We only included participants with a gc score of 1. Those with a gc value equal to 1 designate the Good Completes on the filter supplied by Qualtrics.
For the VA version that is currently 688 participants.
| gc | n |
|---|---|
| 1 | 688 |
For the non-VA version that is currently 388 participants.
| gc | n |
|---|---|
| 1 | 388 |
We will filter out all except the good completes so our final sample is 688 for VA version and 388 for Non-VA version.(code shown below).
data <- data %>%filter(gc == "1")
dataNVA <- dataNVA %>%filter(gc == "1")
Median completion timing for the VA version is 13 minutes and 21 seconds (round to 13 minutes).
## [1] "13M 21S"
Median completion timing for the non-VA version is 11 minutes and 11 seconds (round to 11 minutes).
## [1] "11M 10.5S"
Mean completion timing for VA version is 17 minutes and 4 seconds (round to 17 minutes).
## [1] "17M 3.57000000000005S"
Mean completion timing for non-VA version is 14 minutes and 54 seconds (round to 15 minutes).
## [1] "14M 54.4072S"
Names of all variables included.
Checking the number of respondents vaccinated. 0 = no doses (362; 34%) 1 = received one dose (243; 23%) 2 = received two doses (471; 44%)
| received.vaccine | n | percent |
|---|---|---|
| 0 | 362 | 33.6% |
| 1 | 243 | 22.6% |
| 2 | 471 | 43.8% |
Checking vaccination by veteran status
Veterans 0 = no doses (171; 25%) 1 = received one dose (159; 23%) 2 = received two doses (358; 52%)
Non-veterans 0 = no doses (191; 49%) 1 = received one dose (84; 22%) 2 = received two doses (113; 29%)
| Group | received.vaccine | n | percent |
|---|---|---|---|
| Non-veteran | 0 | 191 | 49.2% |
| Non-veteran | 1 | 84 | 21.6% |
| Non-veteran | 2 | 113 | 29.1% |
| Veteran | 0 | 171 | 24.9% |
| Veteran | 1 | 159 | 23.1% |
| Veteran | 2 | 358 | 52.0% |
Checking the number of respondents who said they had had COVID in each group. 0 = haven’t had COVID (1017; 95%) 1 = yes, currently have COVID, (1; <.001%) 2 = yes, had COVID and recovered, (58; 5%)
| covid1 | n | percent |
|---|---|---|
| 0 | 1017 | 94.5% |
| 1 | 1 | 0.1% |
| 2 | 58 | 5.4% |
Checking by vaccination status
No doses 0 = haven’t had COVID (336; 93%) 1 = yes, currently have COVID, (1; .03%) 2 = yes, had COVID and recovered, (25; 7%)
One dose 0 = haven’t had COVID (229; 94%) 1 = yes, currently have COVID, (0; <.0%) 2 = yes, had COVID and recovered, (14; 6%)
two doses 0 = haven’t had COVID (452; 96%) 1 = yes, currently have COVID, (0; 0%) 2 = yes, had COVID and recovered, (19; 4%)
| received.vaccine | covid1 | n | percent |
|---|---|---|---|
| 0 | 0 | 336 | 92.8% |
| 0 | 1 | 1 | 0.3% |
| 0 | 2 | 25 | 6.9% |
| 1 | 0 | 229 | 94.2% |
| 1 | 2 | 14 | 5.8% |
| 2 | 0 | 452 | 96.0% |
| 2 | 2 | 19 | 4.0% |
Checking by veteran status
Veterans 0 = haven’t had COVID (657; 96%) 1 = yes, currently have COVID, (0; 0%) 2 = yes, had COVID and recovered, (31; 5%)
Non-veterans 0 = haven’t had COVID (360; 93%) 1 = yes, currently have COVID, (1; .3%) 2 = yes, had COVID and recovered, (27; 7%)
| Group | covid1 | n | percent |
|---|---|---|---|
| Non-veteran | 0 | 360 | 92.8% |
| Non-veteran | 1 | 1 | 0.3% |
| Non-veteran | 2 | 27 | 7.0% |
| Veteran | 0 | 657 | 95.5% |
| Veteran | 2 | 31 | 4.5% |
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Below are the descriptive statistics for these items.
## vars n mean sd median trimmed mad min max range skew
## current.behaviors_1 1 1076 1.89 1.31 1 1.64 0.00 1 6 5 1.41
## current.behaviors_2 2 1076 3.03 1.50 3 2.97 1.48 1 6 5 0.12
## current.behaviors_3 3 1076 2.05 1.38 1 1.82 0.00 1 6 5 1.12
## current.behaviors_4 4 1076 2.31 1.35 2 2.17 1.48 1 6 5 0.76
## current.behaviors_5 5 1076 2.47 1.56 2 2.29 1.48 1 6 5 0.61
## kurtosis se
## current.behaviors_1 1.06 0.04
## current.behaviors_2 -1.06 0.05
## current.behaviors_3 0.19 0.04
## current.behaviors_4 -0.40 0.04
## current.behaviors_5 -0.94 0.05
The reliability of these items is good. Cronbach’s Alpha is .87.
##
## Reliability analysis
## Call: psych::alpha(x = df_Comb[, c(2:6)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.88 0.85 0.59 7 0.0061 2.3 1.2 0.59
##
## lower alpha upper 95% confidence boundaries
## 0.86 0.87 0.89
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## current.behaviors_1 0.85 0.85 0.82 0.59 5.8 0.0075 0.0030
## current.behaviors_2 0.86 0.86 0.83 0.61 6.3 0.0069 0.0020
## current.behaviors_3 0.85 0.85 0.81 0.58 5.6 0.0077 0.0029
## current.behaviors_4 0.83 0.83 0.79 0.55 4.9 0.0085 0.0010
## current.behaviors_5 0.85 0.85 0.81 0.59 5.7 0.0076 0.0037
## med.r
## current.behaviors_1 0.59
## current.behaviors_2 0.61
## current.behaviors_3 0.60
## current.behaviors_4 0.55
## current.behaviors_5 0.57
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## current.behaviors_1 1076 0.80 0.81 0.74 0.69 1.9 1.3
## current.behaviors_2 1076 0.78 0.78 0.69 0.65 3.0 1.5
## current.behaviors_3 1076 0.82 0.82 0.76 0.71 2.0 1.4
## current.behaviors_4 1076 0.86 0.87 0.84 0.78 2.3 1.3
## current.behaviors_5 1076 0.82 0.82 0.75 0.70 2.5 1.6
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## current.behaviors_1 0.59 0.16 0.10 0.10 0.03 0.02 0
## current.behaviors_2 0.22 0.19 0.14 0.29 0.11 0.05 0
## current.behaviors_3 0.54 0.15 0.12 0.13 0.04 0.03 0
## current.behaviors_4 0.38 0.25 0.13 0.18 0.04 0.02 0
## current.behaviors_5 0.43 0.14 0.12 0.19 0.09 0.04 0
Below are the descriptive statistics for the risky behavioral intentions scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1076 2.35 1.16 2 2.22 1.19 1 6 5 0.95 0.39 0.04
Checking for assumptions before running ANOVA
Plots do not look too extreme, but levene’s test is clearly significant indicating variance between groups differs
Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()
Levene’s Test for Homogeneity of Variance:
| DFn | DFd | SSn | SSd | F | p | p<.05 |
|---|---|---|---|---|---|---|
| 2 | 1073 | 13.51 | 626.5 | 11.57 | 0.00001064 | * |
Planned ANOVA test of H1. Shows effect of vax status
Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()
ANOVA:
| Effect | DFn | DFd | F | p | p<.05 | ges | |
|---|---|---|---|---|---|---|---|
| 2 | received.vaccine | 2 | 1073 | 3.626 | 0.02694 | * | 0.006714 |
Non-parametric ANOVA to test H1 in response to the significant levene’s test. Barely significant
## Coefficient covariances computed by hccm()
## Analysis of Deviance Table (Type II tests)
##
## Response: BehavIntRisk_Avg
## Df F Pr(>F)
## received.vaccine 2 3.1431 0.04355 *
## Residuals 1073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Checking group means
Show least squares means (unadjusted) and CIs around means
| received.vaccine | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| 0 | 2.478 | 0.06082 | 1073 | 2.359 | 2.598 |
| 1 | 2.244 | 0.07423 | 1073 | 2.099 | 2.39 |
| 2 | 2.303 | 0.05332 | 1073 | 2.199 | 2.408 |
Also generic means across groups and other descriptives (e.g., skew, range, etc.)
