurants, bars and food courts

Below are the descriptive statistics for these items in December 2020.

##                       vars    n mean   sd median trimmed  mad min max range
## current.behaviors_1.y    1 1075 1.62 1.08      1    1.36 0.00   1   6     5
## current.behaviors_2.y    2 1075 2.78 1.42      3    2.69 1.48   1   6     5
## current.behaviors_3.y    3 1075 1.73 1.17      1    1.49 0.00   1   6     5
## current.behaviors_4.y    4 1075 1.99 1.18      2    1.82 1.48   1   6     5
## current.behaviors_5.y    5 1075 2.08 1.39      1    1.88 0.00   1   6     5
##                       skew kurtosis   se
## current.behaviors_1.y 1.87     2.89 0.03
## current.behaviors_2.y 0.23    -1.11 0.04
## current.behaviors_3.y 1.54     1.48 0.04
## current.behaviors_4.y 1.08     0.40 0.04
## current.behaviors_5.y 1.02    -0.15 0.04

The reliability of these items is good. Cronbach’s Alpha is .84.

## 
## Reliability analysis   
## Call: psych::alpha(x = Dmgxs[, c(27:31)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.84      0.84    0.81      0.51 5.3 0.0079    2 0.97     0.54
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.85 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r
## current.behaviors_1.y      0.81      0.81    0.77      0.52 4.3   0.0097 0.0023
## current.behaviors_2.y      0.82      0.83    0.78      0.55 4.8   0.0086 0.0005
## current.behaviors_3.y      0.80      0.80    0.76      0.51 4.1   0.0101 0.0041
## current.behaviors_4.y      0.79      0.79    0.75      0.49 3.8   0.0105 0.0033
## current.behaviors_5.y      0.80      0.80    0.76      0.51 4.1   0.0100 0.0033
##                       med.r
## current.behaviors_1.y  0.54
## current.behaviors_2.y  0.55
## current.behaviors_3.y  0.54
## current.behaviors_4.y  0.49
## current.behaviors_5.y  0.52
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean  sd
## current.behaviors_1.y 1075  0.76  0.77  0.70   0.63  1.6 1.1
## current.behaviors_2.y 1075  0.75  0.73  0.63   0.57  2.8 1.4
## current.behaviors_3.y 1075  0.78  0.79  0.72   0.66  1.7 1.2
## current.behaviors_4.y 1075  0.81  0.82  0.76   0.70  2.0 1.2
## current.behaviors_5.y 1075  0.80  0.79  0.72   0.65  2.1 1.4
## 
## Non missing response frequency for each item
##                          1    2    3    4    5    6 miss
## current.behaviors_1.y 0.68 0.16 0.07 0.07 0.02 0.01    0
## current.behaviors_2.y 0.25 0.23 0.13 0.27 0.09 0.02    0
## current.behaviors_3.y 0.64 0.14 0.09 0.09 0.02 0.01    0
## current.behaviors_4.y 0.47 0.26 0.11 0.13 0.01 0.01    0
## current.behaviors_5.y 0.52 0.17 0.09 0.16 0.04 0.02    0

Below are the descriptive statistics for the risky behavioral intentions scale overall in December 2020.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.04 0.97    1.8     1.9 0.89   1   6     5 1.21     1.19 0.03


Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd          F                                       p
## 2      Vax_Status   2 1072   8.687626 0.0001808266491318020010616030024408474
## 3            wave   1 1072 144.215093 0.0000000000000000000000000000002921611
## 4 Vax_Status:wave   2 1072  10.138030 0.0000434740915211216926447926334198257
##   p<.05         ges
## 2     * 0.013951037
## 3     * 0.016809309
## 4     * 0.002397962
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd       F                                   p p<.05
## 1      Vax_Status   2 1072   8.688 0.000181000000000000008538308948758     *
## 2            wave   1 1072 144.215 0.000000000000000000000000000000292     *
## 3 Vax_Status:wave   2 1072  10.138 0.000043500000000000000255004350969     *
##     ges
## 1 0.014
## 2 0.017
## 3 0.002
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF  F value                Pr(>F)    
## Vax_Status       4.978   2.489     2  1072   8.6876             0.0001808 ***
## wave            41.319  41.319     1  1072 144.2151 < 0.00000000000000022 ***
## Vax_Status:wave  5.809   2.905     2  1072  10.1380            0.00004347 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave         Effect       DFn   DFd     F           p `p<.05`   ges      p.adj
## * <fct>        <chr>      <dbl> <dbl> <dbl>       <dbl> <chr>   <dbl>      <dbl>
## 1 December 20… Vax_Status     2  1072 16.8      6.38e-8 *       0.03     1.28e-7
## 2 March 2021   Vax_Status     2  1072  3.38     3.50e-2 *       0.006    7.00e-2
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360  22.7 2.73e- 6 *       0.007 8.19e- 6
## 2 1 Dose     wave       1   242  25.6 8.32e- 7 *       0.013 2.50e- 6
## 3 2 Doses    wave       1   470 160.  9.46e-32 *       0.049 2.84e-31
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 243 0.00136 0.00408 ** 0.2476 small
December 2020 0 Doses 2 Doses 361 471 0.00000000989 0.0000000297 **** 0.3921 small
December 2020 1 Dose 2 Doses 243 471 0.0816 0.245 ns 0.1506 negligible
March 2021 0 Doses 1 Dose 361 243 0.0183 0.0548 ns 0.1858 negligible
March 2021 0 Doses 2 Doses 361 471 0.0381 0.114 ns 0.1415 negligible
March 2021 1 Dose 2 Doses 243 471 0.52 1 ns -0.0546 negligible
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Risk_IncreaseBhv 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.266  2.011
##    std dev.   1.130  0.927
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  3.042 
##    degrees of freedom:  578.894 
##    p-value:  0.002 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.091, 0.421] 
##    estimated effect size (Cohen's d):  0.248
## [1] 0.255
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Risk_IncreaseBhv 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.266   1.879
##    std dev.   1.130   0.825
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  5.496 
##    degrees of freedom:  633.589 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.249, 0.527] 
##    estimated effect size (Cohen's d):  0.392
## [1] 0.387
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 -4.766 360 0.00000273 0.00000273 **** -0.2508 small
1 Dose December 2020 March 2021 243 243 -5.059 242 0.000000832 0.000000832 **** -0.3246 small
2 Doses December 2020 March 2021 471 471 -12.64 470 0.0000000000000000000000000000000946 0.0000000000000000000000000000000946 **** -0.5826 moderate
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Risk_IncreaseBhv 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.266      2.471     -0.204
##    std dev.         1.130      1.317      0.815
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  -4.766 
##    degrees of freedom:  360 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.289, -0.12] 
##    estimated effect size (Cohen's d):  0.251
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Risk_IncreaseBhv 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.011      2.244     -0.234
##    std dev.         0.927      1.113      0.720
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  -5.059 
##    degrees of freedom:  242 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.325, -0.143] 
##    estimated effect size (Cohen's d):  0.325
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Risk_IncreaseBhv 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             1.879      2.303     -0.425
##    std dev.         0.825      1.037      0.729
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  -12.645 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.491, -0.359] 
##    estimated effect size (Cohen's d):  0.583

