Objetivo

Determinar probabilidad mediante operaciones de union intersección y complemento

Descripción

Determinar probabilidad mediante operaciones de union intersección y complemento con datos simulados.

En el marco de referencia se presentan tanto ejercicios simulados como ejercicios extraídos a partir de la literatura o bibliografía señalada de probabilidad.

En algunos ejercicios presentados, se determina la probabilidad a partir de los puntos muestrales en relación al espacio muestral, en otros casos ya se da la probalidad de los eventos o conjutos.

Fundamento teórico

Pendiente

Desarrollo

Se presentan algunos ejercicios de probabilidad y se demuestran con las funciones de union(), intersect() setdfiff()

Probabilidades con barajas inglesas

De un mazo de 52 cartas inglesas se simulan probabilidades usando funciones union() e intersect()

Probabilidades y valores iniciales

->La variable S.baraja contiene todo el espacio muestral de la baraja inglesa a partir de los cuatro conjuntos de figuras que sería corazones, tréboles, picas y diamantes.

->La variable N es la cantidad de elementos del espacio muestral, o sea 52 cartas.

->Las variables reyes y ases es para identificar que existen cuatro reyes o cuatro ases en la baraja de 52 cartas y para propósito de responder a la pregunta.

->La variable n.numero contiene la cantidad de barajas de agún número o denominación, por ejemplo: 4 reyes, cuatro ases, cuatro barajas con denominción de diez, cuatro de valor numérico dos, y cuatro de cada tipo de baraja K,K,K,K o A,A,A,A o 10,10,10,10

->La variable n.figuras contiene la cantidad de barajas de aguna figura, es decir hay 13 de corazones rojos, trece de diamantes, trece de picas y trece de tréboles de cada tipo A,K,Q,J,2,3,4,5,6,7,8,9,10.

corazones <- c('K', 'Q', 'J', 10:2,'A')
treboles <- c('K', 'Q', 'J', 10:2,'A')
picas <- c('K', 'Q', 'J', 10:2,'A')
diamantes <- c('K', 'Q', 'J', 10:2,'A')

S.baraja <- c(corazones, treboles, picas, diamantes)
S.baraja
##  [1] "K"  "Q"  "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"  "K"  "Q" 
## [16] "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"  "K"  "Q"  "J"  "10"
## [31] "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"  "K"  "Q"  "J"  "10" "9"  "8" 
## [46] "7"  "6"  "5"  "4"  "3"  "2"  "A"
reyes <- rep("K", 4)
reyes
## [1] "K" "K" "K" "K"
ases <- rep("A", 4)
ases
## [1] "A" "A" "A" "A"
N <- length(S.baraja)
N
## [1] 52
n.numeros <- 4
n.numeros 
## [1] 4
n.figuras <- 13
n.figuras 
## [1] 13
prob.numero <- n.numeros / N

paste ("La probabilidad de que sea un rey es: ", round(prob.numero * 100, 2), "%")
## [1] "La probabilidad de que sea un rey es:  7.69 %"
prob.figura <- n.figuras / N
paste ("La probabilidad de que sea de corazones (rojos) es de: ", round(prob.figura * 100, 2), "%")
## [1] "La probabilidad de que sea de corazones (rojos) es de:  25 %"

Union de corazones o treboles. corazones U treboles

¿Cuál es la probabilidad de que se extraiga una baraja de un mazo de 52 cartas inglesas y que ésta baraja sea de corazones O de tréboles?

Usando la Fórmula si son conjuntos mutuamente excluyentes y si no son mutuamente excluyentes se debe omitir o no considerar tercer término o sea la intersección. P(corazones∩treboles)

\[P(corazones∪treboles)=P(corazones)+P(treboles)−P(corazones∩treboles)\]

Se reutiliza la variable prob.figura que representa el 25 % de que sea de algún tipo de figura. Los conjuntos son excluyentes porque no existen elementos en común entre corazones y tréboles.

