## [1] "average number of times faces rated"
## [1] 27.84722
## [1] "SD for faces rated"
## [1] 10.60236
## [1] "range"
## [1] 10 53
hist(dwide$trust)
female face trust ratings
male face trust ratings
male face box plots
t.test(dmeans$mean ~ dmeans$gender)
##
## Welch Two Sample t-test
##
## data: dmeans$mean by dmeans$gender
## t = -17.095, df = 807.15, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.8118882 -0.6446438
## sample estimates:
## mean in group F mean in group M
## 2.856825 3.585091
male face box plots
female face box plots
df$faceLeftTrusted_1 <- ifelse(df$faceLeft == df$trustedFace, 1, 0)
df$faceLeftCued_1 <- ifelse(df$faceLeft == df$cuedFace, 1, 0)
df$faceLeftCued_.5 <- ifelse(df$faceLeft == df$cuedFace, .5, -.5)
df$faceRightTrusted_1 <- ifelse(df$faceRight == df$trustedFace, 1, 0)
df$faceRightCued_1 <- ifelse(df$faceRight == df$cuedFace, 1, 0)
df$faceRightCued_.5 <- ifelse(df$faceRight == df$cuedFace, .5, -.5)
df$trustAvg <- ((df$trustL + df$trustR)/2)
df$trustAvg.c <- df$trustAvg - mean(df$trustAvg, na.rm = T)
df$trustDiff.LR <- df$trustL - df$trustR
df$trustDiff.RL <- df$trustR - df$trustL
df$trustDiff.LR.c <- df$trustDiff.LR - mean(df$trustDiff.LR, na.rm = T)
df$trustDiff.RL.c <- df$trustDiff.RL - mean(df$trustDiff.LR, na.rm = T)
describe(df$trustDiff.LR, na.rm = T)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 4789 0 0.63 0.02 0 0.64 -2.04 2.09 4.13 -0.01 -0.28 0.01
describe(df$trustAvg, na.rm = T)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 4789 3.1 0.42 3.09 3.09 0.41 2.17 4.49 2.32 0.37 0.06 0.01
m3 <- glmer(faceLeftTrusted_1 ~ faceLeftCued_.5 +
(trustAvg.c + trustDiff.LR.c | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ faceLeftCued_.5 + (trustAvg.c + trustDiff.LR.c |
## participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6561.6 6613.4 -3272.8 6545.6 4781
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7631 -0.9693 -0.4491 0.9575 1.9096
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participant (Intercept) 0.004997 0.07069
## trustAvg.c 0.003074 0.05544 -1.00
## trustDiff.LR.c 0.666914 0.81665 1.00 -1.00
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.03134 0.03985 0.786 0.43161
## faceLeftCued_.5 0.17428 0.06014 2.898 0.00376 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## facLftCd_.5 0.012
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.03 | 0.95 – 1.12 | 0.432 |
| faceLeftCued_.5 | 1.19 | 1.06 – 1.34 | 0.004 |
| Random Effects | |||
| σ2 | 3.29 | ||
| τ00 participant | 0.00 | ||
| τ11 participant.trustAvg.c | 0.00 | ||
| τ11 participant.trustDiff.LR.c | 0.67 | ||
| ρ01 | -1.00 | ||
| 1.00 | |||
| N participant | 221 | ||
| Observations | 4789 | ||
| Marginal R2 / Conditional R2 | 0.002 / NA | ||
m3 <- glmer(faceLeftTrusted_1 ~ faceLeftCued_.5 +
(trustAvg.c | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ faceLeftCued_.5 + (trustAvg.c | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6641.7 6674.0 -3315.8 6631.7 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.0811 -0.9682 -0.9307 0.9733 1.0700
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participant (Intercept) 0.001442 0.03798
## trustAvg.c 0.027407 0.16555 -1.00
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004745 0.029089 -0.163 0.87044
