Desarrollar ejercicios de probabilidad
Construir ejercicios de probabilidad conforme a partir de datos conforme la teoría de probabilidad
En un espacio muestral de los números del 1 al 50, empezando en 1 y con saltos de tres en tres S=1,4,7,10,13,16,19….
¿Cuál es la probabilidad de elegir un número primo?,
¿Cuál es la probabilidad de elegir un número par?,
¿Cuál es la probabilidad de elegir un número impar o non?
S <- seq(1, 50, 3)
primos <- c(1, 7, 13, 19, 31, 37, 43)
pares <- c(4, 10, 16, 22, 28, 34, 40, 46)
nones <- c(1, 7, 13, 19, 25, 31, 37, 43, 49)
S
## [1] 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
primos
## [1] 1 7 13 19 31 37 43
pares
## [1] 4 10 16 22 28 34 40 46
nones
## [1] 1 7 13 19 25 31 37 43 49
La probabilidad de elegir un número primo
La función length(primos %in% S) que utiliza el operador %in% devuelve valor booleano TRUE o FALSE para saber si un valor está contenido en un conjunto y combinado con length() determina la cantidad de ocasiones.
n.primos <- length(primos %in% S)
N <- length(S)
n.primos
## [1] 7
N
## [1] 17
prob <- n.primos/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número primo es : ", prob, "%")
## [1] "La probabilidad de que elegir un número primo es : 41.18 %"
La probabilidad de elegir un número par
n.pares <- length(pares %in% S)
N <- length(S) #
n.pares
## [1] 8
N
## [1] 17
prob <- n.pares/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número par es : ", prob, "%")
## [1] "La probabilidad de que elegir un número par es : 47.06 %"
La probabilidad de elegir un número non o impar
n.nones <- length(nones %in% S)
N <- length(S) #
n.nones
## [1] 9
N
## [1] 17
prob <- n.nones/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número non es : ", prob, "%")
## [1] "La probabilidad de que elegir un número non es : 52.94 %"
Una bolsa contiene canicas 20 canicas, 14 rojas y 6 canicas negras,
¿cuál es la probabilidad de extraer de la bolsa una canica de color negra? 6/20
o una canica de color roja? 14/20
o una canica de color blanca?. CERO
S <- c(rep("NEGRA", 6), rep("ROJA", 14))
S
## [1] "NEGRA" "NEGRA" "NEGRA" "NEGRA" "NEGRA" "NEGRA" "ROJA" "ROJA" "ROJA"
## [10] "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA"
## [19] "ROJA" "ROJA"
N <- length(S) #
N
## [1] 20
negras <- rep("NEGRA", 6)
rojas <- rep("ROJA", 14)
n.negras <- length(negras %in% S)
n.rojas <- length(rojas %in% S)
n.negras
## [1] 6
n.rojas
## [1] 14
Probabilidad de canicas negras
prob <- round(n.negras / N,2) * 100
prob
## [1] 30
Probabilidad de canicas rojas
prob <- round(n.rojas /N, 2) * 100
prob
## [1] 70
En un espacio muestral de una lista de 70 nombres, algunos se repiten?, cual es la probabilidad de elegir a un nombre en particular?
S es el espacio muestral que contiene una lista de nombres de personas.
N El total de nombres en la lista.
n la cantidad de ocasiones que aparece un nombre en la lista.
prob es la probabilidad de elegir aleatoriamente a un nombre de la lista.
Con la función sample() se genera un nombre aleatorio a partir del espacio muestral S
Se utiliza length(which(S == nombre )) para determinar en cuántas veces existe en S el valor del nombre que ha sido generado aleatoriamente.
S <- c("Juan", "Paty", "Pedro", "Joaquín", "Lourdes", "Agustín", "Manuel", "Olga",
"Lucy", "José", "Rubén", "Pedro",
"Olga", "Luis", "Fernando", "Oscar",
"María", "Esmeralda", "Ernesto", "Saúl", "José", "María", "Pedro", "Saúl", "Ernesto", "María", "Luis", "Gerardo", "Héctor", "Saúl", "María", "Luis", "Lourdes", "Saúl", "Luis", "Fernando", "Rubén", "Agustín", "Joaquín", "Agustín", "Lucy", "José", "Juan", "Lucy", "Olga", "María", "Paty", "Olga", "María", "Paty", "Luis", "Rubén", "Oscar", "Gerardo", "Lucy", "Luis", "María", "José", "Juan", "Luis", "Lucy", "María", "Juan", "José", "Saúl", "María", "Fernando", "Oscar", "José", "Luis")
S
## [1] "Juan" "Paty" "Pedro" "Joaquín" "Lourdes" "Agustín"
## [7] "Manuel" "Olga" "Lucy" "José" "Rubén" "Pedro"
## [13] "Olga" "Luis" "Fernando" "Oscar" "María" "Esmeralda"
## [19] "Ernesto" "Saúl" "José" "María" "Pedro" "Saúl"
## [25] "Ernesto" "María" "Luis" "Gerardo" "Héctor" "Saúl"
## [31] "María" "Luis" "Lourdes" "Saúl" "Luis" "Fernando"
## [37] "Rubén" "Agustín" "Joaquín" "Agustín" "Lucy" "José"
## [43] "Juan" "Lucy" "Olga" "María" "Paty" "Olga"
## [49] "María" "Paty" "Luis" "Rubén" "Oscar" "Gerardo"
## [55] "Lucy" "Luis" "María" "José" "Juan" "Luis"
## [61] "Lucy" "María" "Juan" "José" "Saúl" "María"
## [67] "Fernando" "Oscar" "José" "Luis"
N <- length(S)
N
## [1] 70
nombre <- sample(x = S,size = 1 )
nombre
## [1] "Luis"
n <- length(which(S == nombre ))
n
## [1] 8
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a ", nombre, " de la lista de pesonas es del:" , prob, "%")
## [1] "La probabilidad de elegir a Luis de la lista de pesonas es del: 11.43 %"
Con tabla de distribución
tabla.distribucion <- table(S)
tabla.distribucion
## S
## Agustín Ernesto Esmeralda Fernando Gerardo Héctor Joaquín José
## 3 2 1 3 2 1 2 6
## Juan Lourdes Lucy Luis Manuel María Olga Oscar
## 4 2 5 8 1 9 4 3
## Paty Pedro Rubén Saúl
## 3 3 3 5
En un espacio muestral en donde existen 6500 alumnos en una institución educativa de nivel superior que cursan diferentes carreras cada uno de ellos ¿cual es la probabilidad de elegir aleatoriamente a un estudiante una carrera en particular?
