Data getting

data_profe_2_tot <- 
  data_profe_2 %>% 
  filter(str_detect(metodo, "TOT"))
data_profe_2_umb <- 
  data_profe_2 %>% 
  filter(str_detect(metodo, "UMB"))

Pregunta 1 - test de normalidad

Prueba de normalidad

TOT por cada método

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_FT_LSA_TOTAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_FT_LSA_TOTAQE") %>% select(V5) %>% unlist()
W = 0.8808, p-value < 2.2e-16
shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_FT_vsm_TOTAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_FT_vsm_TOTAQE") %>% select(V5) %>% unlist()
W = 0.87035, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_FT_LSA_TOT") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_FT_LSA_TOT") %>% select(V5) %>% unlist()
W = 0.92058, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_FT_vsm_TOT") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_FT_vsm_TOT") %>% select(V5) %>% unlist()
W = 0.90553, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_MD_vsm_TOTAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_MD_vsm_TOTAQE") %>% select(V5) %>% unlist()
W = 0.89218, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_MD_LSA_TOT") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_MD_LSA_TOT") %>% select(V5) %>% unlist()
W = 0.86281, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_MD_LSA_TOTAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_MD_LSA_TOTAQE") %>% select(V5) %>% unlist()
W = 0.85785, p-value < 2.2e-16

shapiro.test(data_profe_2_tot %>%
               filter(metodo %in% "ENmatResPreRec_MD_vsm_TOT") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_tot %>% filter(metodo %in% "ENmatResPreRec_MD_vsm_TOT") %>% select(V5) %>% unlist()
W = 0.86666, p-value < 2.2e-16

UMB por cada método

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_FT_LSA_UMBAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_FT_LSA_UMBAQE") %>% select(V5) %>% unlist()
W = 0.72948, p-value < 2.2e-16
shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_FT_vsm_UMBAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_FT_vsm_UMBAQE") %>% select(V5) %>% unlist()
W = 0.79481, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_FT_LSA_UMB") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_FT_LSA_UMB") %>% select(V5) %>% unlist()
W = 0.7876, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_FT_vsm_UMB") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_FT_vsm_UMB") %>% select(V5) %>% unlist()
W = 0.78295, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_MD_vsm_UMBAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_MD_vsm_UMBAQE") %>% select(V5) %>% unlist()
W = 0.84792, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_MD_LSA_UMB") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_MD_LSA_UMB") %>% select(V5) %>% unlist()
W = 0.70104, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_MD_LSA_UMBAQE") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_MD_LSA_UMBAQE") %>% select(V5) %>% unlist()
W = 0.64439, p-value < 2.2e-16

shapiro.test(data_profe_2_umb %>%
               filter(metodo %in% "ENmatResPreRec_MD_vsm_UMB") %>%
               select(V5) %>% unlist()
)

    Shapiro-Wilk normality test

data:  data_profe_2_umb %>% filter(metodo %in% "ENmatResPreRec_MD_vsm_UMB") %>% select(V5) %>% unlist()
W = 0.67084, p-value < 2.2e-16

Pregunta 2 - diferencias entre medianas

diferencias entre medianas del número de palabras

kruskal.test(factor(V3) ~ V5, data_profe_2)

    Kruskal-Wallis rank sum test

data:  factor(V3) by V5
Kruskal-Wallis chi-squared = 106513, df = 37620, p-value < 2.2e-16

Pregunta 3 - chi cuadrado y grados de libertad

kruskal.test(metodo ~ V5, 
             data_profe_2 %>% 
               filter(V3 == 2,
                      V7 ==1,
                      str_detect(metodo, 
                                 "TOT")))

    Kruskal-Wallis rank sum test

data:  metodo by V5
Kruskal-Wallis chi-squared = 2499.8, df = 2362, p-value = 0.02407
kruskal.test(metodo ~ V5, 
             data_profe_2 %>% 
               filter(V3 == 2,
                      V7 ==1,
                      str_detect(metodo, 
                                 "UMB")))

