Carregar a base de dados

library(readr)
arte_MOMA <- read_delim("C:/Users/favor/Base_de_dados-master/arte_MOMA.csv", 
                        ";", escape_double = FALSE, locale = locale(encoding = "ISO-8859-1"), 
                        trim_ws = TRUE)

Carregar as bibliotecas

library(dplyr)

Questão 1:

Existem 2253 pinturas e 24 variáveis.

summary(arte_MOMA)
##        X1          title              artist           artist_bio       
##  Min.   :   1   Length:2253        Length:2253        Length:2253       
##  1st Qu.: 564   Class :character   Class :character   Class :character  
##  Median :1127   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :1127                                                           
##  3rd Qu.:1690                                                           
##  Max.   :2253                                                           
##                                                                         
##  artist_birth_year artist_death_year  num_artists     n_female_artists
##  Min.   :1839      Min.   :1890      Min.   : 1.000   Min.   :0.0000  
##  1st Qu.:1890      1st Qu.:1956      1st Qu.: 1.000   1st Qu.:0.0000  
##  Median :1913      Median :1976      Median : 1.000   Median :0.0000  
##  Mean   :1912      Mean   :1975      Mean   : 1.009   Mean   :0.1136  
##  3rd Qu.:1933      3rd Qu.:1996      3rd Qu.: 1.000   3rd Qu.:0.0000  
##  Max.   :1987      Max.   :2018      Max.   :10.000   Max.   :2.0000  
##  NA's   :6         NA's   :629       NA's   :1                        
##  n_male_artists   artist_gender      year_acquired   year_created 
##  Min.   :0.0000   Length:2253        Min.   :1930   Min.   :1872  
##  1st Qu.:1.0000   Class :character   1st Qu.:1957   1st Qu.:1933  
##  Median :1.0000   Mode  :character   Median :1975   Median :1956  
##  Mean   :0.8953                      Mean   :1976   Mean   :1954  
##  3rd Qu.:1.0000                      3rd Qu.:1996   3rd Qu.:1972  
##  Max.   :9.0000                      Max.   :2017   Max.   :2017  
##                                      NA's   :9      NA's   :5     
##  circumference_cm    depth_cm         diameter_cm      height_cm        
##  Mode:logical     Min.   :0.000e+00   Mode:logical   Min.   :7.000e+00  
##  NA's:2253        1st Qu.:0.000e+00   NA's:2253      1st Qu.:4.890e+02  
##                   Median :0.000e+00                  Median :1.067e+03  
##                   Mean   :3.938e+09                  Mean   :1.208e+11  
##                   3rd Qu.:7.500e+01                  3rd Qu.:2.185e+03  
##                   Max.   :6.096e+11                  Max.   :3.626e+12  
##                   NA's   :1955                                          
##  length_cm         width_cm         seat_height_cm  purchase      
##  Mode:logical   Min.   :1.000e+01   Mode:logical   Mode :logical  
##  NA's:2253      1st Qu.:4.580e+02   NA's:2253      FALSE:2055     
##                 Median :9.720e+02                  TRUE :198      
##                 Mean   :1.317e+11                                 
##                 3rd Qu.:2.286e+03                                 
##                 Max.   :9.147e+12                                 
##                                                                   
##     gift          exchange       classification      department       
##  Mode :logical   Mode :logical   Length:2253        Length:2253       
##  FALSE:1086      FALSE:2108      Class :character   Class :character  
##  TRUE :1167      TRUE :145       Mode  :character   Mode  :character  
##                                                                       
##                                                                       
##                                                                       
## 

Questão 2:

Existem duas pinturas datadas no ano de 1930, que no caso seriam as duas mais antigas. São elas, House by the Railroad de Edward Hopper e Seated Nude de Bernard Karfiol

arte_MOMA %>% filter(year_acquired=="1930") %>%
  group_by(title, artist) %>% 
  summarise(min(year_acquired))
## # A tibble: 2 x 3
## # Groups:   title [2]
##   title                 artist          `min(year_acquired)`
##   <chr>                 <chr>                          <dbl>
## 1 House by the Railroad Edward Hopper                   1930
## 2 Seated Nude           Bernard Karfiol                 1930