## faceLeftCued_.5 0.155124 0.057949 2.677 0.00743 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## facLftCd_.5 0.002
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.870 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.31 | 0.007 |
| Random Effects | |||
| σ2 | 3.29 | ||
| τ00 participant | 0.00 | ||
| τ11 participant.trustAvg.c | 0.03 | ||
| ρ01 participant | -1.00 | ||
| ICC | 0.00 | ||
| N participant | 221 | ||
| Observations | 4789 | ||
| Marginal R2 / Conditional R2 | 0.002 / 0.002 | ||
m3 <- glmer(faceLeftTrusted_1 ~ faceLeftCued_.5 +
(trustDiff.LR.c | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ faceLeftCued_.5 + (trustDiff.LR.c | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6555.9 6588.2 -3272.9 6545.9 4784
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7924 -0.9690 -0.4529 0.9586 1.8737
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## participant (Intercept) 0.004758 0.06898
## trustDiff.LR.c 0.669568 0.81827 1.00
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.03052 0.04001 0.763 0.44563
## faceLeftCued_.5 0.17419 0.06014 2.896 0.00378 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## facLftCd_.5 0.012
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.03 | 0.95 – 1.12 | 0.446 |
| faceLeftCued_.5 | 1.19 | 1.06 – 1.34 | 0.004 |
| Random Effects | |||
| σ2 | 3.29 | ||
| τ00 participant | 0.00 | ||
| τ11 participant.trustDiff.LR.c | 0.67 | ||
| ρ01 participant | 1.00 | ||
| ICC | 0.00 | ||
| N participant | 221 | ||
| Observations | 4789 | ||
| Marginal R2 / Conditional R2 | 0.002 / 0.004 | ||
m3 <- glmer(faceLeftTrusted_1 ~ faceLeftCued_.5 +
(1 | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ faceLeftCued_.5 + (1 | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6637.8 6657.2 -3315.9 6631.8 4786
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.0371 -0.9600 -0.9600 0.9642 1.0417
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 2.337e-14 1.529e-07
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004358 0.028922 -0.151 0.88022
## faceLeftCued_.5 0.154571 0.057842 2.672 0.00753 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## facLftCd_.5 0.003
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.880 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.31 | 0.008 |
| Random Effects | |||
| σ2 | 3.29 | ||
| τ00 participant | 0.00 | ||
| N participant | 221 | ||
| Observations | 4789 | ||
| Marginal R2 / Conditional R2 | 0.002 / NA | ||
m3 <- glmer(faceLeftTrusted_1 ~ trustDiff.LR.c * trustAvg.c * faceLeftCued_.5 +
(1 | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ trustDiff.LR.c * trustAvg.c * faceLeftCued_.5 +
## (1 | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6405.1 6463.4 -3193.6 6387.1 4780
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0714 -0.9431 -0.5083 0.9463 1.9183
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 4e-14 2e-07
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004909 0.029680 -0.165 0.86864
