普通に読み込むと1行目の購買数に影響を受けてしまう
library(readr)
groceries <- read_csv("groceries.csv", col_names = F)
##
## ─ Column specification ────────────────────────────
## cols(
## X1 = col_character(),
## X2 = col_character(),
## X3 = col_character(),
## X4 = col_character()
## )
## Warning: 8830 parsing failures.
## row col expected actual file
## 2 -- 4 columns 3 columns 'groceries.csv'
## 3 -- 4 columns 1 columns 'groceries.csv'
## 6 -- 4 columns 5 columns 'groceries.csv'
## 7 -- 4 columns 1 columns 'groceries.csv'
## 8 -- 4 columns 5 columns 'groceries.csv'
## ... ... ......... ......... ...............
## See problems(...) for more details.
head(groceries)
## # A tibble: 6 x 4
## X1 X2 X3 X4
## <chr> <chr> <chr> <chr>
## 1 citrus fruit semi-finished bread margarine ready soups
## 2 tropical fruit yogurt coffee <NA>
## 3 whole milk <NA> <NA> <NA>
## 4 pip fruit yogurt cream cheese meat spreads
## 5 other vegetables whole milk condensed milk long life bakery product
## 6 whole milk butter yogurt rice
スパースデータとして読み込む
# データの前処理
library(arules)
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
## アイテムの区切りを指定する
groceries <- arules::read.transactions("groceries.csv", sep = ",")
summary(groceries)
## transactions as itemMatrix in sparse format with
## 9835 rows (elements/itemsets/transactions) and
## 169 columns (items) and a density of 0.02609146
##
## most frequent items:
## whole milk other vegetables rolls/buns soda
## 2513 1903 1809 1715
## yogurt (Other)
## 1372 34055
##
## element (itemset/transaction) length distribution:
## sizes
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46
## 17 18 19 20 21 22 23 24 26 27 28 29 32
## 29 14 14 9 11 4 6 1 1 1 1 3 1
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 3.000 4.409 6.000 32.000
##
## includes extended item information - examples:
## labels
## 1 abrasive cleaner
## 2 artif. sweetener
## 3 baby cosmetics
## スパース行列の内容を確認する
arules::inspect(groceries[1:5])
## items
## [1] {citrus fruit,
## margarine,
## ready soups,
## semi-finished bread}
## [2] {coffee,
## tropical fruit,
## yogurt}
## [3] {whole milk}
## [4] {cream cheese,
## meat spreads,
## pip fruit,
## yogurt}
## [5] {condensed milk,
## long life bakery product,
## other vegetables,
## whole milk}
トランザクションデータのアイテムはアルファベット順に並んでおり, それぞれが含まれている割合(指示度)は,
itemFrequency(groceries[,1:10])
## abrasive cleaner artif. sweetener baby cosmetics baby food
## 0.0035587189 0.0032536858 0.0006100661 0.0001016777
## bags baking powder bathroom cleaner beef
## 0.0004067107 0.0176919166 0.0027452974 0.0524656838
## berries beverages
## 0.0332486019 0.0260294865
可視化してみる
## 10%以上含まれているもの
itemFrequencyPlot(groceries, support = 0.1)
## 上位20品目
itemFrequencyPlot(groceries, topN = 20)
スパース行列をプロットしてみる
## 10行169列
arules::image(groceries[1:10])
ランダムサンプリングして可視化してみる
arules::image(sample(groceries, 100))
# モデルを訓練する
apriori(groceries)
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.8 0.1 1 none FALSE TRUE 5 0.1 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 983
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [8 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [0 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
## set of 0 rules
しかしデフォルトのsupport=0.1とconfidence=0.8では何もルールは見つからない
groceryrules <- apriori(groceries, parameter = list(
support = 0.006, confidence = 0.25, minlen = 2)
)
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.25 0.1 1 none FALSE TRUE 5 0.006 2
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 59
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.01s].