Quick plot

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.35 1.16      2    2.22 1.19   1   6     5 0.95      0.4 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.47 1.32      2    2.32 1.19   1   6     5 0.84    -0.12 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.24 1.11      2    2.11 1.19   1   6     5 1.03     0.71 0.07
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471  2.3 1.04    2.2     2.2 1.19   1   6     5 0.89     0.39 0.05
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.04 0.97    1.8     1.9 0.89   1   6     5 1.21     1.19 0.03
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.27 1.13      2    2.14 1.19   1   6     5 0.86    -0.06 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.01 0.93    1.8    1.88 0.89   1   6     5 1.16     1.15 0.06
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 1.88 0.83    1.6    1.76 0.59   1   6     5 1.45     2.71 0.04


4.2 Mask wearing


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q6. Practicing good hygiene such as washing your hands, especially after touching frequently used items or surfaces
  • Q7. Wearing a mask over your nose and mouth when you are in a public place (e.g., store)
  • Q8. Wearing a mask over your nose and mouth when you are outdoors

Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)


Below are the descriptive statistics for these items.

##                       vars    n mean   sd median trimmed  mad min max range
## current.behaviors_6.y    1 1075 5.39 0.95      6    5.59 0.00   1   6     5
## current.behaviors_7.y    2 1075 5.72 0.81      6    5.92 0.00   1   6     5
## current.behaviors_8.y    3 1075 4.21 1.71      5    4.39 1.48   1   6     5
##                        skew kurtosis   se
## current.behaviors_6.y -2.29     6.64 0.03
## current.behaviors_7.y -3.87    16.64 0.02
## current.behaviors_8.y -0.59    -0.90 0.05

The reliability of these items is poor Cronbach’s Alpha is .58. As with the pre-registered plan we will use single item.

## 
## Reliability analysis   
## Call: psych::alpha(x = Dmgxs[, c(32:34)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.58      0.65    0.56      0.39 1.9 0.019  5.1 0.9     0.39
## 
##  lower alpha upper     95% confidence boundaries
## 0.54 0.58 0.62 
## 
##  Reliability if an item is dropped:
##                       raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## current.behaviors_6.y      0.46      0.56    0.39      0.39 1.3    0.025    NA
## current.behaviors_7.y      0.45      0.51    0.34      0.34 1.0    0.028    NA
## current.behaviors_8.y      0.60      0.60    0.43      0.43 1.5    0.024    NA
##                       med.r
## current.behaviors_6.y  0.39
## current.behaviors_7.y  0.34
## current.behaviors_8.y  0.43
## 
##  Item statistics 
##                          n raw.r std.r r.cor r.drop mean   sd
## current.behaviors_6.y 1075  0.69  0.77  0.57   0.43  5.4 0.95
## current.behaviors_7.y 1075  0.69  0.79  0.62   0.48  5.7 0.81
## current.behaviors_8.y 1075  0.87  0.75  0.53   0.43  4.2 1.71
## 
## Non missing response frequency for each item
##                          1    2    3    4    5    6 miss
## current.behaviors_6.y 0.01 0.01 0.01 0.07 0.30 0.58    0
## current.behaviors_7.y 0.01 0.01 0.01 0.03 0.11 0.84    0
## current.behaviors_8.y 0.11 0.08 0.11 0.19 0.18 0.33    0


Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd           F                           p p<.05
## 2      Vax_Status   2 1072 43.85642534 0.0000000000000000004926668     *
## 3            wave   1 1072  3.01611328 0.0827280904642047482111522      
## 4 Vax_Status:wave   2 1072  0.07173301 0.9307838406089872229642879      
##            ges
## 2 0.0629218837
## 3 0.0005043563
## 4 0.0000240020
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd      F                       p p<.05      ges
## 1      Vax_Status   2 1072 43.856 0.000000000000000000493     * 0.063000
## 2            wave   1 1072  3.016 0.083000000000000004330       0.000504
## 3 Vax_Status:wave   2 1072  0.072 0.931000000000000049738       0.000024
## Type III Analysis of Variance Table with Satterthwaite's method
##                  Sum Sq Mean Sq NumDF DenDF F value               Pr(>F)    
## Vax_Status      20.0583 10.0292     2  1072 43.8564 < 0.0000000000000002 ***
## wave             0.6897  0.6897     1  1072  3.0161              0.08273 .  
## Vax_Status:wave  0.0328  0.0164     2  1072  0.0717              0.93078    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 December 2020 Vax_Status     2  1072  36.7 3.83e-16 *       0.064 7.66e-16
## 2 March 2021    Vax_Status     2  1072  35.4 1.35e-15 *       0.062 2.70e-15
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd     F     p `p<.05`      ges p.adj
## * <fct>      <chr>  <dbl> <dbl> <dbl> <dbl> <chr>      <dbl> <dbl>
## 1 0 Doses    wave       1   360 0.87  0.351 ""      0.000354 1    
## 2 1 Dose     wave       1   242 0.666 0.415 ""      0.000693 1    
## 3 2 Doses    wave       1   470 2.79  0.096 ""      0.002    0.288
wave group1 group2 n1 n2 p p.adj p.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 243 0.00000000019 0.000000000571 **** -0.4766 small
December 2020 0 Doses 2 Doses 361 471 0.0000000000000023 0.00000000000000689 **** -0.4907 small
December 2020 1 Dose 2 Doses 243 471 0.713 1 ns -0.04713 negligible
March 2021 0 Doses 1 Dose 361 243 0.000000000126 0.000000000379 **** -0.4783 small
March 2021 0 Doses 2 Doses 361 471 0.0000000000000154 0.0000000000000463 **** -0.4784 small
March 2021 1 Dose 2 Doses 243 471 0.938 1 ns -0.009688 negligible
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Mask_wearing 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       5.429  5.848
##    std dev.   1.160  0.442
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -6.214 
##    degrees of freedom:  497.808 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.551, -0.286] 
##    estimated effect size (Cohen's d):  0.477
## [1] -0.419
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Mask_wearing 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       5.429   5.870
##    std dev.   1.160   0.520
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -6.726 
##    degrees of freedom:  470.881 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.57, -0.312] 
##    estimated effect size (Cohen's d):  0.491
## [1] -0.441
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Mask_wearing 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       5.385  5.823
##    std dev.   1.197  0.495
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -6.209 
##    degrees of freedom:  516.823 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.577, -0.299] 
##    estimated effect size (Cohen's d):  0.478
## [1] -0.438
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Mask_wearing 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       5.385   5.828
##    std dev.   1.197   0.532
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -6.555 
##    degrees of freedom:  469.132 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.576, -0.31] 
##    estimated effect size (Cohen's d):  0.478
## [1] -0.443
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 0.933 360 0.351 0.351 ns 0.0491 negligible
1 Dose December 2020 March 2021 243 243 0.8159 242 0.415 0.415 ns 0.05234 negligible
2 Doses December 2020 March 2021 471 471 1.67 470 0.096 0.096 ns 0.07694 negligible

Quick plots

##    vars    n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 1075 5.72 0.81      6    5.92   0   1   6     5 -3.87    16.64 0.02
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 361 5.43 1.16      6    5.73   0   1   6     5 -2.46     5.67 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 243 5.85 0.44      6    5.97   0   3   6     3 -3.26    11.67 0.03
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 471 5.87 0.52      6       6   0   1   6     5 -6.14    45.99 0.02
##    vars    n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 1075 5.68 0.84      6    5.89   0   1   6     5 -3.51    13.77 0.03
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 361 5.39 1.2      6    5.69   0   1   6     5 -2.25     4.54 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean  sd median trimmed mad min max range  skew kurtosis   se
## X1    1 243 5.82 0.5      6    5.95   0   3   6     3 -3.39    13.17 0.03
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 471 5.83 0.53      6    5.95   0   1   6     5 -5.04    35.05 0.02



4.3 likely get covid



Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd         F
## 2      Vax_Status   2 1071  15.20073
## 3            wave   1 1071 198.80442
## 4 Vax_Status:wave   2 1071  34.69764
##                                                  p p<.05        ges
## 2 0.0000003092903634565091269377154221259518251941     * 0.02002532
## 3 0.0000000000000000000000000000000000000000154395     * 0.04942735
## 4 0.0000000000000025066317699935565299789616984760     * 0.01782682
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd       F
## 1      Vax_Status   2 1071  15.201
## 2            wave   1 1071 198.804
## 3 Vax_Status:wave   2 1071  34.698
##                                               p p<.05   ges
## 1 0.0000003089999999999999743704635294522242717     * 0.020
## 2 0.0000000000000000000000000000000000000000154     * 0.049
## 3 0.0000000000000025100000000000001595418129555     * 0.018
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF F value                Pr(>F)    
## Vax_Status      13.282   6.641     2  1071  15.201  0.000000309290405502 ***
## wave            86.855  86.855     1  1071 198.804 < 0.00000000000000022 ***
## Vax_Status:wave 30.318  15.159     2  1071  34.698  0.000000000000002507 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 December 2020 Vax_Status     2  1071  2.78 6.30e- 2 ""      0.005 1.26e- 1
## 2 March 2021    Vax_Status     2  1071 43.1  1.00e-18 "*"     0.074 2.00e-18
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd      F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl>  <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360   5.98 1.50e- 2 *       0.004 4.50e- 2
## 2 1 Dose     wave       1   241  59.5  3.17e-13 *       0.064 9.51e-13
## 3 2 Doses    wave       1   470 252.   8.44e-46 *       0.153 2.53e-45
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 242 0.0282 0.0847 ns -0.1736 negligible
December 2020 0 Doses 2 Doses 361 471 0.768 1 ns -0.02042 negligible
December 2020 1 Dose 2 Doses 242 471 0.0409 0.123 ns 0.1688 negligible
March 2021 0 Doses 1 Dose 361 242 0.0178 0.0535 ns 0.1822 negligible
March 2021 0 Doses 2 Doses 361 471 0.000000000000000000841 0.00000000000000000252 **** 0.6179 moderate
March 2021 1 Dose 2 Doses 242 471 0.0000000513 0.000000154 **** 0.4667 small
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Likely_getCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.011   1.486
##    std dev.   0.966   0.714
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  8.667 
##    degrees of freedom:  638.851 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.406, 0.644] 
##    estimated effect size (Cohen's d):  0.618
## [1] 0.525
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Likely_getCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             1 Dose 2 Doses
##    mean      1.847   1.486
##    std dev.  0.828   0.714
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  5.766 
##    degrees of freedom:  428.191 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.238, 0.484] 
##    estimated effect size (Cohen's d):  0.467
## [1] 0.361
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 2.446 360 0.015 0.015 * 0.1288 negligible
1 Dose December 2020 March 2021 242 242 7.716 241 0.000000000000317 0.000000000000317 **** 0.496 small
2 Doses December 2020 March 2021 471 471 15.89 470 0.000000000000000000000000000000000000000000000844 0.000000000000000000000000000000000000000000000844 **** 0.732 moderate
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Likely_getCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.136      2.011      0.125
##    std dev.         1.025      0.966      0.968
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  2.446 
##    degrees of freedom:  360 
##    p-value:  0.015 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.024, 0.225] 
##    estimated effect size (Cohen's d):  0.129
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 833 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Likely_getCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.306      1.847      0.459
##    std dev.         0.932      0.828      0.925
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  7.716 
##    degrees of freedom:  241 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.342, 0.576] 
##    estimated effect size (Cohen's d):  0.496
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Likely_getCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.155      1.486      0.669
##    std dev.         0.853      0.714      0.914
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  15.886 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.586, 0.752] 
##    estimated effect size (Cohen's d):  0.732

Plots

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1074 2.18 0.93      2    2.12 1.48   1   5     4 0.66     0.41 0.03
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.14 1.03      2    2.01 1.48   1   5     4 0.82     0.34 0.05
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 242 2.31 0.93      2    2.25 1.48   1   5     4 0.59     0.39 0.06
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.15 0.85      2    2.12 1.48   1   5     4 0.48     0.28 0.04
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 1.74 0.86      2    1.62 1.48   1   5     4 1.26     1.83 0.03
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.01 0.97      2    1.91 1.48   1   5     4 0.88     0.58 0.05
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 1.84 0.83      2    1.75 1.48   1   5     4 1.12     1.97 0.05
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed mad min max range skew kurtosis   se
## X1    1 471 1.49 0.71      1    1.36   0   1   5     4 1.75     4.17 0.03



4.4 likelihood getting seriously ill from covid



Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd          F
## 2      Vax_Status   2 1070   8.790323
## 3            wave   1 1070 157.528782
## 4 Vax_Status:wave   2 1070  30.454703
##                                            p p<.05        ges
## 2 0.0001634686719003823650916279452971480168     * 0.01289325
## 3 0.0000000000000000000000000000000008291692     * 0.02930158
## 4 0.0000000000001369113097561927787642859788     * 0.01153696
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd       F                                      p p<.05
## 1      Vax_Status   2 1070   8.790 0.000163000000000000004694161725993240     *
## 2            wave   1 1070 157.529 0.000000000000000000000000000000000829     *
## 3 Vax_Status:wave   2 1070  30.455 0.000000000000136999999999999996840574     *
##     ges
## 1 0.013
## 2 0.029
## 3 0.012
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF  F value                Pr(>F)    
## Vax_Status      10.538   5.269     2  1070   8.7903             0.0001635 ***
## wave            94.423  94.423     1  1070 157.5288 < 0.00000000000000022 ***
## Vax_Status:wave 36.509  18.255     2  1070  30.4547    0.0000000000001369 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F          p `p<.05`   ges      p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>      <dbl> <chr>   <dbl>      <dbl>
## 1 December 2020 Vax_Status     2  1070  16.0    1.48e-7 *       0.029    2.96e-7
## 2 March 2021    Vax_Status     2  1070  10.5    2.96e-5 *       0.019    5.92e-5
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360  11.6 7.41e- 4 *       0.006 2.22e- 3
## 2 1 Dose     wave       1   240  31.0 6.78e- 8 *       0.022 2.03e- 7
## 3 2 Doses    wave       1   470 196.  1.62e-37 *       0.091 4.86e-37
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 241 0.00000479 0.0000144 **** -0.3862 small
December 2020 0 Doses 2 Doses 361 471 0.000000452 0.00000136 **** -0.3492 small
December 2020 1 Dose 2 Doses 241 471 0.731 1 ns 0.02801 negligible
March 2021 0 Doses 1 Dose 361 241 0.00409 0.0123 * -0.2384 small
March 2021 0 Doses 2 Doses 361 471 0.0764 0.229 ns 0.1243 negligible
March 2021 1 Dose 2 Doses 241 471 0.00000499 0.000015 **** 0.3628 small
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.493  2.954
##    std dev.   1.245  1.141
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -4.684 
##    degrees of freedom:  544.058 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.655, -0.268] 
##    estimated effect size (Cohen's d):  0.386
## [1] -0.461
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.493   2.921
##    std dev.   1.245   1.208
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -4.981 
##    degrees of freedom:  762.762 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.597, -0.26] 
##    estimated effect size (Cohen's d):  0.349
## [1] -0.428
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.307  2.598
##    std dev.   1.212  1.221
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -2.864 
##    degrees of freedom:  511.855 
##    p-value:  0.004 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.489, -0.091] 
##    estimated effect size (Cohen's d):  0.238
## [1] -0.291
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             1 Dose 2 Doses
##    mean      2.598   2.157
##    std dev.  1.221   1.207
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  4.572 
##    degrees of freedom:  478.674 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.251, 0.63] 
##    estimated effect size (Cohen's d):  0.363
## [1] 0.441
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 3.403 360 0.000741 0.000741 *** 0.1791 negligible
1 Dose December 2020 March 2021 241 241 5.571 240 0.0000000678 0.0000000678 **** 0.3589 small
2 Doses December 2020 March 2021 471 471 14.01 470 0.000000000000000000000000000000000000162 0.000000000000000000000000000000000000162 **** 0.6456 moderate
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.493      2.307      0.186
##    std dev.         1.245      1.212      1.036
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  3.403 
##    degrees of freedom:  360 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.078, 0.293] 
##    estimated effect size (Cohen's d):  0.179
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 834 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.954      2.598      0.357
##    std dev.         1.141      1.221      0.994
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  5.571 
##    degrees of freedom:  240 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.231, 0.483] 
##    estimated effect size (Cohen's d):  0.359
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Seriously_illCV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.921      2.157      0.764
##    std dev.         1.208      1.207      1.184
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  14.01 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.657, 0.872] 
##    estimated effect size (Cohen's d):  0.646