    Kruskal-Wallis rank sum test

data:  metodo by V5
Kruskal-Wallis chi-squared = 683.42, df = 604, p-value = 0.01352
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKIyBEYXRhIGdldHRpbmcgCgpgYGB7cn0KZGF0YV9wcm9mZV8yX3RvdCA8LSAKICBkYXRhX3Byb2ZlXzIgJT4lIAogIGZpbHRlcihzdHJfZGV0ZWN0KG1ldG9kbywgIlRPVCIpKQpgYGAKCmBgYHtyfQpkYXRhX3Byb2ZlXzJfdW1iIDwtIAogIGRhdGFfcHJvZmVfMiAlPiUgCiAgZmlsdGVyKHN0cl9kZXRlY3QobWV0b2RvLCAiVU1CIikpCmBgYAoKIyBQcmVndW50YSAxIC0gdGVzdCBkZSBub3JtYWxpZGFkCgojIFBydWViYSBkZSBub3JtYWxpZGFkIAoKIyMgVE9UIHBvciBjYWRhIG3DqXRvZG8KCmBgYHtyfQpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3RvdCAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19GVF9MU0FfVE9UQVFFIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgpgYGB7cn0Kc2hhcGlyby50ZXN0KGRhdGFfcHJvZmVfMl90b3QgJT4lCiAgICAgICAgICAgICAgIGZpbHRlcihtZXRvZG8gJWluJSAiRU5tYXRSZXNQcmVSZWNfRlRfdnNtX1RPVEFRRSIpICU+JQogICAgICAgICAgICAgICBzZWxlY3QoVjUpICU+JSB1bmxpc3QoKQopCmBgYAoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3RvdCAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19GVF9MU0FfVE9UIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgpgYGB7cn0KCnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdG90ICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX0ZUX3ZzbV9UT1QiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCgpgYGB7cn0KCnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdG90ICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX01EX3ZzbV9UT1RBUUUiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCgpgYGB7cn0KCnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdG90ICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX01EX0xTQV9UT1QiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCgpgYGB7cn0KCnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdG90ICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX01EX0xTQV9UT1RBUUUiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCgpgYGB7cn0KCnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdG90ICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX01EX3ZzbV9UT1QiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCiMjIFVNQiBwb3IgY2FkYSBtw6l0b2RvCgpgYGB7cn0Kc2hhcGlyby50ZXN0KGRhdGFfcHJvZmVfMl91bWIgJT4lCiAgICAgICAgICAgICAgIGZpbHRlcihtZXRvZG8gJWluJSAiRU5tYXRSZXNQcmVSZWNfRlRfTFNBX1VNQkFRRSIpICU+JQogICAgICAgICAgICAgICBzZWxlY3QoVjUpICU+JSB1bmxpc3QoKQopCmBgYAoKYGBge3J9CnNoYXBpcm8udGVzdChkYXRhX3Byb2ZlXzJfdW1iICU+JQogICAgICAgICAgICAgICBmaWx0ZXIobWV0b2RvICVpbiUgIkVObWF0UmVzUHJlUmVjX0ZUX3ZzbV9VTUJBUUUiKSAlPiUKICAgICAgICAgICAgICAgc2VsZWN0KFY1KSAlPiUgdW5saXN0KCkKKQpgYGAKCmBgYHtyfQoKc2hhcGlyby50ZXN0KGRhdGFfcHJvZmVfMl91bWIgJT4lCiAgICAgICAgICAgICAgIGZpbHRlcihtZXRvZG8gJWluJSAiRU5tYXRSZXNQcmVSZWNfRlRfTFNBX1VNQiIpICU+JQogICAgICAgICAgICAgICBzZWxlY3QoVjUpICU+JSB1bmxpc3QoKQopCmBgYAoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3VtYiAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19GVF92c21fVU1CIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3VtYiAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19NRF92c21fVU1CQVFFIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3VtYiAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19NRF9MU0FfVU1CIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3VtYiAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19NRF9MU0FfVU1CQVFFIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCgoKYGBge3J9CgpzaGFwaXJvLnRlc3QoZGF0YV9wcm9mZV8yX3VtYiAlPiUKICAgICAgICAgICAgICAgZmlsdGVyKG1ldG9kbyAlaW4lICJFTm1hdFJlc1ByZVJlY19NRF92c21fVU1CIikgJT4lCiAgICAgICAgICAgICAgIHNlbGVjdChWNSkgJT4lIHVubGlzdCgpCikKYGBgCiMgUHJlZ3VudGEgMiAtIGRpZmVyZW5jaWFzIGVudHJlIG1lZGlhbmFzCgpkaWZlcmVuY2lhcyBlbnRyZSBtZWRpYW5hcyBkZWwgbsO6bWVybyBkZSBwYWxhYnJhcyAKCmBgYHtyfQprcnVza2FsLnRlc3QoZmFjdG9yKFYzKSB+IFY1LCBkYXRhX3Byb2ZlXzIpCmBgYAojIFByZWd1bnRhIDMgLSBjaGkgY3VhZHJhZG8geSBncmFkb3MgZGUgbGliZXJ0YWQKCmBgYHtyfQprcnVza2FsLnRlc3QobWV0b2RvIH4gVjUsIAogICAgICAgICAgICAgZGF0YV9wcm9mZV8yICU+JSAKICAgICAgICAgICAgICAgZmlsdGVyKFYzID09IDIsCiAgICAgICAgICAgICAgICAgICAgICBWNyA9PTEsCiAgICAgICAgICAgICAgICAgICAgICBzdHJfZGV0ZWN0KG1ldG9kbywgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJUT1QiKSkpCmBgYAoKYGBge3J9CmtydXNrYWwudGVzdChtZXRvZG8gfiBWNSwgCiAgICAgICAgICAgICBkYXRhX3Byb2ZlXzIgJT4lIAogICAgICAgICAgICAgICBmaWx0ZXIoVjMgPT0gMiwKICAgICAgICAgICAgICAgICAgICAgIFY3ID09MSwKICAgICAgICAgICAgICAgICAgICAgIHN0cl9kZXRlY3QobWV0b2RvLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlVNQiIpKSkKYGBgCgoK