Numeral 1

library(readxl)
Investiment_Equation <- read_excel("C:/Users/gusta_000/Desktop/Econometria/Guia/Investiment_Equation.xlsx")
ecuacion_inversion <- lm(formula = InvReal~Trend+Inflation+PNBr+Interest, data = Investiment_Equation)
library(stargazer)
stargazer(ecuacion_inversion, title = "Ecuacion de inversion", type = "text")
## 
## Ecuacion de inversion
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                               InvReal          
## -----------------------------------------------
## Trend                        -0.016***         
##                               (0.002)          
##                                                
## Inflation                     0.00002          
##                               (0.001)          
##                                                
## PNBr                         0.665***          
##                               (0.054)          
##                                                
## Interest                      -0.240*          
##                               (0.120)          
##                                                
## Constant                     -0.503***         
##                               (0.054)          
##                                                
## -----------------------------------------------
## Observations                    15             
## R2                             0.973           
## Adjusted R2                    0.962           
## Residual Std. Error       0.007 (df = 10)      
## F Statistic           90.089*** (df = 4; 10)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Numeral 2

model.matrix(ecuacion_inversion) -> matriz_x
n <- nrow(matriz_x)
matriz_M <- diag(n)-matriz_x%*%solve(t(matriz_x)%*%matriz_x)%*%t(matriz_x)
Y <- Investiment_Equation$InvReal
residuos <- matriz_M%*%Y
print(residuos)
##             [,1]
## 1  -0.0100602233
## 2  -0.0009290882
## 3   0.0029656679
## 4   0.0078576839
## 5   0.0028109133
## 6   0.0006259732
## 7   0.0075909286
## 8  -0.0055352778
## 9  -0.0037254127
## 10  0.0006953129
## 11  0.0019904770
## 12 -0.0001288433
## 13 -0.0101976729
## 14  0.0068712384
## 15 -0.0008316770

Numeral 3

confint(object = ecuacion_inversion, parm = "PNBr", level = 0.93)
##         3.5 %   96.5 %
## PNBr 0.554777 0.774317

Interpretacion: En el 93% de las ocasiones que estimemos la ecuacion, se esperaria que el impacto de un millon de dolares del PNB real se traduzca en un minimo de 0.55 millones de dolares en inversion real hasta un maximo de 0.77 millones de dolares.