## trustDiff.LR.c -0.744362 0.049612 -15.004 < 2e-16
## trustAvg.c -0.081766 0.071263 -1.147 0.25122
## faceLeftCued_.5 0.156426 0.059360 2.635 0.00841
## trustDiff.LR.c:trustAvg.c 0.379402 0.118286 3.207 0.00134
## trustDiff.LR.c:faceLeftCued_.5 0.005280 0.099224 0.053 0.95757
## trustAvg.c:faceLeftCued_.5 0.175964 0.142529 1.235 0.21699
## trustDiff.LR.c:trustAvg.c:faceLeftCued_.5 0.263360 0.236561 1.113 0.26559
##
## (Intercept)
## trustDiff.LR.c ***
## trustAvg.c
## faceLeftCued_.5 **
## trustDiff.LR.c:trustAvg.c **
## trustDiff.LR.c:faceLeftCued_.5
## trustAvg.c:faceLeftCued_.5
## trustDiff.LR.c:trustAvg.c:faceLeftCued_.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trD.LR. trstA. fLC_.5 trD.LR.:A. tD.LR.:L tA.:LC
## trstDff.LR. 0.001
## trustAvg.c -0.007 0.004
## facLftCd_.5 0.002 -0.011 0.004
## trsD.LR.:A. 0.002 -0.196 -0.011 -0.013
## tD.LR.:LC_. -0.011 0.008 -0.002 0.001 -0.016
## trsA.:LC_.5 0.004 -0.002 0.010 -0.007 -0.068 0.004
## tD.LR.:A.:L -0.013 -0.016 -0.068 0.002 -0.030 -0.196 -0.010
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
#tab_model(m3)
m3 <- glmer(faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c * faceLeftCued_.5 +
(1 | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c * faceLeftCued_.5 +
## (1 | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6410.9 6449.7 -3199.4 6398.9 4783
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1595 -0.9444 -0.5137 0.9449 1.9206
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 4e-14 2e-07
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004348 0.029639 -0.147 0.88337
## trustDiff.LR.c -0.715560 0.048729 -14.684 < 2e-16 ***
## trustAvg.c -0.073333 0.071373 -1.027 0.30421
## faceLeftCued_.5 0.159232 0.059285 2.686 0.00723 **
## trustAvg.c:faceLeftCued_.5 0.209721 0.142772 1.469 0.14185
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) tD.LR. trstA. fLC_.5
## trstDff.LR. 0.001
## trustAvg.c 0.010 0.001
## facLftCd_.5 0.002 -0.014 0.010
## trsA.:LC_.5 0.010 -0.018 0.012 0.010
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
#tab_model(m3)
m3 <- glmer(faceLeftTrusted_1 ~ trustAvg.c + trustDiff.LR.c * faceLeftCued_.5 +
(1 | participant), family = binomial, data = df)
## boundary (singular) fit: see ?isSingular
summary(m3)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: faceLeftTrusted_1 ~ trustAvg.c + trustDiff.LR.c * faceLeftCued_.5 +
## (1 | participant)
## Data: df
##
## AIC BIC logLik deviance df.resid
## 6413.0 6451.8 -3200.5 6401.0 4783
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1099 -0.9443 -0.5120 0.9477 1.9115
##
## Random effects:
## Groups Name Variance Std.Dev.
## participant (Intercept) 0 0
## Number of obs: 4789, groups: participant, 221
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.00491 0.02963 -0.166 0.8684
## trustAvg.c -0.07487 0.07134 -1.049 0.2940
## trustDiff.LR.c -0.71450 0.04871 -14.669 <2e-16 ***
## faceLeftCued_.5 0.15847 0.05927 2.674 0.0075 **
## trustDiff.LR.c:faceLeftCued_.5 0.02937 0.09742 0.301 0.7631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) trstA. trD.LR. fLC_.5
## trustAvg.c 0.008
## trstDff.LR. 0.002 0.002
## facLftCd_.5 0.001 0.010 -0.013
## tD.LR.:LC_. -0.013 -0.010 0.001 0.002
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
#tab_model(m3)
m3 <- glm(faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c + faceLeftCued_.5, family = binomial, data = df)
summary(m3)
##
## Call:
## glm(formula = faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c +
## faceLeftCued_.5, family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8551 -1.1281 -0.6882 1.1331 1.7428
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004795 0.029631 -0.162 0.87144
