dat_try2019=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0)
  
trt_try= 
  read.csv("trt.csv") %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  rename(herb=Herbivory.Tr, fire= Fire.Energy.Tr)

trt2019=
  dat_try2019 %>%
  inner_join(trt_try) %>%
  select(code, herb, fire) 

dat2019ord=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>% 
  select(-code)
set.seed(101)  
dat19_NMDS=metaMDS(dat2019ord,k=4,trymax =50)
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.08286534 
## Run 1 stress 0.08294884 
## ... Procrustes: rmse 0.009565545  max resid 0.0230346 
## Run 2 stress 0.08276713 
## ... New best solution
## ... Procrustes: rmse 0.008812452  max resid 0.02523425 
## Run 3 stress 0.08279477 
## ... Procrustes: rmse 0.004345743  max resid 0.01846326 
## Run 4 stress 0.08276648 
## ... New best solution
## ... Procrustes: rmse 0.003135422  max resid 0.01012392 
## Run 5 stress 0.08282027 
## ... Procrustes: rmse 0.004655002  max resid 0.01350922 
## Run 6 stress 0.0827977 
## ... Procrustes: rmse 0.006585951  max resid 0.01403624 
## Run 7 stress 0.08283218 
## ... Procrustes: rmse 0.006080729  max resid 0.02513525 
## Run 8 stress 0.0827878 
## ... Procrustes: rmse 0.005399961  max resid 0.01453105 
## Run 9 stress 0.08277089 
## ... Procrustes: rmse 0.002549902  max resid 0.01237868 
## Run 10 stress 0.08282023 
## ... Procrustes: rmse 0.004102648  max resid 0.01080994 
## Run 11 stress 0.08283244 
## ... Procrustes: rmse 0.006253655  max resid 0.02412396 
## Run 12 stress 0.08277987 
## ... Procrustes: rmse 0.00342222  max resid 0.01650102 
## Run 13 stress 0.08276703 
## ... Procrustes: rmse 0.003532207  max resid 0.01658631 
## Run 14 stress 0.08279689 
## ... Procrustes: rmse 0.003873965  max resid 0.01271632 
## Run 15 stress 0.08285625 
## ... Procrustes: rmse 0.006990764  max resid 0.0250627 
## Run 16 stress 0.08296518 
## ... Procrustes: rmse 0.008161255  max resid 0.02014471 
## Run 17 stress 0.08276953 
## ... Procrustes: rmse 0.00256115  max resid 0.01324126 
## Run 18 stress 0.08283339 
## ... Procrustes: rmse 0.00616181  max resid 0.02546232 
## Run 19 stress 0.08284755 
## ... Procrustes: rmse 0.005575326  max resid 0.02071755 
## Run 20 stress 0.08282547 
## ... Procrustes: rmse 0.005399401  max resid 0.0151742 
## Run 21 stress 0.08279737 
## ... Procrustes: rmse 0.004042822  max resid 0.01835939 
## Run 22 stress 0.08293974 
## ... Procrustes: rmse 0.005629742  max resid 0.02423497 
## Run 23 stress 0.08279408 
## ... Procrustes: rmse 0.006255998  max resid 0.01770602 
## Run 24 stress 0.08283588 
## ... Procrustes: rmse 0.006619006  max resid 0.02107885 
## Run 25 stress 0.08277327 
## ... Procrustes: rmse 0.003068834  max resid 0.01313849 
## Run 26 stress 0.08292902 
## ... Procrustes: rmse 0.007779289  max resid 0.02681255 
## Run 27 stress 0.08283633 
## ... Procrustes: rmse 0.006969838  max resid 0.02236944 
## Run 28 stress 0.08276216 
## ... New best solution
## ... Procrustes: rmse 0.00306087  max resid 0.01522741 
## Run 29 stress 0.08284364 
## ... Procrustes: rmse 0.006558538  max resid 0.02378783 
## Run 30 stress 0.08295326 
## ... Procrustes: rmse 0.008551753  max resid 0.02482498 
## Run 31 stress 0.0827622 
## ... Procrustes: rmse 0.002530703  max resid 0.00822494 
## ... Similar to previous best
## *** Solution reached
dat19_NMDS