P.corazonesUtreboles <- prob.figura + prob.figura
 paste("La probabilid de que sea corazones o tréboles es del: ", round(P.corazonesUtreboles * 100,2), "%")
## [1] "La probabilid de que sea corazones o tréboles es del:  50 %"

Demostración con union()

Se repite dos veces porque en la realidad es que son figuras diferentes y por consecuencia barajas diferentes.

rep(union(corazones, treboles),2)
##  [1] "K"  "Q"  "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"  "K"  "Q" 
## [16] "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"
n <- length(rep(union(corazones, treboles),2)) 
prob <- n/N

paste("La probabilid de que sea corazones o tréboles es del: ", round(prob * 100, 2), "%")
## [1] "La probabilid de que sea corazones o tréboles es del:  50 %"

Intersección de rey y corazones. reyes ∩ corazones

¿Cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación rey “K” o as “A” y que sea de figura de corazones rojos?

Para responder a la pregunta: ¿cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación rey “K” y que sea de figura de corazones rojos? se necesita una intersección.

rep(union(corazones, treboles),2)
##  [1] "K"  "Q"  "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"  "K"  "Q" 
## [16] "J"  "10" "9"  "8"  "7"  "6"  "5"  "4"  "3"  "2"  "A"
n <- length(rep(union(corazones, treboles),2)) 
prob <- n/N

paste("La probabilid de que la carta que se extraiga sea corazones o tréboles es del: ", round(prob * 100, 2), "%")
## [1] "La probabilid de que la carta que se extraiga sea corazones o tréboles es del:  50 %"

¿cuál es la probabilidad de que en un mazo de baraja inglesa, se extraiga una baraja que sea de denominación as “A” y que sea de figura de corazones rojos? se necesita una intersección.

intersect(ases, corazones)
## [1] "A"
prob <- length(intersect(ases, corazones)) / N

paste ("La probabilidad de que se extraiga una carta que sea as 'A' y sea de corazones es del: ", round(prob * 100, 2), "%")
## [1] "La probabilidad de que se extraiga una carta que sea as 'A' y sea de corazones es del:  1.92 %"

Entrevistas

Al final del semestre John se va a graduar en la facultad de ingeniería industrial de una universidad. Después de tener entrevistas en dos empresas en donde quiere trabajar, determina que la probabilidad que tiene de lograr una oferta de empleo en la empresa A con su probabilidad P(A) de 0.8, y que la probabilidad de obtenerla en la empresa B P(B) es 0.6. Si, por otro lado, considera que la probabilidad de recibir ofertas de ambas empresas es P(A∩B) es 0.5,

¿qué probabilidad tiene de obtener al menos una oferta de esas dos empresas?. Para determinar esta probabilidad, se utiliza la fórmula de la regla aditiva de la probabilidad entendiendo que son conjuntos no mutuamente excluyentes (Walpole, Myers, and Myers 2012a).

\[P(A∪B)=P(A)+P(B)−P(A∩B) P(A∪B)=P(A)+P(B)–P(A∩B)=0.8+0.6–0.5=0.9\]

prob.AUB <- 0.8 + 0.6 - 0.5

paste("La probabilidad de recibir ofertas de una u otra empresa es de : ", prob.AUB)
## [1] "La probabilidad de recibir ofertas de una u otra empresa es de :  0.9"

Dados

¿Cuál es la probabilidad de obtener un total de 7 u 11 cuando se lanza un par de dados?, es decir, ¿cuál es la probabilidad de P(siete∪once) (Walpole, Myers, and Myers 2012a).

Sea siete el evento de que resulte la suma en 7 y once el evento de que salga la suma de los dos dados en 11.

¿Cuántos hay que sumen siete en relación al total de eventos?, con ello se puede determinar su probabilidad?

Se puede reutilizar funciones y elementos del caso 7 en el ejercicio de lanzar dos dados. Se reutiliza una función llamada f.contar.dados(S.espacio.muestral, inicial = 7, final = 7) y f.contar.dados(S.espacio.muestral, inicial = 11, final = 11) para determinar cuántas ocasiones hay de cada suma.

Cargar las funciones

Primero hay que cargar las funciones

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/misfunciones.r")

# source("../funciones/misfunciones.r")

Siete U once

Se utiliza N para total de espacio muestra y n.siente para los eventos que la suma sea siete.

Con la llamada de la función f.contar.dados(), se muestran los puntos muestrales ya sumando los dos dados y con ella, también se obtiene la cantidad de ocasiones de que la suma sea siete y más adelante se indentifica para cuando la suma sea once.

