getwd() dic <- read.table ( “dic.txt” , h = TRUE) boxplot(y~niveis, data=dic, col=“blue”)
setwd("C:/users/Rogerio O Souza/Documents/DOC PESSOAIS/Cursos/MESTRADO -CEFET BAMBUI/Estatística/aulas")
dic <- read.table ( "dic.txt" , h = TRUE)
boxplot(y~niveis, data=dic, col="blue")
dic1 <- aov(y~niveis, data = dic) # Ex ibe a Tabela da ANAVA summary (dic1)
# aov : estima o modelo linear
dic1 <- aov(y~niveis, data = dic)
# Ex ibe a Tabela da ANAVA
summary (dic1)
## Df Sum Sq Mean Sq F value Pr(>F)
## niveis 4 7.597 1.899 7.277 0.00183 **
## Residuals 15 3.915 0.261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coef(dic1)
## (Intercept) niveisT2 niveisT3 niveisT4 niveisT5
## 5.250 1.525 1.400 0.275 1.150
coef(dic1)
summaryBy(y~niveis, data=dic,FUN=c(length, mean))
names(dic1)
df.residual(dic1) summary(dic1) plot(dic1)
df.residual(dic1)
## [1] 15
summary(dic1)
## Df Sum Sq Mean Sq F value Pr(>F)
## niveis 4 7.597 1.899 7.277 0.00183 **
## Residuals 15 3.915 0.261
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(dic1)
cv.mode1(dic1) par(mfrow = c(2,2)) plot(dic1)
shapiro.test(dic1$residuals)
Teste de bartlett.test
bartlett.test(y~niveis, data=dic)
plot
test2=TukeyHSD(dic1)
test2= TukeyHSD(dicd1)
plot (test2)
setwd("C:/users/Rogerio O Souza/Documents/DOC PESSOAIS/Cursos/MESTRADO -CEFET BAMBUI/Estatística/aulas")
dic <- read.table ( "dic.txt" , h = TRUE)
boxplot(y~niveis, data=dic, col="blue")