## 
## Call:
## metaMDS(comm = dat2019ord, k = 4, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(dat2019ord)) 
## Distance: bray 
## 
## Dimensions: 4 
## Stress:     0.08276216 
## Stress type 1, weak ties
## Two convergent solutions found after 31 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'wisconsin(sqrt(dat2019ord))'
plot(dat19_NMDS)

species.scores <- as.data.frame(scores(dat19_NMDS, "species"))
species.scores
##                                         NMDS1         NMDS2         NMDS3
## Glandularia bipinnatifida       -0.0429834560  0.0467468669 -3.132455e-02
## Nassella leucotricha            -0.0427092951  0.0320159571  2.463339e-02
## Astragalus nuttallianus         -0.0139963048  0.0051679423 -1.000227e-02
## Evax verna                      -0.0167845785 -0.0220651442  1.405196e-02
## Forb A                          -0.0830781707 -0.0001954664 -2.853750e-02
## Forb B                          -0.0566243416 -0.0587096565  3.471469e-02
## Heterotheca canescens           -0.0566243416 -0.0587096565  3.471469e-02
## Limnodea arkansana              -0.0552627868 -0.0383967378  1.920410e-02
## Medicago minima                 -0.0739582223  0.0063354194 -6.690599e-03
## Not Filaree                     -0.0375721410 -0.0380647333 -1.721804e-02
## Senecio douglasii               -0.0230156661 -0.0189292947  2.562987e-02
## Trilobe                         -0.0668990696  0.0064820463  1.174582e-02
## Erodium cicutarium              -0.0760753164  0.0177883468 -6.713124e-02
## Ratibida columnifera            -0.0667856751  0.0000737225 -4.279569e-03
## Hilaria belangeri               -0.0162848948 -0.0590181841 -2.675151e-02
## Lepidium virginicum             -0.0390169044 -0.0054828449 -2.510070e-03
## Phyllanthus polygonoides        -0.0454825688 -0.0220583981  7.131828e-02
## Solanum elaeagnifolium          -0.1058352560  0.0299135219 -5.385749e-02
## Plantago rhodosperma            -0.0280130458 -0.0224505195 -8.354210e-04
## Aphanostephus skirrhobasis      -0.0169876445 -0.0192143261  2.221077e-02
## Bubble Plant                    -0.0461710081  0.0123160599  7.673427e-02
## Englemannia peristenia          -0.0312595237 -0.0285984654 -5.356448e-03
## Cirsium texanum                 -0.0757845078  0.0033306417 -4.116186e-03
## Salvia farinacea                -0.0743990982  0.0598330058  1.879490e-02
## Vicia ludoviciana               -0.1174370921  0.0550689467  4.567116e-02
## Verbena halei                   -0.0508436165 -0.0270064273 -3.217313e-02
## Panicum hallii                  -0.0308667838 -0.0182804311 -5.143976e-02
## Erigeron strigosus              -0.0521771063 -0.0360709453 -3.136861e-02
## Glandularia pumilia             -0.0464178009  0.0061788931  8.401442e-02
## Vulpia octoflora var. octoflora -0.1126102782 -0.0924783867  4.481357e-02
## Forb C                          -0.0714685876 -0.0174554652  4.685656e-03
## Thelesperma filifolium          -0.0302873136 -0.0553674205  4.485641e-02
## Allium drummondii                0.0281852466 -0.0135476241  1.899163e-02
## Scutellaria drummondii          -0.0219596585 -0.0161736753  2.718809e-02
## Tragia ramosa                    0.0025665817 -0.0033919249 -2.815604e-02
## Heartshaped