A basic look number of moves across low first / high first nameability

Pilot_ 1 (second characteristic of color/shape non-varied)

Has issue of stack history was visible so task too easy.

## Automatically converting the following non-factors to factors: name_order, seriesNo, shape_or_color
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

## Automatically converting the following non-factors to factors: name_order, episodeNo, shape_or_color
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: -23.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1392 -0.6092 -0.1099  0.4482  4.6943 
## 
## Random effects:
##  Groups   Name                   Variance Std.Dev. Corr 
##  playerId (Intercept)            0.02238  0.1496        
##           ruleIdcolor_naming_low 0.01046  0.1023   -0.76
##  Residual                        0.03592  0.1895        
## Number of obs: 140, groups:  playerId, 19
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             1.334776   0.045566  29.294
## ruleIdcolor_naming_low -0.003324   0.040107  -0.083
## episodeNo              -0.092089   0.013509  -6.817
## 
## Correlation of Fixed Effects:
##             (Intr) rlId__
## rlIdclr_nm_ -0.634       
## episodeNo   -0.413  0.006
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: -55.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7082 -0.6577 -0.2156  0.4457  3.2716 
## 
## Random effects:
##  Groups   Name                   Variance  Std.Dev. Corr 
##  playerId (Intercept)            0.0141946 0.119141      
##           ruleIdshape_naming_low 0.0000513 0.007162 -1.00
##  Residual                        0.0274303 0.165621      
## Number of obs: 128, groups:  playerId, 19
## 
## Fixed effects:
##                         Estimate Std. Error t value
## (Intercept)             1.270530   0.038263  33.205
## ruleIdshape_naming_low  0.009619   0.029551   0.326
## episodeNo              -0.078515   0.014030  -5.596
## 
## Correlation of Fixed Effects:
##             (Intr) rlId__
## rlIdshp_nm_ -0.412       
## episodeNo   -0.428 -0.054
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ 1 + name_order + seriesNo + episodeNo + ((1 | playerId) +  
##     (0 + ruleId | playerId))
##    Data: .
## 
## REML criterion at convergence: -108.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2422 -0.6895 -0.1202  0.4712  5.0284 
## 
## Random effects:
##  Groups     Name                    Variance  Std.Dev.  Corr          
##  playerId   (Intercept)             3.061e-11 5.533e-06               
##  playerId.1 ruleIdcolor_naming_high 2.387e-02 1.545e-01               
##             ruleIdcolor_naming_low  1.025e-02 1.013e-01 0.71          
##             ruleIdshape_naming_high 1.163e-02 1.078e-01 0.99 0.80     
##             ruleIdshape_naming_low  1.288e-02 1.135e-01 0.87 0.97 0.93
##  Residual                           3.030e-02 1.741e-01               
## Number of obs: 268, groups:  playerId, 19
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)          1.347953   0.038580  34.939
## name_orderlow_first  0.002386   0.026731   0.089
## seriesNo            -0.028270   0.010087  -2.803
## episodeNo           -0.090470   0.009501  -9.522
## 
## Correlation of Fixed Effects:
##             (Intr) nm_rd_ serisN
## nm_rdrlw_fr -0.461              
## seriesNo    -0.464  0.014       
## episodeNo   -0.344 -0.012  0.081
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Pilot 2 (shape varies by color rule; color varies by shape rule)

Color findings seem flipped compared to expectation (i.e., high nameability = more moves than low nameability), but is probably due to shape interference.