S.espacio.muestral <- as.character(c(11:16, 21:26, 31:36, 41:46, 51:56, 61:66))
S.espacio.muestral
##  [1] "11" "12" "13" "14" "15" "16" "21" "22" "23" "24" "25" "26" "31" "32" "33"
## [16] "34" "35" "36" "41" "42" "43" "44" "45" "46" "51" "52" "53" "54" "55" "56"
## [31] "61" "62" "63" "64" "65" "66"
N <- length(S.espacio.muestral)
N
## [1] 36
n.siete <- f.contar.dados(S.espacio.muestral, inicial = 7, final = 7)
##  [1]  2  3  3  4  4  4  5  5  5  5  6  6  6  6  6  7  7  7  7  7  7  8  8  8  8
## [26]  8  9  9  9  9 10 10 10 11 11 12
n.siete
## [1] 6
prob.siete <- n.siete / N
prob.siete
## [1] 0.1666667

Ocasiones para que suma sea once P(once)

¿Cuantos eventos hay que sumen once en relación al total para identificar? con la respuesta se debe encontrar su probabilidad?

n.once <- f.contar.dados(S.espacio.muestral, inicial = 11, final = 11)
##  [1]  2  3  3  4  4  4  5  5  5  5  6  6  6  6  6  7  7  7  7  7  7  8  8  8  8
## [26]  8  9  9  9  9 10 10 10 11 11 12
n.once
## [1] 2
prob.once <- n.once / N
prob.once
## [1] 0.05555556

Ahora bien, para la suma que sea siete de los 36 puntos muestrales ocurre un total de 6 ocasiones y sólo 2 de ellos ocurre para la suma de once.

siete U once

Son conjuntos mutuamente excluyentes porque no hay condiciones de que haya eventos comunes o es siete o es once en el lanzamiento de dos dados simultáneamente.

\[P(siete∪once)=P(siente)+P(once)\]

prob <- prob.siete + prob.once
paste("La probabilidad de la suma sea siete un nces es: ", prob)
## [1] "La probabilidad de la suma sea siete un nces es:  0.222222222222222"

Utilizando función union()

S.espacio.muestral
##  [1] "11" "12" "13" "14" "15" "16" "21" "22" "23" "24" "25" "26" "31" "32" "33"
## [16] "34" "35" "36" "41" "42" "43" "44" "45" "46" "51" "52" "53" "54" "55" "56"
## [31] "61" "62" "63" "64" "65" "66"
sietes <- f.sumar.dados(S.espacio.muestral, 7, 7)
##  [1]  2  3  3  4  4  4  5  5  5  5  6  6  6  6  6  7  7  7  7  7  7  8  8  8  8
## [26]  8  9  9  9  9 10 10 10 11 11 12
onces <- f.sumar.dados(S.espacio.muestral, 11, 11)
##  [1]  2  3  3  4  4  4  5  5  5  5  6  6  6  6  6  7  7  7  7  7  7  8  8  8  8
## [26]  8  9  9  9  9 10 10 10 11 11 12

Se presentan los conjuntos de sietes y onces respectivamente y la unión de los mismos.

sietes
## [1] 16 17 18 19 20 21
onces
## [1] 34 35

Se determina la probabilidad de la unión de los conjuntos sietes y onces y se contesta a la pregunta del ejercicio de

sietesUonces <- union(sietes, onces)
n <- length(sietesUonces)

prob <- n/N

paste("La probabilidad de la suma sea siete un nces es: ", round(prob * 100, 2))
## [1] "La probabilidad de la suma sea siete un nces es:  22.22"

Compra automóvil

Las probabilidades de que un individuo que compra un automóvil nuevo elija uno de color verde, uno blanco, uno rojo o uno azul son 0.09, 0.15, 0.21 y 0.23, respectivamente,¿cuál es la probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores?. (Walpole, Myers, and Myers 2012b).

Sean V, B, R y A los eventos de que un comprador seleccione respectivamente algún color de un automóvil de entre verde, blanco, rojo o azul. Como estos cuatro eventos son mutuamente excluyentes, la probabilidad es:

\[P(V∪B∪R∪A)=P(V)+P(B)+P(R)+P(A)=0.09+0.15+0.21+0.23=0.68.\]

Solo se suman las probabilidades

prob.V <- 0.09
prob.B <- 0.15
prob.R <- 0.21
prob.A <- 0.23
prob <- sum(prob.V, prob.B, prob.R, prob.A)

paste ("La probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores es:", prob)
## [1] "La probabilidad de que un comprador dado adquiera un automóvil nuevo que tenga uno de esos colores es: 0.68"

Fichas de Dominó

En un juego de dominó existen 28 fichas. Cada ficha tiene dos lados con puntos entre cero y seis. Las siguientes tablas identifican cada ficha de dominó y la suma de los puntos de cada una. El cero significa la fichas “gueras” en el contexto de dominó.