leaf forb           -0.1105828477 -0.0049644313  5.528349e-02
## Croton dioicus                  -0.0119434601 -0.0470204167 -6.164192e-03
## Erioneuron pilosum              -0.0191631177 -0.0572778357 -5.917303e-02
## Bouteloua curtipendula           0.0088324340 -0.0609783262 -1.429742e-02
## Oxalis stricta                   4.3059379153  0.0010046737  6.562854e-05
## Aristida purpurea               -0.0008093649 -0.0572489656  2.753347e-02
## Aristolochia coryi              -0.0719995931  0.0821624431  7.444738e-03
## Forb D                          -0.1195872111 -0.0258635657 -2.419329e-02
## Solanum triquetrum              -0.1089153790  0.0445476588  3.103858e-02
## Berberis trifoliolata            6.9881100294  0.0011099999 -6.847767e-04
## Vine A                           6.9881100294  0.0011099999 -6.847767e-04
## Thymophylla pentachaeta         -0.1370007395  0.0165692686  4.175763e-03
## Sphaeralcea angustifolia        -0.1405160648 -0.0640078482  5.735894e-02
## Tridens muticus                 -0.0835330743 -0.0358116635  1.039234e-01
## Opuntia engelmannii             -0.0702855610 -0.0554242784 -5.192171e-03
## Daisy A                         -0.0692213197 -0.0873208932  5.920541e-04
## Gaillardia pinnatifida          -0.0586087767 -0.0871671060  6.513062e-02
## Lupinus texensis                -0.0618322394 -0.0522142657  1.413371e-02
## Desmanthus velutinus            -0.0610898077 -0.1596035811 -1.483386e-02
## Rhynchosida physocalyx          -0.0436038039 -0.0655398579 -5.068411e-02
## Hookleaf Unknown                -0.1482563794 -0.0829072030 -3.204047e-02
## Sida abutifolia                 -0.0120177451  0.0369011753 -3.683321e-02
## Tridens muticus var. muticus    -0.0777888573 -0.0181699788  3.098096e-02
## Asclepias asperula              -0.0811443200 -0.1009852581  5.826205e-02
## Hordeum pusillum                 0.0321704283 -0.0246018861  6.232066e-02
##                                         NMDS4
## Glandularia bipinnatifida       -0.0180989164
## Nassella leucotricha             0.0069044206
## Astragalus nuttallianus         -0.0306597970
## Evax verna                       0.0258798400
## Forb A                          -0.0068668552
## Forb B                          -0.1027707257
## Heterotheca canescens           -0.1027707257
## Limnodea arkansana              -0.0438193348
## Medicago minima                 -0.0507783638
## Not Filaree                     -0.0251510031
## Senecio douglasii               -0.0702465012
## Trilobe                         -0.0273915228
## Erodium cicutarium               0.0181751571
## Ratibida columnifera            -0.0454756304
## Hilaria belangeri               -0.0047577109
## Lepidium virginicum              0.0217987717
## Phyllanthus polygonoides         0.0726814588
## Solanum elaeagnifolium           0.0371196317
## Plantago rhodosperma             0.0000263745
## Aphanostephus skirrhobasis      -0.0018711446
## Bubble Plant                    -0.0084261209
## Englemannia peristenia           0.0465228205
## Cirsium texanum                  0.0076225811
## Salvia farinacea                -0.0326083686
## Vicia ludoviciana               -0.0416142371
## Verbena halei                    0.0486982158
## Panicum hallii                   0.0004790966