Plots

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1073 2.78 1.22      3    2.73 1.48   1   5     4 0.28    -0.79 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.49 1.25      2    2.38 1.48   1   5     4 0.45     -0.7 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 241 2.95 1.14      3    2.94 1.48   1   5     4 0.09    -0.76 0.07
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.92 1.21      3     2.9 1.48   1   5     4 0.32    -0.83 0.06
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.31 1.22      2    2.16 1.48   1   5     4 0.69    -0.45 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.31 1.21      2    2.16 1.48   1   5     4 0.71    -0.33 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.59 1.22      2    2.49 1.48   1   5     4 0.44    -0.71 0.08
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.16 1.21      2       2 1.48   1   5     4 0.84    -0.28 0.06


4.5 likelihood die from covid



Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd        F                             p p<.05
## 2      Vax_Status   2 1071  5.32112 0.005017333499160264026484057     *
## 3            wave   1 1071 92.97426 0.000000000000000000003721985     *
## 4 Vax_Status:wave   2 1071 22.27616 0.000000000332196264058231669     *
##           ges
## 2 0.007930416
## 3 0.016690726
## 4 0.008068162
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd      F                         p p<.05   ges
## 1      Vax_Status   2 1071  5.321 0.00500000000000000010408     * 0.008
## 2            wave   1 1071 92.974 0.00000000000000000000372     * 0.017
## 3 Vax_Status:wave   2 1071 22.276 0.00000000033200000000000     * 0.008
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF F value                Pr(>F)    
## Vax_Status       5.257   2.628     2  1071  5.3211              0.005017 ** 
## wave            45.925  45.925     1  1071 92.9743 < 0.00000000000000022 ***
## Vax_Status:wave 22.007  11.003     2  1071 22.2762       0.0000000003322 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F         p `p<.05`   ges     p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>     <dbl> <chr>   <dbl>     <dbl>
## 1 December 2020 Vax_Status     2  1071  7.23 0.00076   *       0.013 0.00152  
## 2 March 2021    Vax_Status     2  1071 10.2  0.0000406 *       0.019 0.0000812
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd      F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl>  <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360  16.5  5.93e- 5 *       0.007 1.78e- 4
## 2 1 Dose     wave       1   241   5.31 2.20e- 2 *       0.004 6.60e- 2
## 3 2 Doses    wave       1   470 134.   1.60e-27 *       0.062 4.80e-27
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 242 0.00897 0.0269 * -0.2216 small
December 2020 0 Doses 2 Doses 361 471 0.000252 0.000756 *** -0.2541 small
December 2020 1 Dose 2 Doses 242 471 0.619 1 ns -0.03986 negligible
March 2021 0 Doses 1 Dose 361 242 0.00119 0.00357 ** -0.2634 small
March 2021 0 Doses 2 Doses 361 471 0.226 0.679 ns 0.08657 negligible
March 2021 1 Dose 2 Doses 242 471 0.0000081 0.0000243 **** 0.3455 small
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.166  2.417
##    std dev.   1.160  1.106
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -2.68 
##    degrees of freedom:  533.174 
##    p-value:  0.008 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.435, -0.067] 
##    estimated effect size (Cohen's d):  0.222
## [1] -0.251
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.166   2.463
##    std dev.   1.160   1.175
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -3.636 
##    degrees of freedom:  779.777 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.457, -0.136] 
##    estimated effect size (Cohen's d):  0.254
## [1] -0.297
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       1.978  2.273
##    std dev.   1.067  1.170
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -3.141 
##    degrees of freedom:  483.871 
##    p-value:  0.002 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.479, -0.11] 
##    estimated effect size (Cohen's d):  0.263
## [1] -0.295
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             1 Dose 2 Doses
##    mean      2.273   1.885
##    std dev.  1.170   1.070
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  4.307 
##    degrees of freedom:  449.858 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.211, 0.564] 
##    estimated effect size (Cohen's d):  0.346
## [1] 0.388
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 4.064 360 0.0000593 0.0000593 **** 0.2139 small
1 Dose December 2020 March 2021 242 242 2.303 241 0.022 0.022 * 0.1481 negligible
2 Doses December 2020 March 2021 471 471 11.6 470 0.0000000000000000000000000016 0.0000000000000000000000000016 **** 0.5344 moderate
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 714
## case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.166      1.978      0.188
##    std dev.         1.160      1.067      0.881
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  4.064 
##    degrees of freedom:  360 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.097, 0.28] 
##    estimated effect size (Cohen's d):  0.214
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 833
## case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.417      2.273      0.145
##    std dev.         1.106      1.170      0.977
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  2.303 
##    degrees of freedom:  241 
##    p-value:  0.022 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.021, 0.268] 
##    estimated effect size (Cohen's d):  0.148
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 604
## case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   Die_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.463      1.885      0.577
##    std dev.         1.175      1.070      1.081
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  11.597 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.48, 0.675] 
##    estimated effect size (Cohen's d):  0.534

