- Introduction to Mortality Disparities in the US
- The role of residential segregation
- Research Questions
- Data
- Methods - The INLA approach to Bayesian analysis
- Results & visualizations
- Wrap up
April 24, 2015
Age, sex and race (white & black) specific rates for all US counties
Analytic n = 315,808 nonzero rates
Bexar County, TX 1980 - 1982
## cofips year race_sex mortality ## 48029 1980 White Female 7.9 ## 48029 1980 Black Female 10.0 ## 48029 1980 White Male 13.5 ## 48029 1980 Black Male 17.2 ## 48029 1981 White Female 8.2 ## 48029 1981 Black Female 9.8 ## 48029 1981 White Male 12.9 ## 48029 1981 Black Male 15.4 ## 48029 1982 White Female 7.6 ## 48029 1982 Black Female 10.1 ## 48029 1982 White Male 12.9 ## 48029 1982 Black Male 16.7
Bexar County, TX Temporal Trends 1980 - 2010
Spatial Distribution of White & Black Mortality in TX: 1980-2010 Average
\(\tilde{\pi}(x_i | y) = \int \tilde{\pi}(x_i |\theta, y)\tilde{\pi}(\theta| y) d\theta\)
\(\tilde{\pi}(\theta_j | y) = \int \tilde{\pi}(\theta| y) d\theta_{-j}\)
where each \(\tilde{\pi}(. |.)\) is an approximated conditional density of its parameters
Their approach relies on numerical integration of the posterior of the latent field, as opposed to a pure Gaussian approximation of it
library(INLA)
Unstructured Model
mod1<-std_rate~male+black+lths+gini+pershigdis+black*pershigdis +f(year,model="iid") +f(conum, model="iid")
fit1<-inla(mod1, data=sdadata2, family="gaussian", num.threads = 2)
Spatially structured BYM model
mod2<-std_rate~male+black+lths+gini+pershigdis+black*pershigdis +f(conum, model="bym", graph="usagraph.gra") +f(year, model="iid")
fit2<-inla(mod2, data=sdadata2, family="gaussian", num.threads = 2)
| beta | 2.5% BCI | 97.5% BCI | |
|---|---|---|---|
| (Intercept) | -0.586 | -0.623 | -0.549 |
| male | 0.593 | 0.586 | 0.599 |
| black | 0.589 | 0.582 | 0.595 |
| lths | 0.006 | 0.006 | 0.006 |
| gini | -0.003 | -0.004 | -0.002 |
| pershigdis | 0.052 | 0.030 | 0.074 |
| black:pershigdis | -0.176 | -0.209 | -0.143 |
| beta | 2.5% BCI | 97.5% BCI | |
|---|---|---|---|
| Gaussian Variance | 2.0977 | 2.1150 | 2.0805 |
| County_IID Variance | 0.0004 | 0.0047 | 0.0001 |
| County_Spatial Variance | 0.0003 | 0.0023 | 0.0001 |
| Segregation_Slope Variance | 0.0000 | 0.0004 | 0.0000 |
| Time_Intercept Variance | 0.0036 | 0.0066 | 0.0021 |