##
## Descriptive statistics by group
## group: 0
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 362 2.48 1.32 2 2.33 1.19 1 6 5 0.84 -0.15 0.07
## ------------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.24 1.11 2 2.11 1.19 1 6 5 1.03 0.71 0.07
## ------------------------------------------------------------
## group: 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.3 1.04 2.2 2.2 1.19 1 6 5 0.89 0.39 0.05
Plotting means for visual inspection
Following significant main effect of vaccination status, running pairwise comparisons with Bonferroni correction for multiple testing.
## Loading required package: rstatix
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:plyr':
##
## desc, mutate
## The following object is masked from 'package:stats':
##
## filter
## Loading required package: ggpubr
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
## mutate
| variables | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|
| BehavIntRisk_Avg | 0 | 1 | 362 | 243 | 0.0149 | * | 0.0447 | * | 0.1914 | negligible |
| BehavIntRisk_Avg | 0 | 2 | 362 | 471 | 0.0305 | * | 0.0915 | ns | 0.1475 | negligible |
| BehavIntRisk_Avg | 1 | 2 | 243 | 471 | 0.521 | ns | 1 | ns | -0.0546 | negligible |
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)
Below are the descriptive statistics for these items.
## vars n mean sd median trimmed mad min max range skew
## current.behaviors_6 1 1076 5.40 0.90 6 5.58 0.00 1 6 5 -2.13
## current.behaviors_7 2 1076 5.68 0.84 6 5.89 0.00 1 6 5 -3.51
## current.behaviors_8 3 1076 4.04 1.73 4 4.17 2.97 1 6 5 -0.46
## kurtosis se
## current.behaviors_6 5.99 0.03
## current.behaviors_7 13.76 0.03
## current.behaviors_8 -1.07 0.05
The reliability of these items is poor Cronbach’s Alpha is .54. We pre-registered that if Alpha was ≤.7 we would instead use a single item for this measure.
##
## Reliability analysis
## Call: psych::alpha(x = df_Comb[, c(7:9)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.54 0.61 0.52 0.35 1.6 0.021 5 0.88 0.37
##
## lower alpha upper 95% confidence boundaries
## 0.5 0.54 0.58
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## current.behaviors_6 0.45 0.54 0.37 0.37 1.20 0.025 NA
## current.behaviors_7 0.38 0.44 0.28 0.28 0.79 0.031 NA
## current.behaviors_8 0.55 0.55 0.38 0.38 1.23 0.027 NA
## med.r
## current.behaviors_6 0.37
## current.behaviors_7 0.28
## current.behaviors_8 0.38
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## current.behaviors_6 1076 0.64 0.74 0.51 0.37 5.4 0.90
## current.behaviors_7 1076 0.69 0.78 0.60 0.46 5.7 0.84
## current.behaviors_8 1076 0.87 0.74 0.51 0.39 4.0 1.73
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## current.behaviors_6 0.01 0.01 0.02 0.08 0.31 0.58 0
## current.behaviors_7 0.01 0.01 0.01 0.03 0.13 0.81 0
## current.behaviors_8 0.13 0.10 0.11 0.20 0.18 0.28 0
Checking for assumptions before running ANOVA
Plots do not look too extreme, but levene’s test is clearly significant indicating variance between groups differs
Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()
Levene’s Test for Homogeneity of Variance:
| DFn | DFd | SSn | SSd | F | p | p<.05 |
|---|---|---|---|---|---|---|
| 2 | 1073 | 47.01 | 708.1 | 35.62 | 1.056e-15 | * |
Planned ANOVA test of H2. Shows effect of vax status on mask wearing in public
Warning: Converting “partno” to factor for ANOVA. Warning: Converting “received.vaccine” to factor for ANOVA. Warning: Data is unbalanced (unequal N per group). Make sure you specified a well-considered value for the type argument to ezANOVA(). Coefficient covariances computed by hccm()
ANOVA:
| Effect | DFn | DFd | F | p | p<.05 | ges | |
|---|---|---|---|---|---|---|---|
| 2 | received.vaccine | 2 | 1073 | 35.62 | 1.056e-15 | * | 0.06225 |
Non-parametric ANOVA to test H2 in response to the significant levene’s test. Remained significant
## Coefficient covariances computed by hccm()
## Analysis of Deviance Table (Type II tests)
##
## Response: current.behaviors_7
## Df F Pr(>F)
## received.vaccine 2 22.563 0.000000000252 ***
## Residuals 1073
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Checking group means
Show least squares means (unadjusted) and CIs around means
| received.vaccine | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| 0 | 5.384 | 0.0427 | 1073 | 5.3 | 5.468 |
| 1 | 5.823 | 0.05211 | 1073 | 5.721 | 5.925 |
| 2 | 5.828 | 0.03743 | 1073 | 5.755 | 5.901 |
Also generic means across groups and other descriptives (e.g., skew, range, etc.)
##
## Descriptive statistics by group
## group: 0
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 362 5.38 1.2 6 5.68 0 1 6 5 -2.25 4.54 0.06
## ------------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 5.82 0.5 6 5.95 0 3 6 3 -3.39 13.17 0.03
## ------------------------------------------------------------
## group: 2
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 5.83 0.53 6 5.95 0 1 6 5 -5.04 35.05 0.02
Plotting means for visual inspection
Following significant main effect of vaccination status, running pairwise comparisons with Bonferroni correction for multiple testing.
| variables | group1 | group2 | n1 | n2 | p | p.signif | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|
| current.behaviors_7 | 0 | 1 | 362 | 243 | 0.00000000011 | **** | 0.00000000033 | **** | -0.48 | small |
| current.behaviors_7 | 0 | 2 | 362 | 471 | 0.0000000000000125 | **** | 0.0000000000000375 | **** | -0.48 | small |
| current.behaviors_7 | 1 | 2 | 243 | 471 | 0.938 | ns | 1 | ns | -0.009688 | negligible |
Checking the number of respondents who said they had had COVID in December 2020. * 0 = haven’t had COVID (1037; 97%) * 1 = yes, currently have COVID, (5; .5%) * 2 = yes, had COVID and recovered, (33; 3%)
and in March 2021. * 0 = haven’t had COVID (1037; 97%) * 1 = yes, currently have COVID, (5; .5%) * 2 = yes, had COVID and recovered, (33; 3%)
| covid1.y | n | percent |
|---|---|---|
| 0 | 1037 | 96.5% |
| 1 | 5 | 0.5% |
| 2 | 33 | 3.1% |
| covid1.x | n | percent |
|---|---|---|
| 0 | 1016 | 94.5% |
| 1 | 1 | 0.1% |
| 2 | 58 | 5.4% |
Checking who said they had COVID by vaccination status in December 2020
No doses 0 = haven’t had COVID (343; 95%) 1 = yes, currently have COVID, (4; 1%) 2 = yes, had COVID and recovered, (14; 4%)
One dose 0 = haven’t had COVID (236; 97%) 1 = yes, currently have COVID, (0; <.0%) 2 = yes, had COVID and recovered, (7; 3%)
two doses 0 = haven’t had COVID (458; 97%) 1 = yes, currently have COVID, (1; <1%) 2 = yes, had COVID and recovered, (12; 3%)
| received.vaccine | covid1.y | n | percent |
|---|---|---|---|
| 0 | 0 | 343 | 95.0% |
| 0 | 1 | 4 | 1.1% |
| 0 | 2 | 14 | 3.9% |
| 1 | 0 | 236 | 97.1% |
| 1 | 2 | 7 | 2.9% |
| 2 | 0 | 458 | 97.2% |
| 2 | 1 | 1 | 0.2% |
| 2 | 2 | 12 | 2.5% |
Checking who said they had COVID by veteran status in December 2020
Veterans 0 = haven’t had COVID (667; 97%) 1 = yes, currently have COVID, (1; <1%) 2 = yes, had COVID and recovered, (20; 3%)
Non-veterans 0 = haven’t had COVID (370; 96%) 1 = yes, currently have COVID, (4; 1%) 2 = yes, had COVID and recovered, (13; 3%)
| Group | covid1.y | n | percent |
|---|---|---|---|
| Non-veteran | 0 | 370 | 95.6% |
| Non-veteran | 1 | 4 | 1.0% |
| Non-veteran | 2 | 13 | 3.4% |
| Veteran | 0 | 667 | 96.9% |
| Veteran | 1 | 1 | 0.1% |
| Veteran | 2 | 20 | 2.9% |
Age of sample based on raw coding, grouped by survey labels, collapsed into fewer age groups, younger than 55 or 55+
| age | n | percent |
|---|---|---|
| 2 | 0.2% | |
| 1 | 14 | 1.3% |
| 2 | 38 | 3.5% |
| 3 | 47 | 4.4% |
| 4 | 54 | 5.0% |
| 5 | 133 | 12.4% |
| 6 | 545 | 50.7% |
| 7 | 223 | 20.7% |
| 8 | 19 | 1.8% |
| age1 | n | percent |
|---|---|---|
| 2 | 0.2% | |
| 18 to 24 | 14 | 1.3% |
| 25 to 34 | 38 | 3.5% |
| 35 to 44 | 47 | 4.4% |
| 45 to 54 | 54 | 5.0% |
| 55 to 64 | 133 | 12.4% |
| 65 to 74 | 545 | 50.7% |
| 75 to 84 | 223 | 20.7% |
| 85 or older | 19 | 1.8% |
| age2 | n | percent |
|---|---|---|
| 2 | 0.2% | |
| 18 to 34 | 52 | 4.8% |
| 35 to 54 | 101 | 9.4% |
| 55 to 74 | 678 | 63.1% |
| 75 or older | 242 | 22.5% |
| age_FCT1 | n | percent |
|---|---|---|
| Younger than 55 | 155 | 14.4% |
| 55 or older | 920 | 85.6% |
Gender of sample based on raw coding, grouped by survey labels
Gender of sample with different groupings
| gender | n | percent |
|---|---|---|
| 1 | 231 | 21.5% |
| 2 | 841 | 78.2% |
| 5 | 3 | 0.3% |
| Gender_CHR | n | percent |
|---|---|---|
| Female | 231 | 21.5% |
| Male | 841 | 78.2% |
| Non-binary/third gender | 3 | 0.3% |
Overall descriptives for sample income and then frequencies
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 6.36 2.33 7 6.57 1.48 1 10 9 -0.66 -0.43 0.07
| income2a | n | percent |
|---|---|---|
| $0 - $49k | 242 | 22.5% |
| $50K to $99K | 416 | 38.7% |
| $100K and more | 376 | 35.0% |
| Prefer to not say | 41 | 3.8% |
Race and ethnicity frequencies
| LatinxCHR | n | percent |
|---|---|---|
| Hispanic | 109 | 10.1% |
| No response | 1 | 0.1% |
| Non-hispanic | 965 | 89.8% |
| LatinxCHR | RaceCHR | count | freq |
|---|---|---|---|
| Non-hispanic | American Indian or Alaskan Native | 4 | 4 (0.4%) |
| Non-hispanic | Asian or Asian American | 28 | 28 (2.9%) |
| Non-hispanic | Black or African American | 88 | 88 (9.1%) |
| Non-hispanic | Multiple | 11 | 11 (1.1%) |
| Non-hispanic | Native Hawaiian or other Pacific Islander | 2 | 2 (0.2%) |
| Non-hispanic | Other | 14 | 14 (1.5%) |
| Non-hispanic | White or European American | 818 | 818 (84.8%) |
| No response | White or European American | 1 | 1 (100.0%) |
| Hispanic | 5,6 | 1 | 1 (0.9%) |
| Hispanic | American Indian or Alaskan Native | 2 | 2 (1.8%) |
| Hispanic | Asian or Asian American | 1 | 1 (0.9%) |
| Hispanic | Black or African American | 6 | 6 (5.5%) |
| Hispanic | Multiple | 2 | 2 (1.8%) |
| Hispanic | Other | 6 | 6 (5.5%) |
| Hispanic | White or European American | 91 | 91 (83.5%) |
How participants best described the place where they live
| ruralUrban1 | n | percent |
|---|---|---|
| Rural | 182 | 16.9% |
| Small (less than 100,000) | 180 | 16.7% |
| Suburban near large city | 519 | 48.3% |
| Mid sized city (100,000 to 1million) | 102 | 9.5% |
| large city more than 1million | 88 | 8.2% |
| Other | 4 | 0.4% |
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Below are the descriptive statistics for these items in December 2020.
## vars n mean sd median trimmed mad min max range
## current.behaviors_1.y 1 1075 1.62 1.08 1 1.36 0.00 1 6 5
## current.behaviors_2.y 2 1075 2.78 1.42 3 2.69 1.48 1 6 5
## current.behaviors_3.y 3 1075 1.73 1.17 1 1.49 0.00 1 6 5
## current.behaviors_4.y 4 1075 1.99 1.18 2 1.82 1.48 1 6 5
## current.behaviors_5.y 5 1075 2.08 1.39 1 1.88 0.00 1 6 5
## skew kurtosis se
## current.behaviors_1.y 1.87 2.89 0.03
## current.behaviors_2.y 0.23 -1.11 0.04
## current.behaviors_3.y 1.54 1.48 0.04
## current.behaviors_4.y 1.08 0.40 0.04
## current.behaviors_5.y 1.02 -0.15 0.04
The reliability of these items is good. Cronbach’s Alpha is .84.