Plots

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1074 2.35 1.16      2    2.24 1.48   1   5     4 0.54    -0.49 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.17 1.16      2    2.02 1.48   1   5     4 0.72    -0.31 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 242 2.42 1.11      2    2.35 1.48   1   5     4 0.35    -0.59 0.07
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.46 1.18      2    2.36 1.48   1   5     4  0.5    -0.52 0.05
##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075    2 1.1      2    1.83 1.48   1   5     4 0.95     0.13 0.03
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 1.98 1.07      2    1.83 1.48   1   5     4 0.93     0.23 0.06
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.27 1.17      2    2.13 1.48   1   5     4 0.69    -0.31 0.08
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 1.89 1.07      2     1.7 1.48   1   5     4  1.1     0.39 0.05


4.6 Personal worry about covid


## [1] Vax_Status     partno         wave           SelfWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] Vax_Status     partno         wave           SelfWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] "worried.self.x" "worried.self.y"

Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd          F
## 2      Vax_Status   2 1072   7.299452
## 3            wave   1 1072 258.820270
## 4 Vax_Status:wave   2 1072  64.540806
##                                                              p p<.05        ges
## 2 0.0007100359592667782352923278033074439008487388491630554199     * 0.01107005
## 3 0.0000000000000000000000000000000000000000000000000002494857     * 0.04121051
## 4 0.0000000000000000000000000034161378539810571849394341755738     * 0.02098648
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd       F
## 1      Vax_Status   2 1072   7.299
## 2            wave   1 1072 258.820
## 3 Vax_Status:wave   2 1072  64.541
##                                                          p p<.05   ges
## 1 0.000710000000000000019116652705264414180419407784938812     * 0.011
## 2 0.000000000000000000000000000000000000000000000000000249     * 0.041
## 3 0.000000000000000000000000003420000000000000217748232190     * 0.021
## Type III Analysis of Variance Table with Satterthwaite's method
##                  Sum Sq Mean Sq NumDF DenDF  F value               Pr(>F)    
## Vax_Status        7.971   3.986     2  1072   7.2995              0.00071 ***
## wave            141.321 141.321     1  1072 258.8202 < 0.0000000000000002 ***
## Vax_Status:wave  70.481  35.241     2  1072  64.5408 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 December 2020 Vax_Status     2  1072  7.35 6.77e- 4 *       0.014 1.35e- 3
## 2 March 2021    Vax_Status     2  1072 29.5  3.48e-13 *       0.052 6.96e-13
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd      F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl>  <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360   7.52 6.00e- 3 *       0.003 1.80e- 2
## 2 1 Dose     wave       1   242  58.1  5.66e-13 *       0.036 1.70e-12
## 3 2 Doses    wave       1   470 360.   4.73e-60 *       0.153 1.42e-59
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 243 0.000501 0.0015 ** -0.2792 small
December 2020 0 Doses 2 Doses 361 471 0.00229 0.00686 ** -0.2139 small
December 2020 1 Dose 2 Doses 243 471 0.337 1 ns 0.07692 negligible
March 2021 0 Doses 1 Dose 361 243 0.747 1 ns -0.02504 negligible
March 2021 0 Doses 2 Doses 361 471 0.0000000000706 0.000000000212 **** 0.4562 small
March 2021 1 Dose 2 Doses 243 471 0.000000000954 0.00000000286 **** 0.5102 moderate
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.693  3.066
##    std dev.   1.355  1.319
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -3.374 
##    degrees of freedom:  528.626 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.591, -0.156] 
##    estimated effect size (Cohen's d):  0.279
## [1] -0.373
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.693   2.968
##    std dev.   1.355   1.219
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -3.036 
##    degrees of freedom:  730.072 
##    p-value:  0.002 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.454, -0.097] 
##    estimated effect size (Cohen's d):  0.214
## [1] -0.275
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       2.548   2.002
##    std dev.   1.326   1.053
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  6.427 
##    degrees of freedom:  671.662 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.379, 0.713] 
##    estimated effect size (Cohen's d):  0.456
## [1] 0.546
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             1 Dose 2 Doses
##    mean      2.580   2.002
##    std dev.  1.208   1.053
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  6.323 
##    degrees of freedom:  434.472 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.398, 0.758] 
##    estimated effect size (Cohen's d):  0.51
## [1] 0.578
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 2.743 360 0.006 0.006 ** 0.1443 negligible
1 Dose December 2020 March 2021 243 243 7.622 242 0.000000000000566 0.000000000000566 **** 0.4889 small
2 Doses December 2020 March 2021 471 471 18.98 470 0.00000000000000000000000000000000000000000000000000000000000473 0.00000000000000000000000000000000000000000000000000000000000473 **** 0.8746 large
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.693      2.548      0.144
##    std dev.         1.355      1.326      0.998
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  2.743 
##    degrees of freedom:  360 
##    p-value:  0.006 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.041, 0.247] 
##    estimated effect size (Cohen's d):  0.144
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             3.066      2.580      0.486
##    std dev.         1.319      1.208      0.993
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  7.622 
##    degrees of freedom:  242 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.36, 0.611] 
##    estimated effect size (Cohen's d):  0.489
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   SelfWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             2.968      2.002      0.966
##    std dev.         1.219      1.053      1.105
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  18.98 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.866, 1.066] 
##    estimated effect size (Cohen's d):  0.875