## Erigeron strigosus              -0.0071770958
## Glandularia pumilia             -0.0024610247
## Vulpia octoflora var. octoflora -0.0069920819
## Forb C                          -0.0158741798
## Thelesperma filifolium           0.0475184643
## Allium drummondii                0.0036207282
## Scutellaria drummondii           0.0483591795
## Tragia ramosa                    0.0209880012
## Heartshaped leaf forb            0.0357646496
## Croton dioicus                   0.0713948948
## Erioneuron pilosum               0.0241861133
## Bouteloua curtipendula           0.0206296626
## Oxalis stricta                   0.0009328266
## Aristida purpurea               -0.0157317604
## Aristolochia coryi               0.0599646408
## Forb D                           0.0380459886
## Solanum triquetrum               0.0575139064
## Berberis trifoliolata            0.0011082179
## Vine A                           0.0011082179
## Thymophylla pentachaeta          0.0260549780
## Sphaeralcea angustifolia        -0.0419555232
## Tridens muticus                 -0.0116144991
## Opuntia engelmannii             -0.0080281546
## Daisy A                         -0.0122580002
## Gaillardia pinnatifida          -0.0822239133
## Lupinus texensis                 0.0294482885
## Desmanthus velutinus            -0.0114075405
## Rhynchosida physocalyx           0.0505198364
## Hookleaf Unknown                -0.0048257719
## Sida abutifolia                  0.0214677378
## Tridens muticus var. muticus     0.0973194718
## Asclepias asperula              -0.0088999286
## Hordeum pusillum                 0.0245991375
dat_try2019=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>%
  select (-"Berberis trifoliolata", -"Vine A")

trt_try= 
  read.csv("trt.csv") %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  rename(herb=Herbivory.Tr, fire= Fire.Energy.Tr)

trt2019=
  dat_try2019 %>%
  inner_join(trt_try) %>%
  select(code, herb, fire) 

dat2019ord=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>% 
  select (-"Oxalis stricta",-"Berberis trifoliolata", -"Vine A") %>%
  select(-code)
set.seed(107)  
dat19_NMDS=metaMDS(dat2019ord,k=4,trymax =50)
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 9.535341e-05 
## Run 1 stress 9.6944e-05 
## ... Procrustes: rmse 5.006636e-05  max resid 0.0001864695 
## ... Similar to previous best
## Run 2 stress 9.425894e-05 
## ... New best solution
## ... Procrustes: rmse 5.579475e-05  max resid 0.0001579969 
## ... Similar to previous best
## Run 3 stress 9.563024e-05 
## ... Procrustes: rmse 5.165879e-05  max resid 0.00021183 
## ... Similar to previous best
## Run 4 stress 9.139673e-05 
## ... New best solution
## ... Procrustes: rmse 6.821211e-05  max resid 0.0002597575 
## ... Similar to previous best
## Run 5 stress 9.810925e-05 
## ... Procrustes: rmse 6.258374e-05  max resid 0.0003013533 
## ... Similar to previous best
## Run 6 stress 9.771247e-05 
## ... Procrustes: rmse 5.060915e-05  max resid 0.0001735178 
## ... Similar to previous best
## Run 7 stress 9.448358e-05 
## ... Procrustes: rmse 6.414953e-05  max resid 0.0002350907 
## ... Similar to previous best
## Run 8 stress 9.360409e-05 
## ... Procrustes: rmse 6.439393e-05  max resid 0.0002363052 
## ... Similar to previous best
## Run 9 stress 