Questão 3:

A pintura mais antiga é a Landscape at Daybreak de Odilon Redon de 1872.

arte_MOMA %>% filter(year_created=="1872") %>% 
  group_by(title,artist) %>% 
  summarise(min(year_created))
## # A tibble: 1 x 3
## # Groups:   title [1]
##   title                 artist       `min(year_created)`
##   <chr>                 <chr>                      <dbl>
## 1 Landscape at Daybreak Odilon Redon                1872

Questão 4:

Existem 989 artistas distintos.

arte_MOMA %>% group_by(artist) %>% 
  summarise(all(artist, na.rm = FALSE))
## # A tibble: 989 x 2
##    artist                            `all(artist, na.rm = FALSE)`
##    <chr>                             <lgl>                       
##  1 "\"Edward C. (\"\"Pa\"\") Hunt\"" NA                          
##  2 "A. E. Gallatin"                  NA                          
##  3 "A.R. Penck (Ralf Winkler)"       NA                          
##  4 "Abraham Palatnik"                NA                          
##  5 "Abraham Rattner"                 NA                          
##  6 "Abraham Walkowitz"               NA                          
##  7 "Ad Dekkers"                      NA                          
##  8 "Ad Reinhardt"                    NA                          
##  9 "Adam Pendleton"                  NA                          
## 10 "Adolf Richard Fleischmann"       NA                          
## # ... with 979 more rows

Questão 5:

Pablo Picasso

arte_MOMA %>% count(artist, sort = TRUE)
## # A tibble: 989 x 2
##    artist               n
##    <chr>            <int>
##  1 Pablo Picasso       55
##  2 Henri Matisse       32
##  3 On Kawara           32
##  4 Jacob Lawrence      30
##  5 Batiste Madalena    25
##  6 Jean Dubuffet       25
##  7 Odilon Redon        25
##  8 Ben Vautier         24
##  9 Frank Stella        23
## 10 Philip Guston       23
## # ... with 979 more rows

Questão 6:

55

arte_MOMA %>% count(artist, sort = TRUE)
## # A tibble: 989 x 2
##    artist               n
##    <chr>            <int>
##  1 Pablo Picasso       55
##  2 Henri Matisse       32
##  3 On Kawara           32
##  4 Jacob Lawrence      30
##  5 Batiste Madalena    25
##  6 Jean Dubuffet       25
##  7 Odilon Redon        25
##  8 Ben Vautier         24
##  9 Frank Stella        23
## 10 Philip Guston       23
## # ... with 979 more rows

Questão 7:

1991 pinturas de homens e 252 pinturas de mulheres.

table(arte_MOMA$artist_gender)
## 
## Female   Male 
##    252   1991

Questão 8:

São 143 artistas femininos e 837 artistas masculinos.

arte_MOMA %>% filter(artist_gender=="Female") %>% 
  group_by(artist) %>% 
  summarise(all(artist_gender, na.rm = FALSE))
## # A tibble: 143 x 2
##    artist                  `all(artist_gender, na.rm = FALSE)`
##    <chr>                   <lgl>                              
##  1 Agnes Martin            NA                                 
##  2 Alexandra Exter         NA                                 
##  3 Alice Baber             NA                                 
##  4 Alice Neel              NA                                 
##  5 Alma Woodsey Thomas     NA                                 
##  6 Amelia Peláez Del Casal NA                                 
##  7 Amy Sillman             NA                                 
##  8 Annette Lemieux         NA                                 
##  9 Antonieta Sosa          NA                                 
## 10 Atsuko Tanaka           NA                                 
## # ... with 133 more rows
arte_MOMA %>% filter(artist_gender=="Male") %>% 
  group_by(artist) %>% 
  summarise(all(artist_gender, na.rm = FALSE))
## # A tibble: 837 x 2
##    artist                            `all(artist_gender, na.rm = FALSE)`
##    <chr>                             <lgl>                              
##  1 "\"Edward C. (\"\"Pa\"\") Hunt\"" NA                                 
##  2 "A. E. Gallatin"                  NA                                 
##  3 "A.R. Penck (Ralf Winkler)"       NA                                 
##  4 "Abraham Palatnik"                NA                                 
##  5 "Abraham Rattner"                 NA                                 
##  6 "Abraham Walkowitz"               NA                                 
##  7 "Ad Dekkers"                      NA                                 
##  8 "Ad Reinhardt"                    NA                                 
##  9 "Adam Pendleton"                  NA                                 
## 10 "Adolf Richard Fleischmann"       NA                                 
## # ... with 827 more rows