Plots

##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075  2.9 1.3      3    2.87 1.48   1   5     4  0.2    -1.06 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.69 1.35      3    2.62 1.48   1   5     4 0.34    -1.07 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 3.07 1.32      3    3.08 1.48   1   5     4 0.12    -1.19 0.08
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.97 1.22      3    2.96 1.48   1   5     4 0.17    -0.95 0.06
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.32 1.22      2    2.18 1.48   1   5     4 0.71     -0.4 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.55 1.33      2    2.44 1.48   1   5     4 0.42    -0.95 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 2.58 1.21      2    2.48 1.48   1   5     4 0.56    -0.57 0.08
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471    2 1.05      2    1.84 1.48   1   5     4 1.03     0.53 0.05


4.7 Worry about covid for others


## [1] "Vax_Status"      "worried.other.y" "worried.other.x" "partno"
## [1] Vax_Status      partno          wave            OtherWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] Vax_Status      partno          wave            OtherWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] "worried.other.x" "worried.other.y"

Some prep and checking some diagnostics.


Run the model, three different ways (get same results)

## $ANOVA
##            Effect DFn  DFd          F                                  p p<.05
## 2      Vax_Status   2 1072   7.536939 0.00056175748393744173725394830399     *
## 3            wave   1 1072 116.833312 0.00000000000000000000000006404003     *
## 4 Vax_Status:wave   2 1072   8.853258 0.00015363401909032490177606233850     *
##          ges
## 2 0.01171523
## 3 0.01682079
## 4 0.00258616
## ANOVA Table (type III tests)
## 
##            Effect DFn  DFd       F                             p p<.05   ges
## 1      Vax_Status   2 1072   7.537 0.000561999999999999999555911     * 0.012
## 2            wave   1 1072 116.833 0.000000000000000000000000064     * 0.017
## 3 Vax_Status:wave   2 1072   8.853 0.000154000000000000002772088     * 0.003
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF  F value                Pr(>F)    
## Vax_Status       7.653   3.827     2  1072   7.5369             0.0005618 ***
## wave            59.319  59.319     1  1072 116.8333 < 0.00000000000000022 ***
## Vax_Status:wave  8.990   4.495     2  1072   8.8533             0.0001536 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Run post-hoc follow up tests

## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
##   wave          Effect       DFn   DFd     F          p `p<.05`   ges     p.adj
## * <fct>         <chr>      <dbl> <dbl> <dbl>      <dbl> <chr>   <dbl>     <dbl>
## 1 December 2020 Vax_Status     2  1072 12.2  0.00000601 *       0.022 0.0000120
## 2 March 2021    Vax_Status     2  1072  3.51 0.03       *       0.007 0.06
## # A tibble: 3 x 9
##   Vax_Status Effect   DFn   DFd     F        p `p<.05`   ges    p.adj
## * <fct>      <chr>  <dbl> <dbl> <dbl>    <dbl> <chr>   <dbl>    <dbl>
## 1 0 Doses    wave       1   360  11.1 9.43e- 4 *       0.004 2.83e- 3
## 2 1 Dose     wave       1   242  44.2 1.94e-10 *       0.023 5.82e-10
## 3 2 Doses    wave       1   470 101.  1.04e-21 *       0.038 3.12e-21
wave group1 group2 n1 n2 p p.adj p.adj.signif effsize magnitude
December 2020 0 Doses 1 Dose 361 243 0.0000137 0.0000412 **** -0.3538 small
December 2020 0 Doses 2 Doses 361 471 0.0000454 0.000136 *** -0.2773 small
December 2020 1 Dose 2 Doses 243 471 0.336 1 ns 0.0815 negligible
March 2021 0 Doses 1 Dose 361 243 0.00992 0.0298 * -0.2123 small
March 2021 0 Doses 2 Doses 361 471 0.476 1 ns -0.04882 negligible
March 2021 1 Dose 2 Doses 243 471 0.0376 0.113 ns 0.1715 negligible
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       3.075  3.531
##    std dev.   1.405  1.162
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -4.344 
##    degrees of freedom:  577.162 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.662, -0.25] 
##    estimated effect size (Cohen's d):  0.354
## [1] -0.456
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 2 Doses
##    mean       3.075   3.435
##    std dev.   1.405   1.185
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -3.921 
##    degrees of freedom:  699.969 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.541, -0.18] 
##    estimated effect size (Cohen's d):  0.277
## [1] -0.36
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  Vax_Status 
## 
## Descriptive statistics: 
##             0 Doses 1 Dose
##    mean       2.889  3.165
##    std dev.   1.374  1.215
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  -2.59 
##    degrees of freedom:  559.26 
##    p-value:  0.01 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.484, -0.067] 
##    estimated effect size (Cohen's d):  0.212
## [1] -0.276
Vax_Status group1 group2 n1 n2 statistic df p p.adj p.adj.signif effsize magnitude
0 Doses December 2020 March 2021 361 361 3.335 360 0.000943 0.000943 *** 0.1755 negligible
1 Dose December 2020 March 2021 243 243 6.65 242 0.000000000194 0.000000000194 **** 0.4266 small
2 Doses December 2020 March 2021 471 471 10.06 470 0.00000000000000000000104 0.00000000000000000000104 **** 0.4638 small
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             3.075      2.889      0.186
##    std dev.         1.405      1.374      1.057
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  3.335 
##    degrees of freedom:  360 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.076, 0.295] 
##    estimated effect size (Cohen's d):  0.176
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             3.531      3.165      0.366
##    std dev.         1.162      1.215      0.859
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  6.65 
##    degrees of freedom:  242 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.258, 0.475] 
##    estimated effect size (Cohen's d):  0.427
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Outcome variable:   OtherWorry_CV19 
## Grouping variable:  wave 
## ID variable:        partno 
## 
## Descriptive statistics: 
##             December 2020 March 2021 difference
##    mean             3.435      2.953      0.482
##    std dev.         1.185      1.249      1.039
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  10.065 
##    degrees of freedom:  470 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.388, 0.576] 
##    estimated effect size (Cohen's d):  0.464