8.96182e-05 
## ... New best solution
## ... Procrustes: rmse 5.1271e-05  max resid 0.00021465 
## ... Similar to previous best
## Run 10 stress 9.244088e-05 
## ... Procrustes: rmse 4.396544e-05  max resid 0.0001188084 
## ... Similar to previous best
## Run 11 stress 9.762485e-05 
## ... Procrustes: rmse 5.589524e-05  max resid 0.0001884853 
## ... Similar to previous best
## Run 12 stress 9.615139e-05 
## ... Procrustes: rmse 4.688005e-05  max resid 0.000189407 
## ... Similar to previous best
## Run 13 stress 9.433328e-05 
## ... Procrustes: rmse 5.952162e-05  max resid 0.0002410461 
## ... Similar to previous best
## Run 14 stress 9.885821e-05 
## ... Procrustes: rmse 5.238678e-05  max resid 0.0001152497 
## ... Similar to previous best
## Run 15 stress 9.47201e-05 
## ... Procrustes: rmse 6.928104e-05  max resid 0.0003121808 
## ... Similar to previous best
## Run 16 stress 9.957897e-05 
## ... Procrustes: rmse 6.09325e-05  max resid 0.0002633361 
## ... Similar to previous best
## Run 17 stress 9.798843e-05 
## ... Procrustes: rmse 5.763908e-05  max resid 0.0001936714 
## ... Similar to previous best
## Run 18 stress 8.937595e-05 
## ... New best solution
## ... Procrustes: rmse 4.779514e-05  max resid 0.0002390866 
## ... Similar to previous best
## Run 19 stress 9.289449e-05 
## ... Procrustes: rmse 5.218835e-05  max resid 0.000154491 
## ... Similar to previous best
## Run 20 stress 9.817146e-05 
## ... Procrustes: rmse 6.56489e-05  max resid 0.0002214528 
## ... Similar to previous best
## *** Solution reached
dat19_NMDS
## 
## Call:
## metaMDS(comm = dat2019ord, k = 4, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(dat2019ord)) 
## Distance: bray 
## 
## Dimensions: 4 
## Stress:     8.937595e-05 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'wisconsin(sqrt(dat2019ord))'
plot(dat19_NMDS)

site.scores <- as.data.frame(scores(dat19_NMDS, "site"))
site.scores
##          NMDS1         NMDS2         NMDS3         NMDS4
## 1    -117.7073  6.556532e-01 -1.361906e-02 -0.0523849292
## 2    -117.6709  9.856176e-01 -5.337472e-01  0.5168959843
## 3    -117.9580  1.896046e-01 -6.353395e-01 -0.2930927518
## 4    -117.8962 -5.084163e-01  3.136437e-01  0.7234411258
## 5    -118.1302  6.088370e-01 -1.997626e-01  0.8756484871
## 6    -117.7541  6.175670e-01 -4.630523e-01  0.3498528348
## 7    -117.9262  2.771208e-02 -3.576759e-01  0.0145436685
## 8    -118.0720  3.650050e-01  1.679943e-01  0.0551645224
## 9    -118.1656  7.103654e-01  2.423595e-01 -0.4143273599
## 10   -117.4032 -2.823815e-01  3.759963e-01 -0.9792952571
## 11   -117.8800 -1.360676e-01 -5.280182e-01  0.7167688300
## 12   -118.2522  3.045068e-01  2.140272e-01  0.8127857009
## 13   -117.5477 -1.141210e-01  6.198264e-01 -0.1114002420
## 14   -117.6709  9.856056e-01 -5.337297e-01  0.5169143791
## 15   -117.6267 -5.932115e-02 -2.606129e-01 -0.0610135702
## 16   -117.9337 -1.086650e-01 -5.939083e-01 -0.0417607256
## 17   -117.8806  2.832537e-01  2.972037e-01  0.3794964587
## 18   -118.0717  6.744728e-01  3.004219e-01  0.0318983385
## 19   -118.7601  2.427477e-01  1.000176e-01 -0.3522485224
## 20   -118.1112  2.965700e-01  2.542873e-01  0.9211522895
## 21   -117.6282 -3.949443e-01  5.722493e-02  0.2916645618
## 22   -118.0751  3.971005e-01  6.882970e-01  