## Automatically converting the following non-factors to factors: name_order, seriesNo, shape_or_color

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

## Automatically converting the following non-factors to factors: name_order, episodeNo, shape_or_color
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: 64.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5228 -0.6527 -0.1827  0.4117  3.8196 
## 
## Random effects:
##  Groups   Name                          Variance Std.Dev. Corr
##  playerId (Intercept)                   0.012901 0.11358      
##           ruleIdcolor_naming_low_varied 0.004217 0.06494  0.03
##  Residual                               0.072841 0.26989      
## Number of obs: 148, groups:  playerId, 20
## 
## Fixed effects:
##                               Estimate Std. Error t value
## (Intercept)                    1.46815    0.04758  30.854
## ruleIdcolor_naming_low_varied -0.06668    0.04731  -1.409
## episodeNo                     -0.10139    0.01598  -6.343
## 
## Correlation of Fixed Effects:
##             (Intr) rlI___
## rlIdclr_n__ -0.451       
## episodeNo   -0.516  0.030
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: 135.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7919 -0.5407 -0.1781  0.4363  5.2198 
## 
## Random effects:
##  Groups   Name                          Variance Std.Dev. Corr
##  playerId (Intercept)                   0.03507  0.1873       
##           ruleIdshape_naming_low_varied 0.01228  0.1108   1.00
##  Residual                               0.10764  0.3281       
## Number of obs: 151, groups:  playerId, 20
## 
## Fixed effects:
##                               Estimate Std. Error t value
## (Intercept)                    1.56201    0.06441  24.251
## ruleIdshape_naming_low_varied  0.07899    0.05929   1.332
## episodeNo                     -0.16655    0.02108  -7.902
## 
## Correlation of Fixed Effects:
##             (Intr) rlI___
## rlIdshp_n__ -0.101       
## episodeNo   -0.474  0.001
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ 1 + name_order + seriesNo + episodeNo + ((1 | playerId) +  
##     (0 + ruleId | playerId))
##    Data: .
## 
## REML criterion at convergence: 199.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0347 -0.5717 -0.2107  0.3836  5.8818 
## 
## Random effects:
##  Groups     Name                           Variance Std.Dev. Corr          
##  playerId   (Intercept)                    0.009138 0.09559                
##  playerId.1 ruleIdcolor_naming_high_varied 0.009134 0.09557                
##             ruleIdcolor_naming_low_varied  0.006474 0.08046  0.39          
##             ruleIdshape_naming_high_varied 0.025878 0.16087  0.83 0.84     
##             ruleIdshape_naming_low_varied  0.090106 0.30018  0.74 0.90 0.99
##  Residual                                  0.091176 0.30195                
## Number of obs: 299, groups:  playerId, 20
## 
## Fixed effects:
##                       Estimate Std. Error t value
## (Intercept)          1.4776686  0.0469319  31.485
## name_orderlow_first -0.0062019  0.0407450  -0.152
## seriesNo            -0.0007815  0.0203413  -0.038
## episodeNo           -0.1324553  0.0130942 -10.116
## 
## Correlation of Fixed Effects:
##             (Intr) nm_rd_ serisN
## nm_rdrlw_fr -0.382              
## seriesNo    -0.396  0.252       
## episodeNo   -0.436  0.005  0.033
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Pilot 3 (shape first, then color; second dimension varies)

## Automatically converting the following non-factors to factors: name_order, seriesNo, shape_or_color

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

## Automatically converting the following non-factors to factors: name_order, episodeNo, shape_or_color
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: 84.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8403 -0.5017 -0.0579  0.3031  4.6342 
## 
## Random effects:
##  Groups   Name                          Variance Std.Dev. Corr 
##  playerId (Intercept)                   0.03924  0.1981        
##           ruleIdshape_naming_low_varied 0.04682  0.2164   -0.68
##  Residual                               0.07031  0.2652        
## Number of obs: 165, groups:  playerId, 20
## 
## Fixed effects:
##                               Estimate Std. Error t value
## (Intercept)                    1.53759    0.05968  25.766
## ruleIdshape_naming_low_varied  0.01529    0.06398   0.239
## episodeNo                     -0.13728    0.01651  -8.313
## 
## Correlation of Fixed Effects:
##             (Intr) rlI___
## rlIdshp_n__ -0.621       
## episodeNo   -0.463  0.044
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (ruleId | playerId)
##    Data: .
## 
## REML criterion at convergence: 57.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4698 -0.5925 -0.0974  0.3433  4.2470 
## 
## Random effects:
##  Groups   Name                          Variance Std.Dev. Corr 
##  playerId (Intercept)                   0.05239  0.2289        
##           ruleIdcolor_naming_low_varied 0.04484  0.2118   -0.91
##  Residual                               0.06092  0.2468        
## Number of obs: 163, groups:  playerId, 20
## 
## Fixed effects:
##                               Estimate Std. Error t value
## (Intercept)                    1.46659    0.06322  23.198
## ruleIdcolor_naming_low_varied -0.02609    0.06129  -0.426
## episodeNo                     -0.13616    0.01599  -8.514
## 
## Correlation of Fixed Effects:
##             (Intr) rlI___
## rlIdclr_n__ -0.763       
## episodeNo   -0.395  0.000
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ 1 + name_order + seriesNo + episodeNo + ((1 | playerId) +  
##     (0 + ruleId | playerId))
##    Data: .
## 
## REML criterion at convergence: 111
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3060 -0.5473 -0.0782  0.3485  4.8993 
## 
## Random effects:
##  Groups     Name                           Variance Std.Dev. Corr          
##  playerId   (Intercept)                    0.00000  0.0000                 
##  playerId.1 ruleIdcolor_naming_high_varied 0.05221  0.2285                 
##             ruleIdcolor_naming_low_varied  0.01317  0.1148   0.40          
##             ruleIdshape_naming_high_varied 0.04266  0.2065   0.88 0.71     
##             ruleIdshape_naming_low_varied  0.02557  0.1599   0.37 0.77 0.42
##  Residual                                  0.06301  0.2510                 
## Number of obs: 328, groups:  playerId, 20
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)          1.573374   0.056839  27.681
## name_orderlow_first -0.006522   0.049524  -0.132
## seriesNo            -0.048468   0.014280  -3.394
## episodeNo           -0.135835   0.011203 -12.125
## 
## Correlation of Fixed Effects:
##             (Intr) nm_rd_ serisN
## nm_rdrlw_fr -0.597              
## seriesNo    -0.312 -0.235       
## episodeNo   -0.329  0.022  0.016
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Pilot 2 and 3 combined (looking at main effect of nameability)