## trustDiff.LR.c -0.714560 0.048710 -14.670 < 2e-16 ***
## trustAvg.c -0.074663 0.071338 -1.047 0.29528
## faceLeftCued_.5 0.158439 0.059268 2.673 0.00751 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6638.9 on 4788 degrees of freedom
## Residual deviance: 6401.1 on 4785 degrees of freedom
## AIC: 6409.1
##
## Number of Fisher Scoring iterations: 4
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.871 |
| trustDiff.LR.c | 0.49 | 0.44 – 0.54 | <0.001 |
| trustAvg.c | 0.93 | 0.81 – 1.07 | 0.295 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.32 | 0.008 |
| Observations | 4789 | ||
| R2 Tjur | 0.049 | ||
Pdiff <- exp(-0.714560)/ (1 + exp(-0.714560))
Pdiff
## [1] 0.328592
Pcued <- exp(0.158439)/(1+exp(0.158439))
Pcued
## [1] 0.5395271
m3 <- glm(faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c * faceLeftCued_.5, family = binomial, data = df)
summary(m3)
##
## Call:
## glm(formula = faceLeftTrusted_1 ~ trustDiff.LR.c + trustAvg.c *
## faceLeftCued_.5, family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8623 -1.1292 -0.6844 1.1297 1.7579
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004348 0.029639 -0.147 0.88337
## trustDiff.LR.c -0.715560 0.048729 -14.684 < 2e-16 ***
## trustAvg.c -0.073333 0.071373 -1.027 0.30421
## faceLeftCued_.5 0.159232 0.059285 2.686 0.00723 **
## trustAvg.c:faceLeftCued_.5 0.209721 0.142770 1.469 0.14185
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6638.9 on 4788 degrees of freedom
## Residual deviance: 6398.9 on 4784 degrees of freedom
## AIC: 6408.9
##
## Number of Fisher Scoring iterations: 4
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.06 | 0.883 |
| trustDiff.LR.c | 0.49 | 0.44 – 0.54 | <0.001 |
| trustAvg.c | 0.93 | 0.81 – 1.07 | 0.304 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.32 | 0.007 |
|
trustAvg.c * faceLeftCued_.5 |
1.23 | 0.93 – 1.63 | 0.142 |
| Observations | 4789 | ||
| R2 Tjur | 0.049 | ||
Pdiff <- exp(-0.715560)/ (1 + exp(-0.715560))
Pdiff
## [1] 0.3283714
Pcued <- exp(0.159232)/ (1 + exp(0.159232))
Pcued
## [1] 0.5397241
m3 <- glm(faceLeftTrusted_1 ~ trustAvg.c + trustDiff.LR.c * faceLeftCued_.5, family = binomial, data = df)
summary(m3)
##
## Call:
## glm(formula = faceLeftTrusted_1 ~ trustAvg.c + trustDiff.LR.c *
## faceLeftCued_.5, family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8417 -1.1291 -0.6824 1.1322 1.7537
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.00491 0.02963 -0.166 0.8684
## trustAvg.c -0.07487 0.07134 -1.049 0.2940
## trustDiff.LR.c -0.71450 0.04871 -14.669 <2e-16 ***
## faceLeftCued_.5 0.15847 0.05927 2.674 0.0075 **
## trustDiff.LR.c:faceLeftCued_.5 0.02937 0.09742 0.301 0.7631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6638.9 on 4788 degrees of freedom
## Residual deviance: 6401.0 on 4784 degrees of freedom
## AIC: 6411
##
## Number of Fisher Scoring iterations: 4
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.868 |
| trustAvg.c | 0.93 | 0.81 – 1.07 | 0.294 |
| trustDiff.LR.c | 0.49 | 0.44 – 0.54 | <0.001 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.32 | 0.008 |
|
trustDiff.LR.c * faceLeftCued_.5 |
1.03 | 0.85 – 1.25 | 0.763 |
| Observations | 4789 | ||
| R2 Tjur | 0.049 | ||
Pdiff <- exp(-0.71450)/ (1 + exp(-0.71450 ))
Pdiff
## [1] 0.3286053
Pcued <- exp(0.15847)/ (1 + exp(0.15847))
Pcued
## [1] 0.5395348
m3 <- glm(faceLeftTrusted_1 ~ trustDiff.LR.c * trustAvg.c + faceLeftCued_.5, family = binomial, data = df)