0.2099046785
## 23   -118.5639  1.686779e-01  6.652202e-01  0.7682263530
## 24   -118.0355  4.739921e-01  2.441574e-01  0.3887232466
## 25   -117.5233  2.965115e-01  6.033362e-01 -0.5092640762
## 26   -118.6393 -1.888228e+00  1.621254e+00  0.1999957317
## 27   -118.2930 -5.359474e-01  3.706293e-01 -0.6628904144
## 28   -118.7295  3.260209e-01  2.105900e-01  0.6267190918
## 29   -117.8281  3.273445e-02 -1.037634e+00  0.1712177654
## 30   -118.4594  1.057517e-01 -2.231097e-01 -0.5571679087
## 31   -117.7829  1.074510e-01  3.089605e-01 -0.0595204361
## 32   -118.1227 -1.321693e-02 -4.207964e-01  0.7081187523
## 33   -117.6369 -2.489404e-01  4.221246e-01 -0.6159078306
## 34   -118.3669  4.299969e-01 -2.402841e-01 -0.1266357258
## 35   -118.0803 -3.915009e-01 -5.237731e-01 -0.3424753084
## 36   -117.9685  4.389050e-01  3.808000e-01 -0.6054329421
## 37   -117.8015 -1.765282e-01 -3.320743e-01 -0.1974519942
## 38   -118.4286 -1.247441e-01  1.137552e-01  0.1014257113
## 39   -119.0607  9.784350e-01 -7.039962e-01  0.4405162175
## 40   -118.6515  1.996468e-01  7.523292e-01 -0.1481950276
## 41   -119.0496 -4.588911e-01  1.580383e-01  0.1150319967
## 42   -118.1632 -6.849038e-01  2.770679e-02 -0.4838552714
## 43   -118.2410  2.848245e-01 -8.986359e-02 -0.2090161810
## 44   -118.6554 -7.766769e-02 -5.290826e-02 -0.4089217463
## 45   -117.7465  2.657202e-01 -2.635336e-01  0.0300102065
## 46   -118.6979  4.921207e-02 -5.125958e-01 -0.1734214025
## 47   -117.5637  2.779636e-01  1.023492e-01 -0.4793681414
## 48   -117.8884 -7.176946e-02  6.113807e-02  0.3445765397
## 49   -117.6089  3.479466e-01 -5.193101e-02 -0.2868498149
## 50   -117.6576  5.490088e-01  1.522202e-01 -0.1754953134
## 51   -118.3661 -2.483516e-01 -7.786385e-01  0.0446232510
## 52   -118.3611 -3.437406e-01 -4.505305e-01 -0.6004718509
## 53   -117.7650 -3.598582e-01 -4.609705e-01 -0.1926077813
## 54   -117.9922  5.412454e-01  7.317756e-03  0.4211858831
## 55   -118.1905  1.300945e-01 -2.386525e-01  0.0318742175
## 56   -118.0414  6.102588e-01 -1.810224e-01  0.0118610662
## 57   -117.4622  1.963832e-02  3.007748e-01  0.2217360112
## 58   -117.1471 -1.566044e-01 -1.061683e+00  0.1616290328
## 59   -117.6735 -6.498212e-01 -2.200926e-01  0.2256966624
## 60   -117.6250  3.486193e-01 -7.968581e-02 -0.2008042198
## 61   -117.9003  1.019214e-02 -5.273067e-02  0.3344563952
## 62   -117.8020  7.598315e-02  4.154988e-01  0.1756607126
## 63   -118.3835 -4.075936e-01 -1.885326e-01 -0.2609802450
## 64   -117.8380 -9.778153e-02 -5.377643e-01  0.4039079365
## 65   -117.7327  4.457429e-01 -1.510657e-01 -0.5058625801
## 66   -117.8607  4.025070e-01  9.091101e-02 -0.4095293616
## 67   -119.1027  1.332685e+00 -2.675279e-01 -0.4254457617
## 68   -118.4075  1.338223e-01  2.665421e-02  0.9024670976
## 69   -118.6375  1.604336e-01 -2.727241e-01 -0.2649502776
## 70   -119.1187 -2.324387e-01 -1.810601e-01  0.2776798472
## 71   -118.6102 -1.500348e-01 -3.235656e-01 -0.0237713631
## 72   -117.8811  8.534490e-02  1.590390e-01 -0.6377083558
## 73   -117.9766 -4.317579e-02 -5.601367e-01  0.1646001390
## 74   -118.7819 -1.419604e-01 -5.157908e-01 -0.0879797494
## 75   -118.0800 -5.541574e-01  1.284923e-01 -0.1578270128
## 76   -117.6834  5.896370e-01  1.413943e-01 -0.3323317016
## 77   -117.8400 -3.732795e-01  