## 
## high_first  low_first 
##        318        309
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: uniMove ~ 1 + name_order + ruleId + seriesNo + episodeNo + (0 +  
##     ruleId | playerId)
##    Data: transcriptsByRule
## 
## REML criterion at convergence: 316.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8581 -0.5601 -0.1414  0.3409  6.2728 
## 
## Random effects:
##  Groups   Name                           Variance Std.Dev. Corr          
##  playerId ruleIdcolor_naming_high_varied 0.03449  0.1857                 
##           ruleIdcolor_naming_low_varied  0.01321  0.1149   0.51          
##           ruleIdshape_naming_high_varied 0.03634  0.1906   0.89 0.85     
##           ruleIdshape_naming_low_varied  0.05587  0.2364   0.43 0.83 0.73
##  Residual                                0.07703  0.2776                 
## Number of obs: 627, groups:  playerId, 40
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                      1.513265   0.043225  76.155699  35.009
## name_orderlow_first              0.082944   0.048383  41.767266   1.714
## ruleIdcolor_naming_low_varied   -0.124137   0.040277  45.292656  -3.082
## ruleIdshape_naming_high_varied   0.036733   0.034495  69.294691   1.065
## seriesNo                        -0.017670   0.011328 211.158825  -1.560
## episodeNo                       -0.133068   0.008652 560.686879 -15.379
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## name_orderlow_first             0.09388 .  
## ruleIdcolor_naming_low_varied   0.00349 ** 
## ruleIdshape_naming_high_varied  0.29063    
## seriesNo                        0.12028    
## episodeNo                       < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) nm_rd_ rlIdc___ rlIds___ serisN
## nm_rdrlw_fr -0.440                                
## rlIdclr_n__ -0.103 -0.589                         
## rlIdshp_n__ -0.402  0.558 -0.111                  
## seriesNo    -0.414  0.019 -0.023    0.032         
## episodeNo   -0.318  0.011 -0.016   -0.005    0.027
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
##                GVIF Df GVIF^(1/(2*Df))
## name_order 2.455584  1        1.567030
## ruleId     2.458603  2        1.252195
## seriesNo   1.002370  1        1.001184
## episodeNo  1.001090  1        1.000545
## 
##   0   1   2   3 
## 161 152 157 157
## 
##   0   1   2   3   4   5   6 
## 160 160 146 104  43   9   5
## 
## color_naming_high_varied  color_naming_low_varied shape_naming_high_varied 
##                      157                      154                      161 
##  shape_naming_low_varied 
##                      155
## 
## high_first  low_first 
##        318        309

Pilot 4: high shape / low color vs high color/ low shape (disjunction)

## Joining, by = c("episodeId", "seriesNo")
## Automatically converting the following non-factors to factors: ruleId, seriesNo, shape_or_color

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.