##
## Reliability analysis
## Call: psych::alpha(x = Dmgxs[, c(27:31)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.84 0.81 0.51 5.3 0.0079 2 0.97 0.54
##
## lower alpha upper 95% confidence boundaries
## 0.82 0.84 0.85
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## current.behaviors_1.y 0.81 0.81 0.77 0.52 4.3 0.0097 0.0023
## current.behaviors_2.y 0.82 0.83 0.78 0.55 4.8 0.0086 0.0005
## current.behaviors_3.y 0.80 0.80 0.76 0.51 4.1 0.0101 0.0041
## current.behaviors_4.y 0.79 0.79 0.75 0.49 3.8 0.0105 0.0033
## current.behaviors_5.y 0.80 0.80 0.76 0.51 4.1 0.0100 0.0033
## med.r
## current.behaviors_1.y 0.54
## current.behaviors_2.y 0.55
## current.behaviors_3.y 0.54
## current.behaviors_4.y 0.49
## current.behaviors_5.y 0.52
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## current.behaviors_1.y 1075 0.76 0.77 0.70 0.63 1.6 1.1
## current.behaviors_2.y 1075 0.75 0.73 0.63 0.57 2.8 1.4
## current.behaviors_3.y 1075 0.78 0.79 0.72 0.66 1.7 1.2
## current.behaviors_4.y 1075 0.81 0.82 0.76 0.70 2.0 1.2
## current.behaviors_5.y 1075 0.80 0.79 0.72 0.65 2.1 1.4
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## current.behaviors_1.y 0.68 0.16 0.07 0.07 0.02 0.01 0
## current.behaviors_2.y 0.25 0.23 0.13 0.27 0.09 0.02 0
## current.behaviors_3.y 0.64 0.14 0.09 0.09 0.02 0.01 0
## current.behaviors_4.y 0.47 0.26 0.11 0.13 0.01 0.01 0
## current.behaviors_5.y 0.52 0.17 0.09 0.16 0.04 0.02 0
Below are the descriptive statistics for the risky behavioral intentions scale overall in December 2020.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.04 0.97 1.8 1.9 0.89 1 6 5 1.21 1.19 0.03
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F p
## 2 Vax_Status 2 1072 8.687626 0.0001808266491318020010616030024408474
## 3 wave 1 1072 144.215093 0.0000000000000000000000000000002921611
## 4 Vax_Status:wave 2 1072 10.138030 0.0000434740915211216926447926334198257
## p<.05 ges
## 2 * 0.013951037
## 3 * 0.016809309
## 4 * 0.002397962
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05
## 1 Vax_Status 2 1072 8.688 0.000181000000000000008538308948758 *
## 2 wave 1 1072 144.215 0.000000000000000000000000000000292 *
## 3 Vax_Status:wave 2 1072 10.138 0.000043500000000000000255004350969 *
## ges
## 1 0.014
## 2 0.017
## 3 0.002
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 4.978 2.489 2 1072 8.6876 0.0001808 ***
## wave 41.319 41.319 1 1072 144.2151 < 0.00000000000000022 ***
## Vax_Status:wave 5.809 2.905 2 1072 10.1380 0.00004347 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 20… Vax_Status 2 1072 16.8 6.38e-8 * 0.03 1.28e-7
## 2 March 2021 Vax_Status 2 1072 3.38 3.50e-2 * 0.006 7.00e-2
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 22.7 2.73e- 6 * 0.007 8.19e- 6
## 2 1 Dose wave 1 242 25.6 8.32e- 7 * 0.013 2.50e- 6
## 3 2 Doses wave 1 470 160. 9.46e-32 * 0.049 2.84e-31
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 243 | 0.00136 | 0.00408 | ** | 0.2476 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.00000000989 | 0.0000000297 | **** | 0.3921 | small |
| December 2020 | 1 Dose | 2 Doses | 243 | 471 | 0.0816 | 0.245 | ns | 0.1506 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 243 | 0.0183 | 0.0548 | ns | 0.1858 | negligible |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.0381 | 0.114 | ns | 0.1415 | negligible |
| March 2021 | 1 Dose | 2 Doses | 243 | 471 | 0.52 | 1 | ns | -0.0546 | negligible |
##
## Welch's independent samples t-test
##
## Outcome variable: Risk_IncreaseBhv
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.266 2.011
## std dev. 1.130 0.927
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 3.042
## degrees of freedom: 578.894
## p-value: 0.002
##
## Other information:
## two-sided 95% confidence interval: [0.091, 0.421]
## estimated effect size (Cohen's d): 0.248
## [1] 0.255
##
## Welch's independent samples t-test
##
## Outcome variable: Risk_IncreaseBhv
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.266 1.879
## std dev. 1.130 0.825
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 5.496
## degrees of freedom: 633.589
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.249, 0.527]
## estimated effect size (Cohen's d): 0.392
## [1] 0.387
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | -4.766 | 360 | 0.00000273 | 0.00000273 | **** | -0.2508 | small |
| 1 Dose | December 2020 | March 2021 | 243 | 243 | -5.059 | 242 | 0.000000832 | 0.000000832 | **** | -0.3246 | small |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | -12.64 | 470 | 0.0000000000000000000000000000000946 | 0.0000000000000000000000000000000946 | **** | -0.5826 | moderate |
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Risk_IncreaseBhv
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.266 2.471 -0.204
## std dev. 1.130 1.317 0.815
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: -4.766
## degrees of freedom: 360
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.289, -0.12]
## estimated effect size (Cohen's d): 0.251
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Risk_IncreaseBhv
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.011 2.244 -0.234
## std dev. 0.927 1.113 0.720
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: -5.059
## degrees of freedom: 242
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.325, -0.143]
## estimated effect size (Cohen's d): 0.325
## Warning in pairedSamplesTTest(., formula = Risk_IncreaseBhv ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Risk_IncreaseBhv
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 1.879 2.303 -0.425
## std dev. 0.825 1.037 0.729
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: -12.645
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.491, -0.359]
## estimated effect size (Cohen's d): 0.583
Quick plot
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.35 1.16 2 2.22 1.19 1 6 5 0.95 0.4 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.47 1.32 2 2.32 1.19 1 6 5 0.84 -0.12 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.24 1.11 2 2.11 1.19 1 6 5 1.03 0.71 0.07
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.3 1.04 2.2 2.2 1.19 1 6 5 0.89 0.39 0.05
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.04 0.97 1.8 1.9 0.89 1 6 5 1.21 1.19 0.03
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.27 1.13 2 2.14 1.19 1 6 5 0.86 -0.06 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.01 0.93 1.8 1.88 0.89 1 6 5 1.16 1.15 0.06
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 1.88 0.83 1.6 1.76 0.59 1 6 5 1.45 2.71 0.04
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)
Below are the descriptive statistics for these items.
## vars n mean sd median trimmed mad min max range
## current.behaviors_6.y 1 1075 5.39 0.95 6 5.59 0.00 1 6 5
## current.behaviors_7.y 2 1075 5.72 0.81 6 5.92 0.00 1 6 5
## current.behaviors_8.y 3 1075 4.21 1.71 5 4.39 1.48 1 6 5
## skew kurtosis se
## current.behaviors_6.y -2.29 6.64 0.03
## current.behaviors_7.y -3.87 16.64 0.02
## current.behaviors_8.y -0.59 -0.90 0.05
The reliability of these items is poor Cronbach’s Alpha is .58. As with the pre-registered plan we will use single item.
##
## Reliability analysis
## Call: psych::alpha(x = Dmgxs[, c(32:34)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.58 0.65 0.56 0.39 1.9 0.019 5.1 0.9 0.39
##
## lower alpha upper 95% confidence boundaries
## 0.54 0.58 0.62
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## current.behaviors_6.y 0.46 0.56 0.39 0.39 1.3 0.025 NA
## current.behaviors_7.y 0.45 0.51 0.34 0.34 1.0 0.028 NA
## current.behaviors_8.y 0.60 0.60 0.43 0.43 1.5 0.024 NA
## med.r
## current.behaviors_6.y 0.39
## current.behaviors_7.y 0.34
## current.behaviors_8.y 0.43
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## current.behaviors_6.y 1075 0.69 0.77 0.57 0.43 5.4 0.95
## current.behaviors_7.y 1075 0.69 0.79 0.62 0.48 5.7 0.81
## current.behaviors_8.y 1075 0.87 0.75 0.53 0.43 4.2 1.71
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## current.behaviors_6.y 0.01 0.01 0.01 0.07 0.30 0.58 0
## current.behaviors_7.y 0.01 0.01 0.01 0.03 0.11 0.84 0
## current.behaviors_8.y 0.11 0.08 0.11 0.19 0.18 0.33 0
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F p p<.05
## 2 Vax_Status 2 1072 43.85642534 0.0000000000000000004926668 *
## 3 wave 1 1072 3.01611328 0.0827280904642047482111522
## 4 Vax_Status:wave 2 1072 0.07173301 0.9307838406089872229642879
## ges
## 2 0.0629218837
## 3 0.0005043563
## 4 0.0000240020
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 Vax_Status 2 1072 43.856 0.000000000000000000493 * 0.063000
## 2 wave 1 1072 3.016 0.083000000000000004330 0.000504
## 3 Vax_Status:wave 2 1072 0.072 0.931000000000000049738 0.000024
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 20.0583 10.0292 2 1072 43.8564 < 0.0000000000000002 ***