## sorting and recoding items ... [109 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [463 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
groceryrules
## set of 463 rules
アイテムの数が2, 3, 4個のルールが何個あったか確認する
# モデルの性能を評価する
summary(groceryrules)
## set of 463 rules
##
## rule length distribution (lhs + rhs):sizes
## 2 3 4
## 150 297 16
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.000 2.000 3.000 2.711 3.000 4.000
##
## summary of quality measures:
## support confidence coverage lift
## Min. :0.006101 Min. :0.2500 Min. :0.009964 Min. :0.9932
## 1st Qu.:0.007117 1st Qu.:0.2971 1st Qu.:0.018709 1st Qu.:1.6229
## Median :0.008744 Median :0.3554 Median :0.024809 Median :1.9332
## Mean :0.011539 Mean :0.3786 Mean :0.032608 Mean :2.0351
## 3rd Qu.:0.012303 3rd Qu.:0.4495 3rd Qu.:0.035892 3rd Qu.:2.3565
## Max. :0.074835 Max. :0.6600 Max. :0.255516 Max. :3.9565
## count
## Min. : 60.0
## 1st Qu.: 70.0
## Median : 86.0
## Mean :113.5
## 3rd Qu.:121.0
## Max. :736.0
##
## mining info:
## data ntransactions support confidence
## groceries 9835 0.006 0.25
## 最初の10件のルール
inspect(groceryrules[1:10])
## lhs rhs support confidence
## [1] {potted plants} => {whole milk} 0.006914082 0.4000000
## [2] {pasta} => {whole milk} 0.006100661 0.4054054
## [3] {herbs} => {root vegetables} 0.007015760 0.4312500
## [4] {herbs} => {other vegetables} 0.007727504 0.4750000
## [5] {herbs} => {whole milk} 0.007727504 0.4750000
## [6] {processed cheese} => {whole milk} 0.007015760 0.4233129
## [7] {semi-finished bread} => {whole milk} 0.007117438 0.4022989
## [8] {beverages} => {whole milk} 0.006812405 0.2617188
## [9] {detergent} => {other vegetables} 0.006405694 0.3333333
## [10] {detergent} => {whole milk} 0.008947636 0.4656085
## coverage lift count
## [1] 0.01728521 1.565460 68
## [2] 0.01504830 1.586614 60
## [3] 0.01626843 3.956477 69
## [4] 0.01626843 2.454874 76
## [5] 0.01626843 1.858983 76
## [6] 0.01657346 1.656698 69
## [7] 0.01769192 1.574457 70
## [8] 0.02602949 1.024275 67
## [9] 0.01921708 1.722719 63
## [10] 0.01921708 1.822228 88
1つめはpotted plansを購入した人はwhole milkも購入する. このルールはトランザクションの0.7%をカバーしており, 確信度40%よりpotted plansを購入したときの4割にあたる. 全体の25.6%がwhole milkを購入しているのでリフト値は0.4/0.256=1.56となる
ただし, 鉢植えを買った人がミルクを買う論理的な理由を見出せるだろうか
Actionable : 明確かつ有益なルール
Trivial : 自明なルール(紙おむつと粉ミルク)
Inexplicable : アイテム間の結びつきが明白ではなく, どう利用したらいいかわからない
## 可視化してみる
library(arulesViz)
plot(groceryrules)
## To reduce overplotting, jitter is added! Use jitter = 0 to prevent jitter.
## バブルチャート
plot(groceryrules,method="grouped",control=list(k=10))
## アソシエーションルール
lifts <- head(sort(groceryrules, by="lift"), 10)
plot(lifts, method="graph",
layoutParams = list(type="items"), engine = "igraph")
# モデルの性能を向上させる
## データの並べ替え(lift順)
inspect(sort(groceryrules, by = "lift")[1:5])
## lhs rhs support confidence coverage lift count
## [1] {herbs} => {root vegetables} 0.007015760 0.4312500 0.01626843 3.956477 69
## [2] {berries} => {whipped/sour cream} 0.009049314 0.2721713 0.03324860 3.796886 89
## [3] {other vegetables,
## tropical fruit,
## whole milk} => {root vegetables} 0.007015760 0.4107143 0.01708185 3.768074 69
## [4] {beef,
## other vegetables} => {root vegetables} 0.007930859 0.4020619 0.01972547 3.688692 78
## [5] {other vegetables,
## tropical fruit} => {pip fruit} 0.009456024 0.2634561 0.03589222 3.482649 93
相関ルールのサブセットを取得する
berryrules <- subset(groceryrules, items %in% "berries")
inspect(berryrules)
## lhs rhs support confidence coverage lift
## [1] {berries} => {whipped/sour cream} 0.009049314 0.2721713 0.0332486 3.796886
## [2] {berries} => {yogurt} 0.010574479 0.3180428 0.0332486 2.279848
## [3] {berries} => {other vegetables} 0.010269446 0.3088685 0.0332486 1.596280
## [4] {berries} => {whole milk} 0.011794611 0.3547401 0.0332486 1.388328
## count
## [1] 89
## [2] 104
## [3] 101
## [4] 116
アウトプット
## csvファイル
write(groceryrules, file = "groceryrules.csv", sep = ",",
quote = TRUE, row.names = FALSE)
## データフレーム
groceryrules_df <- as(groceryrules, "data.frame")