## Automatically converting the following non-factors to factors: ruleId, seriesNo, shape_or_color, episodeNo
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (1 | playerId)
##    Data: .
## 
## REML criterion at convergence: 110
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6655 -0.6678 -0.1285  0.5694  3.0361 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  playerId (Intercept) 0.04406  0.2099  
##  Residual             0.14805  0.3848  
## Number of obs: 92, groups:  playerId, 17
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)                1.74740    0.11620  15.038
## ruleIddisjunct_shape_high -0.05955    0.13234  -0.450
## episodeNo                 -0.11129    0.02340  -4.756
## 
## Correlation of Fixed Effects:
##             (Intr) rlId__
## rlIddsjnc__ -0.692       
## episodeNo   -0.514  0.091
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ ruleId + episodeNo + (1 | playerId)
##    Data: .
## 
## REML criterion at convergence: 107
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7943 -0.6220 -0.2391  0.5907  2.4669 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  playerId (Intercept) 0.03423  0.1850  
##  Residual             0.12775  0.3574  
## Number of obs: 104, groups:  playerId, 17
## 
## Fixed effects:
##                            Estimate Std. Error t value
## (Intercept)                1.570739   0.086996  18.055
## ruleIddisjunct_shape_high -0.005311   0.116942  -0.045
## episodeNo                 -0.059484   0.016208  -3.670
## 
## Correlation of Fixed Effects:
##             (Intr) rlId__
## rlIddsjnc__ -0.556       
## episodeNo   -0.494 -0.013
## Linear mixed model fit by REML ['lmerMod']
## Formula: uniMove ~ 1 + shape_or_color + seriesNo + episodeNo + (1 | playerId)
##    Data: .
## 
## REML criterion at convergence: 210.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0193 -0.7232 -0.1406  0.5762  3.3404 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  playerId (Intercept) 0.03574  0.1891  
##  Residual             0.14226  0.3772  
## Number of obs: 196, groups:  playerId, 17
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               1.632542   0.093121  17.531
## shape_or_colorshape_high -0.013378   0.108449  -0.123
## seriesNo                 -0.002094   0.054878  -0.038
## episodeNo                -0.075450   0.013558  -5.565
## 
## Correlation of Fixed Effects:
##             (Intr) shp___ serisN
## shp_r_clrs_ -0.684              
## seriesNo    -0.254 -0.018       
## episodeNo   -0.354  0.037 -0.117

Look at pilot 4 disjunction guesses

Looking at prop of shape/color in bucket on basis of nameability by rule

## Joining, by = c("X.playerId", "ruleId", "shape_or_color", "seriesNo", "episodeNo", "bucketId")
## Automatically converting the following non-factors to factors: shape_or_color
##   shape_or_color   N color_prop color_prop_norm        sd         se         ci
## 1     color_high 124  0.4565860       0.2810386 0.5647630 0.05071721 0.10039162
## 2     shape_high 152  0.1378289       0.2810386 0.3007001 0.02439000 0.04818973
## Automatically converting the following non-factors to factors: shape_or_color
##   shape_or_color   N shape_prop shape_prop_norm        sd         se         ci
## 1     color_high 124 0.09986559        0.211715 0.2360919 0.02120168 0.04196742
## 2     shape_high 152 0.30296053        0.211715 0.4724550 0.03832116 0.07571491

Pilot 4 (nameability disjunction) plots

## Automatically converting the following non-factors to factors: shape_or_color, episodeNo
## Automatically converting the following non-factors to factors: shape_or_color, episodeNo
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

disjunction models

Averaged across buckets so we have use per episode per ppt

color use

## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML ['lmerMod']
## Formula: color_prop ~ shape_or_color + episodeNo + (1 + shape_or_color |  
##     X.playerId)
##    Data: .
## 
## REML criterion at convergence: -56.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.24043 -0.63212 -0.03231  0.48469  2.58162 
## 
## Random effects:
##  Groups     Name                     Variance Std.Dev. Corr 
##  X.playerId (Intercept)              0.04075  0.2019        
##             shape_or_colorshape_high 0.04075  0.2019   -1.00
##  Residual                            0.02274  0.1508        
## Number of obs: 92, groups:  X.playerId, 17
## 
## Fixed effects:
##                           Estimate Std. Error t value
## (Intercept)               0.436646   0.083087   5.255
## shape_or_colorshape_high -0.343076   0.082805  -4.143
## episodeNo                 0.022779   0.009024   2.524
## 
## Correlation of Fixed Effects:
##             (Intr) shp___
## shp_r_clrs_ -0.940       
## episodeNo   -0.273  0.043
## convergence code: 0
## boundary (singular) fit: see ?isSingular

shape use

Can’t add random intercepts for shape/color nameability with current sample size (non-convergence)

## Linear mixed model fit by REML ['lmerMod']
## Formula: shape_prop ~ shape_or_color + episodeNo + (1 | X.playerId)
##    Data: .
## 
## REML criterion at convergence: -50
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3189 -0.5631 -0.1865  0.4815  2.9256 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev.
##  X.playerId (Intercept) 0.02248  0.1499  
##  Residual               0.02091  0.1446  
## Number of obs: 92, groups:  X.playerId, 17
## 
## Fixed effects:
##                            Estimate Std. Error t value
## (Intercept)               0.1080106  0.0650973   1.659
## shape_or_colorshape_high  0.2231435  0.0801948   2.783
## episodeNo                -0.0007647  0.0089287  -0.086
## 
## Correlation of Fixed Effects:
##             (Intr) shp___
## shp_r_clrs_ -0.734       
## episodeNo   -0.346  0.056