## wave 0.6897 0.6897 1 1072 3.0161 0.08273 .
## Vax_Status:wave 0.0328 0.0164 2 1072 0.0717 0.93078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1072 36.7 3.83e-16 * 0.064 7.66e-16
## 2 March 2021 Vax_Status 2 1072 35.4 1.35e-15 * 0.062 2.70e-15
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 0.87 0.351 "" 0.000354 1
## 2 1 Dose wave 1 242 0.666 0.415 "" 0.000693 1
## 3 2 Doses wave 1 470 2.79 0.096 "" 0.002 0.288
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 243 | 0.00000000019 | 0.000000000571 | **** | -0.4766 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.0000000000000023 | 0.00000000000000689 | **** | -0.4907 | small |
| December 2020 | 1 Dose | 2 Doses | 243 | 471 | 0.713 | 1 | ns | -0.04713 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 243 | 0.000000000126 | 0.000000000379 | **** | -0.4783 | small |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.0000000000000154 | 0.0000000000000463 | **** | -0.4784 | small |
| March 2021 | 1 Dose | 2 Doses | 243 | 471 | 0.938 | 1 | ns | -0.009688 | negligible |
##
## Welch's independent samples t-test
##
## Outcome variable: Mask_wearing
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 5.429 5.848
## std dev. 1.160 0.442
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -6.214
## degrees of freedom: 497.808
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.551, -0.286]
## estimated effect size (Cohen's d): 0.477
## [1] -0.419
##
## Welch's independent samples t-test
##
## Outcome variable: Mask_wearing
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 5.429 5.870
## std dev. 1.160 0.520
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -6.726
## degrees of freedom: 470.881
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.57, -0.312]
## estimated effect size (Cohen's d): 0.491
## [1] -0.441
##
## Welch's independent samples t-test
##
## Outcome variable: Mask_wearing
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 5.385 5.823
## std dev. 1.197 0.495
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -6.209
## degrees of freedom: 516.823
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.577, -0.299]
## estimated effect size (Cohen's d): 0.478
## [1] -0.438
##
## Welch's independent samples t-test
##
## Outcome variable: Mask_wearing
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 5.385 5.828
## std dev. 1.197 0.532
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -6.555
## degrees of freedom: 469.132
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.576, -0.31]
## estimated effect size (Cohen's d): 0.478
## [1] -0.443
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 0.933 | 360 | 0.351 | 0.351 | ns | 0.0491 | negligible |
| 1 Dose | December 2020 | March 2021 | 243 | 243 | 0.8159 | 242 | 0.415 | 0.415 | ns | 0.05234 | negligible |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 1.67 | 470 | 0.096 | 0.096 | ns | 0.07694 | negligible |
Quick plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 5.72 0.81 6 5.92 0 1 6 5 -3.87 16.64 0.02
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 5.43 1.16 6 5.73 0 1 6 5 -2.46 5.67 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 5.85 0.44 6 5.97 0 3 6 3 -3.26 11.67 0.03
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 5.87 0.52 6 6 0 1 6 5 -6.14 45.99 0.02
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 5.68 0.84 6 5.89 0 1 6 5 -3.51 13.77 0.03
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 5.39 1.2 6 5.69 0 1 6 5 -2.25 4.54 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 5.82 0.5 6 5.95 0 3 6 3 -3.39 13.17 0.03
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 5.83 0.53 6 5.95 0 1 6 5 -5.04 35.05 0.02
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F
## 2 Vax_Status 2 1071 15.20073
## 3 wave 1 1071 198.80442
## 4 Vax_Status:wave 2 1071 34.69764
## p p<.05 ges
## 2 0.0000003092903634565091269377154221259518251941 * 0.02002532
## 3 0.0000000000000000000000000000000000000000154395 * 0.04942735
## 4 0.0000000000000025066317699935565299789616984760 * 0.01782682
## ANOVA Table (type III tests)
##
## Effect DFn DFd F
## 1 Vax_Status 2 1071 15.201
## 2 wave 1 1071 198.804
## 3 Vax_Status:wave 2 1071 34.698
## p p<.05 ges
## 1 0.0000003089999999999999743704635294522242717 * 0.020
## 2 0.0000000000000000000000000000000000000000154 * 0.049
## 3 0.0000000000000025100000000000001595418129555 * 0.018
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 13.282 6.641 2 1071 15.201 0.000000309290405502 ***
## wave 86.855 86.855 1 1071 198.804 < 0.00000000000000022 ***
## Vax_Status:wave 30.318 15.159 2 1071 34.698 0.000000000000002507 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1071 2.78 6.30e- 2 "" 0.005 1.26e- 1
## 2 March 2021 Vax_Status 2 1071 43.1 1.00e-18 "*" 0.074 2.00e-18
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 5.98 1.50e- 2 * 0.004 4.50e- 2
## 2 1 Dose wave 1 241 59.5 3.17e-13 * 0.064 9.51e-13
## 3 2 Doses wave 1 470 252. 8.44e-46 * 0.153 2.53e-45
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 242 | 0.0282 | 0.0847 | ns | -0.1736 | negligible |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.768 | 1 | ns | -0.02042 | negligible |
| December 2020 | 1 Dose | 2 Doses | 242 | 471 | 0.0409 | 0.123 | ns | 0.1688 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 242 | 0.0178 | 0.0535 | ns | 0.1822 | negligible |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.000000000000000000841 | 0.00000000000000000252 | **** | 0.6179 | moderate |
| March 2021 | 1 Dose | 2 Doses | 242 | 471 | 0.0000000513 | 0.000000154 | **** | 0.4667 | small |
##
## Welch's independent samples t-test
##
## Outcome variable: Likely_getCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.011 1.486
## std dev. 0.966 0.714
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 8.667
## degrees of freedom: 638.851
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.406, 0.644]
## estimated effect size (Cohen's d): 0.618
## [1] 0.525
##
## Welch's independent samples t-test
##
## Outcome variable: Likely_getCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 1 Dose 2 Doses
## mean 1.847 1.486
## std dev. 0.828 0.714
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 5.766
## degrees of freedom: 428.191
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.238, 0.484]
## estimated effect size (Cohen's d): 0.467
## [1] 0.361
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 2.446 | 360 | 0.015 | 0.015 | * | 0.1288 | negligible |
| 1 Dose | December 2020 | March 2021 | 242 | 242 | 7.716 | 241 | 0.000000000000317 | 0.000000000000317 | **** | 0.496 | small |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 15.89 | 470 | 0.000000000000000000000000000000000000000000000844 | 0.000000000000000000000000000000000000000000000844 | **** | 0.732 | moderate |
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Likely_getCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.136 2.011 0.125
## std dev. 1.025 0.966 0.968
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 2.446
## degrees of freedom: 360
## p-value: 0.015
##
## Other information:
## two-sided 95% confidence interval: [0.024, 0.225]
## estimated effect size (Cohen's d): 0.129
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 833 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Likely_getCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.306 1.847 0.459
## std dev. 0.932 0.828 0.925
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 7.716
## degrees of freedom: 241
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.342, 0.576]
## estimated effect size (Cohen's d): 0.496
## Warning in pairedSamplesTTest(., formula = Likely_getCV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Likely_getCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.155 1.486 0.669
## std dev. 0.853 0.714 0.914
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 15.886
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.586, 0.752]
## estimated effect size (Cohen's d): 0.732
Plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1074 2.18 0.93 2 2.12 1.48 1 5 4 0.66 0.41 0.03
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.14 1.03 2 2.01 1.48 1 5 4 0.82 0.34 0.05
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 242 2.31 0.93 2 2.25 1.48 1 5 4 0.59 0.39 0.06
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.15 0.85 2 2.12 1.48 1 5 4 0.48 0.28 0.04
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 1.74 0.86 2 1.62 1.48 1 5 4 1.26 1.83 0.03
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.01 0.97 2 1.91 1.48 1 5 4 0.88 0.58 0.05