Fichas del cero al tres

Fichas con 0 Suma Fichas con 1 Suma Fichas con 2 Suma Fichas con 3 Suma
0-0 0 1-1 2 2-2 4 3-3 6
0-1 1 1-2 3 2-3 5 3-4 7
0-2 2 1-3 4 2-4 6 3-5 8
0-3 3 1-4 5 2-5 7 3-6 9
0-4 4 1-5 6 2-6 8
0-5 5 1-6 7
0-6 6

Fichas del cuatro al seis

Fichas con 4 Suma Fichas con 5 Suma Fichas con 6 Suma
4-4 8 5-5 10 6-6 12
4-5 9 5-6 11
4-6 10


Determine probabilidades al extraer una sola ficha de dominó sumando los puntos de los lados de la ficha.

Para este caso se utilizan funciones previamente realizadas y cargadas que se encuentra en la dirección URL[https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/misfunciones.r")](https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/misfunciones.r")))”

Se presentan las fichas de dominó.

S <- f.fichas.domino()
S
##  [1] "00" "01" "02" "03" "04" "05" "06" "11" "12" "13" "14" "15" "16" "22" "23"
## [16] "24" "25" "26" "33" "34" "35" "36" "44" "45" "46" "55" "56" "66"

Se presenta la tabla de distribución y sus probabilidades

S.distribucion <- f.distribucion.fichas.domino(S, 0,12)
S.distribucion
##    sumas Freq       prob       acum
## 1      0    1 0.03571429 0.03571429
## 2      1    1 0.03571429 0.07142857
## 3      2    2 0.07142857 0.14285714
## 4      3    2 0.07142857 0.21428571
## 5      4    3 0.10714286 0.32142857
## 6      5    3 0.10714286 0.42857143
## 7      6    4 0.14285714 0.57142857
## 8      7    3 0.10714286 0.67857143
## 9      8    3 0.10714286 0.78571429
## 10     9    2 0.07142857 0.85714286
## 11    10    2 0.07142857 0.92857143
## 12    11    1 0.03571429 0.96428571
## 13    12    1 0.03571429 1.00000000

Con lo anterior, ya se puede contestar las siguientes preguntas:

    1. ¿Cuál es la probabilidad de que la suma sea exactamente cuatro?. Son 3 ocasione en relación a 28 que la suma sea cuatro.

      \(3/28=0.1071\)

    1. ¿Cuál es la probabilidad de que la suma sea exactamente seis?

      \(4/28=.1428 o 1 4%\)

    1. ¿Cuál es la probabilidad de que la suma sea exactamente ocho?

      \(3/28=0.1071 o 10.71%\)

    1. ¿Cuál es la probabilidad de que la suma sea exactamente doce?

      \(1/28=.0357 o 3.57%\)

    1. ¿Cuál es la probabilidad de que la suma sea entre cero y seis? es decir la suma de las probabilidad de cero a seis?
    sum1=1/28
    sum2=1/28
    sum3=2/28
    sum4=2/28
    sum5=3/28
    sum6=3/28
    sum7=4/28
    suma=sum(sum1, sum2, sum3, sum4, sum5, sum6, sum7)
    paste("La probabilidad de que la suma sea entre 0 y 6 es de: ", round(suma*100, 2), "% o ", round(suma, 2))
    ## [1] "La probabilidad de que la suma sea entre 0 y 6 es de:  57.14 % o  0.57"
    ## [1] "La probabilidad de que la suma sea entre 0 y 6 es de:  57.14 % o  0.57"
    1. ¿Cuál es la probabilidad que al menos la suma sea nueve?, el complemento a partir de ocho.