Questão 9:

O ano com maior número de pinturas adquiridas foi 1985, com 86 pinturas.

arte_MOMA %>% count(year_acquired, sort = TRUE)
## # A tibble: 88 x 2
##    year_acquired     n
##            <dbl> <int>
##  1          1985    86
##  2          1942    71
##  3          1979    71
##  4          1991    67
##  5          2005    67
##  6          1967    65
##  7          2008    55
##  8          1961    45
##  9          1969    45
## 10          1956    42
## # ... with 78 more rows

Questão 10:

O ano com maior criação de pinturas foi 1977, com 57 pinturas.

arte_MOMA %>% count(year_created, sort = TRUE)
## # A tibble: 139 x 2
##    year_created     n
##           <dbl> <int>
##  1         1977    57
##  2         1940    56
##  3         1964    56
##  4         1961    50
##  5         1962    49
##  6         1963    44
##  7         1959    42
##  8         1968    40
##  9         1960    39
## 10         1914    37
## # ... with 129 more rows

Questão 11:

A primeira pintura feminina adquirida foi Landscape, 47 da artista Natalia Goncharova no ano de 1937.

arte_MOMA %>% filter(artist_gender=="Female") %>% 
  group_by(year_acquired, title, artist) %>% 
  summarise(first(artist_gender))
## # A tibble: 249 x 4
## # Groups:   year_acquired, title [248]
##    year_acquired title                    artist            `first(artist_gende~
##            <dbl> <chr>                    <chr>             <chr>               
##  1          1937 Landscape, 47            Natalia Goncharo~ Female              
##  2          1938 Shack                    Loren MacIver     Female              
##  3          1940 Hopscotch                Loren MacIver     Female              
##  4          1941 Figure                   Varvara Stepanova Female              
##  5          1941 Shadows with Painting    Irene Rice Perei~ Female              
##  6          1942 Desolation               Raquel Forner     Female              
##  7          1942 Musical Squash           Maud Morgan       Female              
##  8          1942 Still Life in Red        Amelia Peláez De~ Female              
##  9          1942 White Lines              Irene Rice Perei~ Female              
## 10          1943 Self-Portrait with Crop~ Frida Kahlo       Female              
## # ... with 239 more rows

Questão 12:

Dorothea Tanning com 102 anos

arte_MOMAidade <- arte_MOMA$artist_death_year - arte_MOMA$artist_birth_year
summary(arte_MOMAidade)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##   27.00   67.00   77.00   74.66   85.00  102.00     629
arte_MOMA %>%
  filter(arte_MOMAidade=="102") %>% 
  pull(artist) %>% 
  first()
## [1] "Dorothea Tanning"

Questão 13:

A idade média de um artista é de 74.66 anos

library(knitr)

arte_MOMA %>%
  mutate(idade = artist_death_year - artist_birth_year) %>%
  group_by(artist_gender) %>%
  summarise(media = mean(idade, na.rm = T)) %>% 
  mutate(media = format(media, digits = 3)) %>% 
  kable()
artist_gender media
Female 74.0
Male 74.7
NA 72.0

Posicionamento acerca do MOMA:

A partir do que foi usado nas questões propostas, visitar os quadros do Pablo Picasso me parece muito interessante, visto que ele possui o maior acervo no MOMA, assim como visitar os quadros de Dorothea Tanning que é a pessoa mais velha dentre todas as mais de 900 artistas datados. Seguindo essa ideia, entender o quadro de Odilon Redon, o mais antigo da coleção, também seria interessante.