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 1.84 0.83 2 1.75 1.48 1 5 4 1.12 1.97 0.05
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 1.49 0.71 1 1.36 0 1 5 4 1.75 4.17 0.03
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F
## 2 Vax_Status 2 1070 8.790323
## 3 wave 1 1070 157.528782
## 4 Vax_Status:wave 2 1070 30.454703
## p p<.05 ges
## 2 0.0001634686719003823650916279452971480168 * 0.01289325
## 3 0.0000000000000000000000000000000008291692 * 0.02930158
## 4 0.0000000000001369113097561927787642859788 * 0.01153696
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05
## 1 Vax_Status 2 1070 8.790 0.000163000000000000004694161725993240 *
## 2 wave 1 1070 157.529 0.000000000000000000000000000000000829 *
## 3 Vax_Status:wave 2 1070 30.455 0.000000000000136999999999999996840574 *
## ges
## 1 0.013
## 2 0.029
## 3 0.012
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 10.538 5.269 2 1070 8.7903 0.0001635 ***
## wave 94.423 94.423 1 1070 157.5288 < 0.00000000000000022 ***
## Vax_Status:wave 36.509 18.255 2 1070 30.4547 0.0000000000001369 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1070 16.0 1.48e-7 * 0.029 2.96e-7
## 2 March 2021 Vax_Status 2 1070 10.5 2.96e-5 * 0.019 5.92e-5
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 11.6 7.41e- 4 * 0.006 2.22e- 3
## 2 1 Dose wave 1 240 31.0 6.78e- 8 * 0.022 2.03e- 7
## 3 2 Doses wave 1 470 196. 1.62e-37 * 0.091 4.86e-37
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 241 | 0.00000479 | 0.0000144 | **** | -0.3862 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.000000452 | 0.00000136 | **** | -0.3492 | small |
| December 2020 | 1 Dose | 2 Doses | 241 | 471 | 0.731 | 1 | ns | 0.02801 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 241 | 0.00409 | 0.0123 | * | -0.2384 | small |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.0764 | 0.229 | ns | 0.1243 | negligible |
| March 2021 | 1 Dose | 2 Doses | 241 | 471 | 0.00000499 | 0.000015 | **** | 0.3628 | small |
##
## Welch's independent samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.493 2.954
## std dev. 1.245 1.141
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -4.684
## degrees of freedom: 544.058
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.655, -0.268]
## estimated effect size (Cohen's d): 0.386
## [1] -0.461
##
## Welch's independent samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.493 2.921
## std dev. 1.245 1.208
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -4.981
## degrees of freedom: 762.762
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.597, -0.26]
## estimated effect size (Cohen's d): 0.349
## [1] -0.428
##
## Welch's independent samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.307 2.598
## std dev. 1.212 1.221
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -2.864
## degrees of freedom: 511.855
## p-value: 0.004
##
## Other information:
## two-sided 95% confidence interval: [-0.489, -0.091]
## estimated effect size (Cohen's d): 0.238
## [1] -0.291
##
## Welch's independent samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 1 Dose 2 Doses
## mean 2.598 2.157
## std dev. 1.221 1.207
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 4.572
## degrees of freedom: 478.674
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.251, 0.63]
## estimated effect size (Cohen's d): 0.363
## [1] 0.441
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 3.403 | 360 | 0.000741 | 0.000741 | *** | 0.1791 | negligible |
| 1 Dose | December 2020 | March 2021 | 241 | 241 | 5.571 | 240 | 0.0000000678 | 0.0000000678 | **** | 0.3589 | small |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 14.01 | 470 | 0.000000000000000000000000000000000000162 | 0.000000000000000000000000000000000000162 | **** | 0.6456 | moderate |
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.493 2.307 0.186
## std dev. 1.245 1.212 1.036
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 3.403
## degrees of freedom: 360
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.078, 0.293]
## estimated effect size (Cohen's d): 0.179
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 834 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.954 2.598 0.357
## std dev. 1.141 1.221 0.994
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 5.571
## degrees of freedom: 240
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.231, 0.483]
## estimated effect size (Cohen's d): 0.359
## Warning in pairedSamplesTTest(., formula = Seriously_illCV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Seriously_illCV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.921 2.157 0.764
## std dev. 1.208 1.207 1.184
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 14.01
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.657, 0.872]
## estimated effect size (Cohen's d): 0.646
Plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1073 2.78 1.22 3 2.73 1.48 1 5 4 0.28 -0.79 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.49 1.25 2 2.38 1.48 1 5 4 0.45 -0.7 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 241 2.95 1.14 3 2.94 1.48 1 5 4 0.09 -0.76 0.07
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.92 1.21 3 2.9 1.48 1 5 4 0.32 -0.83 0.06
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.31 1.22 2 2.16 1.48 1 5 4 0.69 -0.45 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.31 1.21 2 2.16 1.48 1 5 4 0.71 -0.33 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.59 1.22 2 2.49 1.48 1 5 4 0.44 -0.71 0.08
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.16 1.21 2 2 1.48 1 5 4 0.84 -0.28 0.06
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F p p<.05
## 2 Vax_Status 2 1071 5.32112 0.005017333499160264026484057 *
## 3 wave 1 1071 92.97426 0.000000000000000000003721985 *
## 4 Vax_Status:wave 2 1071 22.27616 0.000000000332196264058231669 *
## ges
## 2 0.007930416
## 3 0.016690726
## 4 0.008068162
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 Vax_Status 2 1071 5.321 0.00500000000000000010408 * 0.008
## 2 wave 1 1071 92.974 0.00000000000000000000372 * 0.017
## 3 Vax_Status:wave 2 1071 22.276 0.00000000033200000000000 * 0.008
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 5.257 2.628 2 1071 5.3211 0.005017 **
## wave 45.925 45.925 1 1071 92.9743 < 0.00000000000000022 ***
## Vax_Status:wave 22.007 11.003 2 1071 22.2762 0.0000000003322 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1071 7.23 0.00076 * 0.013 0.00152
## 2 March 2021 Vax_Status 2 1071 10.2 0.0000406 * 0.019 0.0000812
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 16.5 5.93e- 5 * 0.007 1.78e- 4
## 2 1 Dose wave 1 241 5.31 2.20e- 2 * 0.004 6.60e- 2
## 3 2 Doses wave 1 470 134. 1.60e-27 * 0.062 4.80e-27
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 242 | 0.00897 | 0.0269 | * | -0.2216 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.000252 | 0.000756 | *** | -0.2541 | small |
| December 2020 | 1 Dose | 2 Doses | 242 | 471 | 0.619 | 1 | ns | -0.03986 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 242 | 0.00119 | 0.00357 | ** | -0.2634 | small |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.226 | 0.679 | ns | 0.08657 | negligible |
| March 2021 | 1 Dose | 2 Doses | 242 | 471 | 0.0000081 | 0.0000243 | **** | 0.3455 | small |
##
## Welch's independent samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.166 2.417
## std dev. 1.160 1.106
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -2.68
## degrees of freedom: 533.174
## p-value: 0.008
##
## Other information:
## two-sided 95% confidence interval: [-0.435, -0.067]
## estimated effect size (Cohen's d): 0.222
## [1] -0.251
##
## Welch's independent samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.166 2.463
## std dev. 1.160 1.175
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -3.636
## degrees of freedom: 779.777
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.457, -0.136]
## estimated effect size (Cohen's d): 0.254
## [1] -0.297
##
## Welch's independent samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 1.978 2.273
## std dev. 1.067 1.170
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -3.141
## degrees of freedom: 483.871
## p-value: 0.002
##
## Other information:
## two-sided 95% confidence interval: [-0.479, -0.11]
## estimated effect size (Cohen's d): 0.263
## [1] -0.295
##
## Welch's independent samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 1 Dose 2 Doses
## mean 2.273 1.885
## std dev. 1.170 1.070
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 4.307