      \(.2142 o 21.42%\)

Estudiantes preparatoria

De la literatura de (Walpole, Myers, and Myers 2012a). En un grupo de 100 estudiantes graduados de preparatoria, 54 estudiaron matemáticas, 69 estudiaron historia y 35 cursaron matemáticas e historia. Si se selecciona al azar uno de estos estudiantes, calcule la probabilidad de que

    1. el estudiante haya cursado matemáticas o historia;
    mat=54/100
    his=69/100
    mathis=35/100
    prob=(mat-mathis)+(his-mathis)
    paste("La probabilidad de que un estudiante haya cursado matemáticas o historia es de: ", round(prob*100, 2), "% o ", prob)
    ## [1] "La probabilidad de que un estudiante haya cursado matemáticas o historia es de:  53 % o  0.53"
    1. el estudiante no haya llevado ninguna de estas materias;
    prob=(mat+his-mathis)-1
    paste("La probabilidad de que el esutidante no haya cursado matematicas ni historia es de: ", round(prob*100,2), "% o ", prob)
    ## [1] "La probabilidad de que el esutidante no haya cursado matematicas ni historia es de:  -12 % o  -0.12"
    1. el estudiante haya cursado historia pero no matemáticas.
    prob=his-mathis
    paste("La probabilidad de que el estudiante haya cursado historia pero no matemáticas es de: ", round(prob*100, 2), "% o ", prob)
    ## [1] "La probabilidad de que el estudiante haya cursado historia pero no matemáticas es de:  34 % o  0.34"

Obreros

A los obreros de las fábricas se les motiva constantemente a practicar la tolerancia cero para prevenir accidentes en el lugar de trabajo. Los accidentes pueden ocurrir porque el ambiente o las condiciones laborales son inseguros.

Por otro lado, los accidentes pueden ocurrir por negligencia (condicione sinseguras) o fallas humanas.

También el horario de trabajo de 7:00 a.m. a 3:00 p.m. (turno matutino), de 3:00 p.m. a 11:00 p.m. (turno vespertino) y de 11:00 p.m. a 7:00 a.m. (turno nocturno) podría ser otro factor.

Se tienen los porcentajes (probabilidades) de los accidentes por la combinación de condiciones son los que siguen:

Turno Condiciones inseguras Fallas humanas
Matutino 0.05 0.32
Vespertino 0.06 0.25
Nocturno 0.02 0.30
  • ¿Cuál es la probabilidad de que el accidente haya ocurrido en el turno nocturno?

    La probablilidad de que ocurra un accidente durante el turno nocturno es del 32%

    1. ¿Cuál es la probabilidad de que el accidente haya ocurrido debido a una falla humana?

      Existe un 87% de posibilidades de qu el accidene haya ocurrido debido a una falla humana

    1. ¿Cuál es la probabilidad de que el accidente haya ocurrido debido a las condiciones inseguras?

      Exite un 13% de probabilidades de que el accidente haya ocurrido por condiciones inseguras

  • 4. ¿Cuál es la probabilidad de que el accidente haya ocurrido durante los turnos vespertino o nocturno?

    Es 63% porbable de que el accidente ocurra durante el turno vespertirno o nocturno

Interpretación

Se solicita una descripción de al menos 200 palabras de los ejercicios del caso .

A lo largo de este caso aprendi cuales son los conceptos clave y que significan, como el significado de leccion, union, interseccion y complemento y su contraparte de como seria su interpretacion con el lenguaje desarrollando varios ejemplos a lo largo de este caso, para poner en practica la teoria señalda y lograr un aprendizaje real.

La union es aquello a lo que se refiere a la union de eventos, como se puede deducir por el simple nombre, es cuando dos eventos distintos se unen para crear uno nuevo, como en el ejercicio de los estudiantes, que se calculaban cuales son los que habian llevado matematicas e/o historia y se obtienen a los alumnos que hayan estudiado ambas

La interseccion es aquello a lo quese refiere a los datos que hayan sucedido en dos partes diferentes, como por ejemplo en el mismo caso de los estudiantes, de los que estudiaron tanto matematicas como historia, estando en ambas partes los que estudiaron matematicas junto con los que estudiaron matematicas e historia.

El complemento es aquello que representa una distitnos datos agrupados que no se repiten, como por ejemplo, poner en el dato de los estudiantes que estudiaron matematicas e histortia, restarles los que solo estudiaron una materia, ya sea la de matematicas o la historia, asi no se repetirian dentro del mismo conjunto

Referencias bibliográficas

Lind, Douglas, William Marchal, and Samuel Wathen. 2015. Estadística Aplicada a Los Negocios y La Economía. Decimo Sexta. México, D.F.: McGraw-Hill.

Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012b. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.

———. 2012a. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.