summary(m3)
##
## Call:
## glm(formula = faceLeftTrusted_1 ~ trustDiff.LR.c * trustAvg.c +
## faceLeftCued_.5, family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.8364 -1.1245 -0.6941 1.1344 1.7446
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004732 0.029666 -0.160 0.873273
## trustDiff.LR.c -0.743967 0.049596 -15.001 < 2e-16 ***
## trustAvg.c -0.077198 0.071022 -1.087 0.277054
## faceLeftCued_.5 0.157019 0.059339 2.646 0.008141 **
## trustDiff.LR.c:trustAvg.c 0.392923 0.117737 3.337 0.000846 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6638.9 on 4788 degrees of freedom
## Residual deviance: 6390.0 on 4784 degrees of freedom
## AIC: 6400
##
## Number of Fisher Scoring iterations: 4
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.873 |
| trustDiff.LR.c | 0.48 | 0.43 – 0.52 | <0.001 |
| trustAvg.c | 0.93 | 0.81 – 1.06 | 0.277 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.31 | 0.008 |
|
trustDiff.LR.c * trustAvg.c |
1.48 | 1.18 – 1.87 | 0.001 |
| Observations | 4789 | ||
| R2 Tjur | 0.051 | ||
Pcued <- exp(0.157019)/ (1 + exp(0.157019))
Pcued
## [1] 0.5391743
Pdiff <- exp(-0.743967)/ (1 + exp(-0.743967))
Pdiff
## [1] 0.3221373
Pint <- exp(0.392923)/ (1 + exp(0.392923))
Pint
## [1] 0.5969862
m3 <- glm(faceLeftTrusted_1 ~ trustAvg.c * trustDiff.LR.c * faceLeftCued_.5, family = binomial, data = df)
summary(m3)
##
## Call:
## glm(formula = faceLeftTrusted_1 ~ trustAvg.c * trustDiff.LR.c *
## faceLeftCued_.5, family = binomial, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.825 -1.128 -0.678 1.131 1.757
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.004909 0.029680 -0.165 0.86864
## trustAvg.c -0.081766 0.071263 -1.147 0.25122
## trustDiff.LR.c -0.744362 0.049612 -15.004 < 2e-16
## faceLeftCued_.5 0.156426 0.059360 2.635 0.00841
## trustAvg.c:trustDiff.LR.c 0.379402 0.118286 3.207 0.00134
## trustAvg.c:faceLeftCued_.5 0.175964 0.142527 1.235 0.21698
## trustDiff.LR.c:faceLeftCued_.5 0.005280 0.099224 0.053 0.95757
## trustAvg.c:trustDiff.LR.c:faceLeftCued_.5 0.263360 0.236573 1.113 0.26561
##
## (Intercept)
## trustAvg.c
## trustDiff.LR.c ***
## faceLeftCued_.5 **
## trustAvg.c:trustDiff.LR.c **
## trustAvg.c:faceLeftCued_.5
## trustDiff.LR.c:faceLeftCued_.5
## trustAvg.c:trustDiff.LR.c:faceLeftCued_.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 6638.9 on 4788 degrees of freedom
## Residual deviance: 6387.1 on 4781 degrees of freedom
## AIC: 6403.1
##
## Number of Fisher Scoring iterations: 4
tab_model(m3)
| faceLeftTrusted_1 | |||
|---|---|---|---|
| Predictors | Odds Ratios | CI | p |
| (Intercept) | 1.00 | 0.94 – 1.05 | 0.869 |
| trustAvg.c | 0.92 | 0.80 – 1.06 | 0.251 |
| trustDiff.LR.c | 0.48 | 0.43 – 0.52 | <0.001 |
| faceLeftCued_.5 | 1.17 | 1.04 – 1.31 | 0.008 |
|
trustAvg.c * trustDiff.LR.c |
1.46 | 1.16 – 1.84 | 0.001 |
|
trustAvg.c * faceLeftCued_.5 |
1.19 | 0.90 – 1.58 | 0.217 |
|
trustDiff.LR.c * faceLeftCued_.5 |
1.01 | 0.83 – 1.22 | 0.958 |
|
(trustAvg.c trustDiff.LR.c) faceLeftCued_.5 |
1.30 | 0.82 – 2.07 | 0.266 |
| Observations | 4789 | ||
| R2 Tjur | 0.051 | ||
Pdiff <- exp(-0.744362)/ (1 + exp(-0.744362))
Pdiff
## [1] 0.322051
Pcued <- exp(0.156426)/ (1 + exp(0.156426))
Pcued
## [1] 0.539027
Pint <- exp(0.379402)/ (1 + exp(0.379402))
Pint
## [1] 0.5937289