Plots

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1075 3.34 1.27      3    3.41 1.48   1   5     4 -0.22    -1.01 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 361 3.07 1.41      3    3.09 1.48   1   5     4 -0.05    -1.26 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 243 3.53 1.16      4    3.58 1.48   1   5     4 -0.22    -1.01 0.07
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 471 3.44 1.18      3    3.49 1.48   1   5     4 -0.23    -0.92 0.05
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1075 2.98 1.29      3    2.97 1.48   1   5     4  0.1    -1.02 0.04
## 
##  Descriptive statistics by group 
## group: 0 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 361 2.89 1.37      3    2.86 1.48   1   5     4 0.12    -1.17 0.07
## ------------------------------------------------------------ 
## group: 1 Dose
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 243 3.16 1.22      3    3.16 1.48   1   5     4 0.17       -1 0.08
## ------------------------------------------------------------ 
## group: 2 Doses
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 471 2.95 1.25      3    2.94 1.48   1   5     4 0.11    -0.96 0.06


4.8 Other predictors of wave 1 outcomes



## Anova Table (Type III tests)
## 
## Response: BehavIntRisk_AvgW1
##             Sum Sq  Df  F value                Pr(>F)    
## (Intercept) 253.86   1 297.5057 < 0.00000000000000022 ***
## Vuln          2.88   1   3.3707              0.066790 .  
## age_R         0.75   1   0.8832              0.347639    
## CCI_ttl       0.28   1   0.3235              0.569719    
## Vaxed         7.97   1   9.3444              0.002322 ** 
## Residuals   597.31 700                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: current.behaviors_7.y
##              Sum Sq  Df   F value                Pr(>F)    
## (Intercept) 1071.59   1 1879.8649 < 0.00000000000000022 ***
## Vuln           2.02   1    3.5506             0.0599364 .  
## age_R         12.40   1   21.7462           0.000003728 ***
## CCI_ttl        0.62   1    1.0826             0.2984648    
## Vaxed          7.82   1   13.7206             0.0002288 ***
## Residuals    399.03 700                                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: worried.self.y
##              Sum Sq  Df  F value                Pr(>F)    
## (Intercept)  420.10   1 259.6629 < 0.00000000000000022 ***
## Vuln           5.63   1   3.4777              0.062618 .  
## age_R         10.44   1   6.4552              0.011277 *  
## CCI_ttl        4.67   1   2.8861              0.089790 .  
## Vaxed         17.20   1  10.6290              0.001167 ** 
## Residuals   1132.51 700                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: worried.other.y
##              Sum Sq  Df  F value                Pr(>F)    
## (Intercept)  544.63   1 370.0828 < 0.00000000000000022 ***
## Vuln           4.62   1   3.1387              0.076891 .  
## age_R         12.46   1   8.4653              0.003735 ** 
## CCI_ttl        6.91   1   4.6935              0.030614 *  
## Vaxed         23.61   1  16.0402            0.00006864 ***
## Residuals   1030.15 700                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: likelihood.y
##             Sum Sq  Df  F value                Pr(>F)    
## (Intercept) 278.14   1 319.2127 < 0.00000000000000022 ***
## Vuln          0.21   1   0.2369              0.626627    
## age_R         8.03   1   9.2163              0.002488 ** 
## CCI_ttl       7.52   1   8.6331              0.003410 ** 
## Vaxed         3.79   1   4.3466              0.037446 *  
## Residuals   609.06 699                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: serioiusly.y
##             Sum Sq  Df  F value                Pr(>F)    
## (Intercept) 219.50   1 158.9594 < 0.00000000000000022 ***
## Vuln         14.72   1  10.6606              0.001148 ** 
## age_R         0.25   1   0.1818              0.669984    
## CCI_ttl      35.70   1  25.8548          0.0000004734 ***
## Vaxed        11.63   1   8.4225              0.003823 ** 
## Residuals   963.82 698                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
## 
## Response: die.y
##             Sum Sq  Df F value                Pr(>F)    
## (Intercept) 128.29   1 95.8436 < 0.00000000000000022 ***
## Vuln          4.18   1  3.1227               0.07765 .  
## age_R         1.92   1  1.4333               0.23164    
## CCI_ttl      33.31   1 24.8877          0.0000007676 ***
## Vaxed         3.95   1  2.9538               0.08612 .  
## Residuals   935.65 699                                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$Vuln)
## Correlation matrix 
## [1] 0.38
## Sample Size 
## [1] 706
## Probability values  adjusted for multiple tests. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$CCI_ttl)
## Correlation matrix 
## [1] 0.16
## Sample Size 
## [1] 1075
## Probability values  adjusted for multiple tests. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$age_R)
## Correlation matrix 
## [1] 0.43
## Sample Size 
## [1] 1073
## Probability values  adjusted for multiple tests. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$age_R)
## Correlation matrix 
## [1] 0.43
## Sample Size 
## [1] 1073
## Probability values  adjusted for multiple tests. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vuln, y = Dmgxs$CCI_ttl)
## Correlation matrix 
## [1] 0.57
## Sample Size 
## [1] 706
## Probability values  adjusted for multiple tests. 
## [1] 0
## 
##  To see confidence intervals of the correlations, print with the short=FALSE option


5 Plots


Figure 1 Respondents reported risk increasing and risk reducing behaviors in Marhc 2021 split by their vaccination status


Figure 2, Respondents reported behaviors, risk perceptions and worry about COVID-19 from surveys conducted in December 2020, and March 2021

## Loading required package: interactions