Se crea por medio de una simulación un conjunto de datos semejante al utilizado en el caso 2. El data.frame contiene dos variables: un identificador de número de alumno y la carrera que cursa.
La variable carrera contiene las carreras profesionales de una institución educativa de nivel superior.
La variable distribuyen contiene la cantidad de alumnos por cada carrera.
carreras <- c("Arquitectura", "Civil", "Sistemas", "TIC", "Gestión")
distribuyen <- c(2000, 1800, 650, 150, 1800)
carreras
## [1] "Arquitectura" "Civil" "Sistemas" "TIC" "Gestión"
distribuyen
## [1] 2000 1800 650 150 1800
Generando los datos o el espacio muestral S
En la variable S.datos se crea un conjunto de datos aleatorio de 6500 alumnos distribuidos en distintas carreras, conorme y de acuerdo a la distribución.
Dentro de la función sample() que genera valores aleatorios, existe el atributo prob que se usa prob = c(distribuyen/N) para determinar las proporciones de alumnos por carrera.
N es el total de elementos del espacio muestral 6500
Se utiliza la semilla set.seed(2021) para que salgan los mismos resultados en la generación de alumnos.
head() y tail() indican que sólo se presenten los primeros y últimos diez registros.
N = 6500
set.seed(2021)
S.datos <- data.frame(numero = 1:N, carrera = sample(x = carreras, size = N, replace = TRUE, prob = c(distribuyen/N)))
head(S.datos, 10)
## numero carrera
## 1 1 Gestión
## 2 2 Civil
## 3 3 Civil
## 4 4 Gestión
## 5 5 Civil
## 6 6 Civil
## 7 7 Civil
## 8 8 Arquitectura
## 9 9 Civil
## 10 10 TIC
tail(S.datos, 10)
## numero carrera
## 6491 6491 Civil
## 6492 6492 Sistemas
## 6493 6493 Sistemas
## 6494 6494 Arquitectura
## 6495 6495 Sistemas
## 6496 6496 Gestión
## 6497 6497 TIC
## 6498 6498 Civil
## 6499 6499 Civil
## 6500 6500 Gestión
Generando una tabla de distribución para conocer cantidad de alumnos que se generaron o simulados por cada carrera utilizando precisamente la variable carrera del data.frame o del espacio meustral S.Datos.
tabla.distribucion <- table(S.datos$carrera)
tabla.distribucion
##
## Arquitectura Civil Gestión Sistemas TIC
## 2050 1787 1827 662 174
¿Cuál es la probabilidad de elegir a un alumno de TIC?
Se utiliza which(S.datos$carrera == “TIC”) para determinar la cantidad de n, o sea el número de alumnos de esa carrera y debe concordar con la tabla de distribución
Luego se determina de manera natural la probabilidad de que sea elegido un alumno de esa carrera.
n <- length(which(S.datos$carrera == "TIC"))
n
## [1] 174
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de TIC es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de TIC es: 2.68 %"
¿Cuál es la probabilidad de elegir a un alumno de Arquitectura?
¿Cuál es la probabilidad de elegir a un alumno de Sistemas?
¿Cuál es la probabilidad de elegir a un alumno de Civil?
¿Cuál es la probabilidad de elegir a un alumno de Gestión?
La interpretación del caso deberá hacerse de manera descriptiva con ideas personales del autor con una extensión 80 a 100 palabras acerca del caso.
Ideas con oraciones claras y precisas
En este caso vemos el como empezar a usar las probabilidades (que es de lo que se trata la clase) y lo vemos con varios ejemplos para entenderlo mejor y saber como aplicarlo en futuras ocaciones, en nuestra vida profecional y en nuestra vida personal y tambien vimos los diferentes tipos de codigos que podemos usar para poder ver la informacion que necesitamos y organizarla como la queramos para asi sea mucho mas comodo poder consultar los datos que necesitamos
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.