3.074376e-01  0.3899956522
## 78   -117.8073 -6.039397e-01 -2.320453e-01  0.6769609238
## 79   -117.7073  6.556532e-01 -1.361906e-02 -0.0523849293
## 80  16653.6641  2.982353e-05  7.392663e-05  0.0003053001
## 81   -119.5140  5.228969e-01 -2.831994e-01  0.5938645559
## 82   -118.7066  4.903959e-01 -5.317008e-01  0.1846560381
## 83   -119.2418  8.964844e-01 -3.561249e-01  0.4005897024
## 84   -117.9897 -5.602141e-01 -4.552393e-01 -0.1087335906
## 85   -118.5500 -7.748859e-01 -5.594665e-01 -0.4357165175
## 86   -119.5506  2.223241e-01  5.097199e-01  1.0059858219
## 87   -117.9101  6.973262e-01  1.333978e-02  0.1492800945
## 88   -118.6236 -7.217921e-01  9.516854e-01  0.8330948895
## 89   -119.3365  9.137531e-01  1.842011e-01  0.5145455941
## 90   -117.8218 -4.303430e-01  9.561849e-01  0.1150012432
## 91   -117.9461  5.450363e-01  7.554290e-01 -0.4242765593
## 92   -117.9300 -1.751647e-01 -2.353156e-03  0.7194088185
## 93   -117.7737  2.352938e-01 -3.212329e-01  0.1923251854
## 94   -117.5066  3.051612e-01  2.587562e-02 -0.4924389134
## 95   -118.4620 -3.557378e-01  1.443771e-01  0.2449764133
## 96   -118.4070  7.449834e-01  2.651688e-01 -0.2708248594
## 97   -118.4583  1.725770e+00  1.800519e+00 -0.1707233792
## 98   -118.3056 -2.891438e-03  8.415205e-01  0.2215820183
## 99   -117.7332 -6.789769e-01  7.609322e-01  0.2655609166
## 100  -117.6482  1.946343e-01 -2.208238e-01 -0.0297230621
## 101  -118.4539 -7.218802e-01 -1.060260e-01  0.2279363047
## 102  -117.7054 -2.440296e-02 -6.689125e-02  0.2288079460
## 103  -118.3102  2.083139e-01  8.231624e-02 -0.5216568871
## 104  -117.5478 -1.120652e+00  4.586660e-01  0.9383011058
## 105  -117.7287 -5.258753e-01  3.535247e-01 -0.4421201552
## 106  -118.4802 -3.885885e-01  2.162247e-01 -0.1210103934
## 107  -118.2925 -1.635082e+00  1.469285e-01 -0.1490104344
## 108  -118.5199 -7.721624e-01 -1.835730e-01 -0.1971450077
## 109  -118.0212 -1.941893e-01  7.237381e-01 -0.2903452415
## 110  -118.4624 -2.620899e-01  5.933232e-02 -0.2445598645
## 111  -118.3277 -7.573656e-01 -4.993072e-01 -0.2170377149
## 112  -118.4026 -8.085312e-02 -4.991090e-01  0.0831681632
## 113  -118.0439 -6.566452e-01 -1.337878e-01 -0.7727172415
## 114  -117.7491 -1.323894e+00 -5.222171e-01  0.2337140086
## 115  -118.9907 -6.730617e-01  1.755067e-01  1.1683206628
## 116  -117.4316  5.732916e-01 -3.632194e-01  0.3856126057
## 117  -118.0018 -8.158552e-01 -5.005808e-01  0.2238314633
## 118  -118.3641 -6.953844e-01 -4.999198e-01 -0.1046579128
## 119  -118.6211  7.668745e-02  1.180844e-01 -0.2980289761
## 120  -117.8051  5.963994e-01  4.517388e-01 -0.5130261230
## 121  -118.7923  1.764175e-03  4.035534e-01 -0.4424525135
## 122  -118.8095 -3.789165e-01 -4.250229e-01 -0.2790915387
## 123  -118.2591 -5.447218e-01 -8.961302e-02 -0.0308351825
## 124  -117.9083  9.043778e-02  5.111276e-01 -0.3433992113
## 125  -118.3503 -4.332527e-02 -1.731016e-01 -0.5177990430
## 126  -118.1244  1.892130e-01  5.692033e-01 -0.1615467944
## 127  -117.8138 -7.001100e-01 -3.267167e-01 -0.2973495154
## 128  -118.8581 -7.647986e-01 -3.817533e-01  0.0345231670
## 129  -118.3111 -9.143623e-01  6.456220e-01  0.2880352724
## 130  -117.7995 -2.303651e-01 -1.050504e-01 -0.4453445580
## 131  -117.6941  1.518348e-01 -1.373308e-01 -0.1634702244
## 132  -117.8629  