## degrees of freedom: 449.858
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.211, 0.564]
## estimated effect size (Cohen's d): 0.346
## [1] 0.388
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 4.064 | 360 | 0.0000593 | 0.0000593 | **** | 0.2139 | small |
| 1 Dose | December 2020 | March 2021 | 242 | 242 | 2.303 | 241 | 0.022 | 0.022 | * | 0.1481 | negligible |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 11.6 | 470 | 0.0000000000000000000000000016 | 0.0000000000000000000000000016 | **** | 0.5344 | moderate |
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 714
## case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.166 1.978 0.188
## std dev. 1.160 1.067 0.881
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 4.064
## degrees of freedom: 360
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.097, 0.28]
## estimated effect size (Cohen's d): 0.214
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 833
## case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.417 2.273 0.145
## std dev. 1.106 1.170 0.977
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 2.303
## degrees of freedom: 241
## p-value: 0.022
##
## Other information:
## two-sided 95% confidence interval: [0.021, 0.268]
## estimated effect size (Cohen's d): 0.148
## Warning in pairedSamplesTTest(., formula = Die_CV19 ~ wave, id = "partno"): 604
## case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: Die_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.463 1.885 0.577
## std dev. 1.175 1.070 1.081
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 11.597
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.48, 0.675]
## estimated effect size (Cohen's d): 0.534
Plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1074 2.35 1.16 2 2.24 1.48 1 5 4 0.54 -0.49 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.17 1.16 2 2.02 1.48 1 5 4 0.72 -0.31 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 242 2.42 1.11 2 2.35 1.48 1 5 4 0.35 -0.59 0.07
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.46 1.18 2 2.36 1.48 1 5 4 0.5 -0.52 0.05
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2 1.1 2 1.83 1.48 1 5 4 0.95 0.13 0.03
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 1.98 1.07 2 1.83 1.48 1 5 4 0.93 0.23 0.06
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.27 1.17 2 2.13 1.48 1 5 4 0.69 -0.31 0.08
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 1.89 1.07 2 1.7 1.48 1 5 4 1.1 0.39 0.05
## [1] Vax_Status partno wave SelfWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] Vax_Status partno wave SelfWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] "worried.self.x" "worried.self.y"
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F
## 2 Vax_Status 2 1072 7.299452
## 3 wave 1 1072 258.820270
## 4 Vax_Status:wave 2 1072 64.540806
## p p<.05 ges
## 2 0.0007100359592667782352923278033074439008487388491630554199 * 0.01107005
## 3 0.0000000000000000000000000000000000000000000000000002494857 * 0.04121051
## 4 0.0000000000000000000000000034161378539810571849394341755738 * 0.02098648
## ANOVA Table (type III tests)
##
## Effect DFn DFd F
## 1 Vax_Status 2 1072 7.299
## 2 wave 1 1072 258.820
## 3 Vax_Status:wave 2 1072 64.541
## p p<.05 ges
## 1 0.000710000000000000019116652705264414180419407784938812 * 0.011
## 2 0.000000000000000000000000000000000000000000000000000249 * 0.041
## 3 0.000000000000000000000000003420000000000000217748232190 * 0.021
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 7.971 3.986 2 1072 7.2995 0.00071 ***
## wave 141.321 141.321 1 1072 258.8202 < 0.0000000000000002 ***
## Vax_Status:wave 70.481 35.241 2 1072 64.5408 < 0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1072 7.35 6.77e- 4 * 0.014 1.35e- 3
## 2 March 2021 Vax_Status 2 1072 29.5 3.48e-13 * 0.052 6.96e-13
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 7.52 6.00e- 3 * 0.003 1.80e- 2
## 2 1 Dose wave 1 242 58.1 5.66e-13 * 0.036 1.70e-12
## 3 2 Doses wave 1 470 360. 4.73e-60 * 0.153 1.42e-59
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 243 | 0.000501 | 0.0015 | ** | -0.2792 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.00229 | 0.00686 | ** | -0.2139 | small |
| December 2020 | 1 Dose | 2 Doses | 243 | 471 | 0.337 | 1 | ns | 0.07692 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 243 | 0.747 | 1 | ns | -0.02504 | negligible |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.0000000000706 | 0.000000000212 | **** | 0.4562 | small |
| March 2021 | 1 Dose | 2 Doses | 243 | 471 | 0.000000000954 | 0.00000000286 | **** | 0.5102 | moderate |
##
## Welch's independent samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.693 3.066
## std dev. 1.355 1.319
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -3.374
## degrees of freedom: 528.626
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.591, -0.156]
## estimated effect size (Cohen's d): 0.279
## [1] -0.373
##
## Welch's independent samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.693 2.968
## std dev. 1.355 1.219
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -3.036
## degrees of freedom: 730.072
## p-value: 0.002
##
## Other information:
## two-sided 95% confidence interval: [-0.454, -0.097]
## estimated effect size (Cohen's d): 0.214
## [1] -0.275
##
## Welch's independent samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 2.548 2.002
## std dev. 1.326 1.053
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 6.427
## degrees of freedom: 671.662
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.379, 0.713]
## estimated effect size (Cohen's d): 0.456
## [1] 0.546
##
## Welch's independent samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 1 Dose 2 Doses
## mean 2.580 2.002
## std dev. 1.208 1.053
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 6.323
## degrees of freedom: 434.472
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.398, 0.758]
## estimated effect size (Cohen's d): 0.51
## [1] 0.578
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 2.743 | 360 | 0.006 | 0.006 | ** | 0.1443 | negligible |
| 1 Dose | December 2020 | March 2021 | 243 | 243 | 7.622 | 242 | 0.000000000000566 | 0.000000000000566 | **** | 0.4889 | small |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 18.98 | 470 | 0.00000000000000000000000000000000000000000000000000000000000473 | 0.00000000000000000000000000000000000000000000000000000000000473 | **** | 0.8746 | large |
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.693 2.548 0.144
## std dev. 1.355 1.326 0.998
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 2.743
## degrees of freedom: 360
## p-value: 0.006
##
## Other information:
## two-sided 95% confidence interval: [0.041, 0.247]
## estimated effect size (Cohen's d): 0.144
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 3.066 2.580 0.486
## std dev. 1.319 1.208 0.993
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 7.622
## degrees of freedom: 242
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.36, 0.611]
## estimated effect size (Cohen's d): 0.489
## Warning in pairedSamplesTTest(., formula = SelfWorry_CV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: SelfWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 2.968 2.002 0.966
## std dev. 1.219 1.053 1.105
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 18.98
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.866, 1.066]
## estimated effect size (Cohen's d): 0.875
Plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.9 1.3 3 2.87 1.48 1 5 4 0.2 -1.06 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.69 1.35 3 2.62 1.48 1 5 4 0.34 -1.07 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 3.07 1.32 3 3.08 1.48 1 5 4 0.12 -1.19 0.08
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.97 1.22 3 2.96 1.48 1 5 4 0.17 -0.95 0.06
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.32 1.22 2 2.18 1.48 1 5 4 0.71 -0.4 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.55 1.33 2 2.44 1.48 1 5 4 0.42 -0.95 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 2.58 1.21 2 2.48 1.48 1 5 4 0.56 -0.57 0.08
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2 1.05 2 1.84 1.48 1 5 4 1.03 0.53 0.05
## [1] "Vax_Status" "worried.other.y" "worried.other.x" "partno"
## [1] Vax_Status partno wave OtherWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] Vax_Status partno wave OtherWorry_CV19
## <0 rows> (or 0-length row.names)
## [1] "worried.other.x" "worried.other.y"
Some prep and checking some diagnostics.
Run the model, three different ways (get same results)
## $ANOVA
## Effect DFn DFd F p p<.05
## 2 Vax_Status 2 1072 7.536939 0.00056175748393744173725394830399 *
## 3 wave 1 1072 116.833312 0.00000000000000000000000006404003 *
## 4 Vax_Status:wave 2 1072 8.853258 0.00015363401909032490177606233850 *
## ges
## 2 0.01171523
## 3 0.01682079
## 4 0.00258616
## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 Vax_Status 2 1072 7.537 0.000561999999999999999555911 * 0.012
## 2 wave 1 1072 116.833 0.000000000000000000000000064 * 0.017
## 3 Vax_Status:wave 2 1072 8.853 0.000154000000000000002772088 * 0.003
## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Vax_Status 7.653 3.827 2 1072 7.5369 0.0005618 ***
## wave 59.319 59.319 1 1072 116.8333 < 0.00000000000000022 ***
## Vax_Status:wave 8.990 4.495 2 1072 8.8533 0.0001536 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Run post-hoc follow up tests
## Coefficient covariances computed by hccm()
## Coefficient covariances computed by hccm()
## # A tibble: 2 x 9
## wave Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 December 2020 Vax_Status 2 1072 12.2 0.00000601 * 0.022 0.0000120
## 2 March 2021 Vax_Status 2 1072 3.51 0.03 * 0.007 0.06
## # A tibble: 3 x 9
## Vax_Status Effect DFn DFd F p `p<.05` ges p.adj
## * <fct> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
## 1 0 Doses wave 1 360 11.1 9.43e- 4 * 0.004 2.83e- 3
## 2 1 Dose wave 1 242 44.2 1.94e-10 * 0.023 5.82e-10
## 3 2 Doses wave 1 470 101. 1.04e-21 * 0.038 3.12e-21
| wave | group1 | group2 | n1 | n2 | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|
| December 2020 | 0 Doses | 1 Dose | 361 | 243 | 0.0000137 | 0.0000412 | **** | -0.3538 | small |
| December 2020 | 0 Doses | 2 Doses | 361 | 471 | 0.0000454 | 0.000136 | *** | -0.2773 | small |
| December 2020 | 1 Dose | 2 Doses | 243 | 471 | 0.336 | 1 | ns | 0.0815 | negligible |
| March 2021 | 0 Doses | 1 Dose | 361 | 243 | 0.00992 | 0.0298 | * | -0.2123 | small |
| March 2021 | 0 Doses | 2 Doses | 361 | 471 | 0.476 | 1 | ns | -0.04882 | negligible |
| March 2021 | 1 Dose | 2 Doses | 243 | 471 | 0.0376 | 0.113 | ns | 0.1715 | negligible |
##
## Welch's independent samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 3.075 3.531
## std dev. 1.405 1.162
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -4.344
## degrees of freedom: 577.162
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.662, -0.25]
## estimated effect size (Cohen's d): 0.354
## [1] -0.456
##
## Welch's independent samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 2 Doses
## mean 3.075 3.435
## std dev. 1.405 1.185
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -3.921
## degrees of freedom: 699.969
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.541, -0.18]
## estimated effect size (Cohen's d): 0.277
## [1] -0.36
##
## Welch's independent samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: Vax_Status
##
## Descriptive statistics:
## 0 Doses 1 Dose
## mean 2.889 3.165
## std dev. 1.374 1.215
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: -2.59
## degrees of freedom: 559.26
## p-value: 0.01
##
## Other information:
## two-sided 95% confidence interval: [-0.484, -0.067]
## estimated effect size (Cohen's d): 0.212
## [1] -0.276
| Vax_Status | group1 | group2 | n1 | n2 | statistic | df | p | p.adj | p.adj.signif | effsize | magnitude |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 Doses | December 2020 | March 2021 | 361 | 361 | 3.335 | 360 | 0.000943 | 0.000943 | *** | 0.1755 | negligible |
| 1 Dose | December 2020 | March 2021 | 243 | 243 | 6.65 | 242 | 0.000000000194 | 0.000000000194 | **** | 0.4266 | small |
| 2 Doses | December 2020 | March 2021 | 471 | 471 | 10.06 | 470 | 0.00000000000000000000104 | 0.00000000000000000000104 | **** | 0.4638 | small |
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 714 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 3.075 2.889 0.186
## std dev. 1.405 1.374 1.057
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 3.335
## degrees of freedom: 360
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.076, 0.295]
## estimated effect size (Cohen's d): 0.176
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 832 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 3.531 3.165 0.366
## std dev. 1.162 1.215 0.859
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 6.65
## degrees of freedom: 242
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.258, 0.475]
## estimated effect size (Cohen's d): 0.427
## Warning in pairedSamplesTTest(., formula = OtherWorry_CV19 ~ wave, id =
## "partno"): 604 case(s) removed due to missingness
##
## Paired samples t-test
##
## Outcome variable: OtherWorry_CV19
## Grouping variable: wave
## ID variable: partno
##
## Descriptive statistics:
## December 2020 March 2021 difference
## mean 3.435 2.953 0.482
## std dev. 1.185 1.249 1.039
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: 10.065
## degrees of freedom: 470
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [0.388, 0.576]
## estimated effect size (Cohen's d): 0.464
Plots
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 3.34 1.27 3 3.41 1.48 1 5 4 -0.22 -1.01 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 3.07 1.41 3 3.09 1.48 1 5 4 -0.05 -1.26 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 3.53 1.16 4 3.58 1.48 1 5 4 -0.22 -1.01 0.07
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 3.44 1.18 3 3.49 1.48 1 5 4 -0.23 -0.92 0.05
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1075 2.98 1.29 3 2.97 1.48 1 5 4 0.1 -1.02 0.04
##
## Descriptive statistics by group
## group: 0 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 361 2.89 1.37 3 2.86 1.48 1 5 4 0.12 -1.17 0.07
## ------------------------------------------------------------
## group: 1 Dose
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 243 3.16 1.22 3 3.16 1.48 1 5 4 0.17 -1 0.08
## ------------------------------------------------------------
## group: 2 Doses
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 471 2.95 1.25 3 2.94 1.48 1 5 4 0.11 -0.96 0.06
## Anova Table (Type III tests)
##
## Response: BehavIntRisk_AvgW1
## Sum Sq Df F value Pr(>F)
## (Intercept) 253.86 1 297.5057 < 0.00000000000000022 ***
## Vuln 2.88 1 3.3707 0.066790 .
## age_R 0.75 1 0.8832 0.347639
## CCI_ttl 0.28 1 0.3235 0.569719
## Vaxed 7.97 1 9.3444 0.002322 **
## Residuals 597.31 700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: current.behaviors_7.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 1071.59 1 1879.8649 < 0.00000000000000022 ***
## Vuln 2.02 1 3.5506 0.0599364 .
## age_R 12.40 1 21.7462 0.000003728 ***
## CCI_ttl 0.62 1 1.0826 0.2984648
## Vaxed 7.82 1 13.7206 0.0002288 ***
## Residuals 399.03 700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: worried.self.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 420.10 1 259.6629 < 0.00000000000000022 ***
## Vuln 5.63 1 3.4777 0.062618 .
## age_R 10.44 1 6.4552 0.011277 *
## CCI_ttl 4.67 1 2.8861 0.089790 .
## Vaxed 17.20 1 10.6290 0.001167 **
## Residuals 1132.51 700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: worried.other.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 544.63 1 370.0828 < 0.00000000000000022 ***
## Vuln 4.62 1 3.1387 0.076891 .
## age_R 12.46 1 8.4653 0.003735 **
## CCI_ttl 6.91 1 4.6935 0.030614 *
## Vaxed 23.61 1 16.0402 0.00006864 ***
## Residuals 1030.15 700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: likelihood.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 278.14 1 319.2127 < 0.00000000000000022 ***
## Vuln 0.21 1 0.2369 0.626627
## age_R 8.03 1 9.2163 0.002488 **
## CCI_ttl 7.52 1 8.6331 0.003410 **
## Vaxed 3.79 1 4.3466 0.037446 *
## Residuals 609.06 699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: serioiusly.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 219.50 1 158.9594 < 0.00000000000000022 ***
## Vuln 14.72 1 10.6606 0.001148 **
## age_R 0.25 1 0.1818 0.669984
## CCI_ttl 35.70 1 25.8548 0.0000004734 ***
## Vaxed 11.63 1 8.4225 0.003823 **
## Residuals 963.82 698
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type III tests)
##
## Response: die.y
## Sum Sq Df F value Pr(>F)
## (Intercept) 128.29 1 95.8436 < 0.00000000000000022 ***
## Vuln 4.18 1 3.1227 0.07765 .
## age_R 1.92 1 1.4333 0.23164
## CCI_ttl 33.31 1 24.8877 0.0000007676 ***
## Vaxed 3.95 1 2.9538 0.08612 .
## Residuals 935.65 699
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$Vuln)
## Correlation matrix
## [1] 0.38
## Sample Size
## [1] 706
## Probability values adjusted for multiple tests.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$CCI_ttl)
## Correlation matrix
## [1] 0.16
## Sample Size
## [1] 1075
## Probability values adjusted for multiple tests.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$age_R)
## Correlation matrix
## [1] 0.43
## Sample Size
## [1] 1073
## Probability values adjusted for multiple tests.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vaxed, y = Dmgxs$age_R)
## Correlation matrix
## [1] 0.43
## Sample Size
## [1] 1073
## Probability values adjusted for multiple tests.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
## Call:corr.test(x = Dmgxs$Vuln, y = Dmgxs$CCI_ttl)
## Correlation matrix
## [1] 0.57
## Sample Size
## [1] 706
## Probability values adjusted for multiple tests.
## [1] 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
Figure 1 Respondents reported risk increasing and risk reducing behaviors in Marhc 2021 split by their vaccination status
Figure 2, Respondents reported behaviors, risk perceptions and worry about COVID-19 from surveys conducted in December 2020, and March 2021
## Loading required package: interactions