5.001015e-01 -8.274931e-03 -0.1589480884
## 133  -117.5859  3.174546e-01 -2.316479e-01  0.1129138876
## 134  -117.9049  2.472909e-01  3.350946e-01 -0.6528113777
## 135  -117.4329 -6.874340e-01 -2.264201e-01 -0.5446657179
## 136  -117.3888 -5.444808e-01 -2.975244e-01 -0.2502560399
## 137  -118.1526  1.264421e-02 -3.073114e-01 -0.8326349922
## 138  -117.7706  2.299801e-01 -1.610736e-01 -0.1083993816
## 139  -117.7128  6.443032e-01  9.591906e-03 -0.0989521945
## 140  -117.9278  5.063407e-01  1.388843e-01 -0.3451959372
## 141  -117.8534 -5.366321e-01  5.260391e-01 -0.0534146649
## 142  -117.5333  2.727053e-01 -2.222150e-01 -0.0910015870
dat_try2019=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>%
  select (-"Berberis trifoliolata", -"Vine A") %>%
  filter(code !="41_3")

trt_try= 
  read.csv("trt.csv") %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  rename(herb=Herbivory.Tr, fire= Fire.Energy.Tr)

trt2019=
  dat_try2019 %>%
  inner_join(trt_try) %>%
  select(code, herb, fire) 

dat2019ord=
  read.csv("cover19.csv")%>%
  mutate(DM_Cover=as.numeric(DM_Cover)) %>%
  unite("code",c(Plot,Subplot), sep="_") %>%
  as_tibble() %>%
  select(code,Species,DM_Cover) %>%
  pivot_wider(names_from = "Species", values_from = "DM_Cover", values_fill=0) %>% 
  select (-"Oxalis stricta",-"Berberis trifoliolata", -"Vine A") %>%
  filter(code !="41_3")%>%
  select(-code)
set.seed(101)  
dat19_NMDS=metaMDS(dat2019ord,k=4,trymax =1000)
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.1301534 
## Run 1 stress 0.1300628 
## ... New best solution
## ... Procrustes: rmse 0.01661139  max resid 0.1074907 
## Run 2 stress 0.1300739 
## ... Procrustes: rmse 0.009724374  max resid 0.0568385 
## Run 3 stress 0.1343117 
## Run 4 stress 0.1305389 
## ... Procrustes: rmse 0.01829743  max resid 0.07550609 
## Run 5 stress 0.1308982 
## Run 6 stress 0.1301583 
## ... Procrustes: rmse 0.01335899  max resid 0.08099544 
## Run 7 stress 0.1300954 
## ... Procrustes: rmse 0.003342052  max resid 0.02742332 
## Run 8 stress 0.13008 
## ... Procrustes: rmse 0.0137003  max resid 0.0698675 
## Run 9 stress 0.1310645 
## Run 10 stress 0.1328464 
## Run 11 stress 0.13005 
## ... New best solution
## ... Procrustes: rmse 0.001849439  max resid 0.01147041 
## Run 12 stress 0.1301131 
## ... Procrustes: rmse 0.00640712  max resid 0.03489886 
## Run 13 stress 0.1312104 
## Run 14 stress 0.1300683 
## ... Procrustes: rmse 0.002835654  max resid 0.01250772 
## Run 15 stress 0.1301051 
## ... Procrustes: rmse 0.009172482  max resid 0.06723056 
## Run 16 stress 0.1300595 
## ... Procrustes: rmse 0.001450472  max resid 0.009475022 
## ... Similar to previous best
## Run 17 stress 0.1324438 
## Run 18 stress 0.1319723 
## Run 19 stress 0.1300665 
## ... Procrustes: rmse 0.009345564  max resid 0.0561176 
## Run 20 stress 0.130069 
## ... Procrustes: rmse 0.01099618  max resid 0.05606138 
## *** Solution reached
dat19_NMDS
## 
## Call:
## metaMDS(comm = dat2019ord, k = 4, trymax = 1000) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(dat2019ord)) 
## Distance: bray 
## 
## Dimensions: 4 
## Stress:     0.13005 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation, halfchange scaling 
## Species: expanded scores based on 'wisconsin(sqrt(dat2019ord))'
plot(dat19_NMDS)