Desarrollar ejercicios de probabilidad
Construir ejercicios de probabilidad conforme a partir de datos conforme la teoría de probabilidad
Pendiente
En un espacio muestral de los números del 1 al 50, empezando en 1 y con saltos de tres en tres \(S=1,4,7,10,13,16,19....\)
¿Cuál es la probabilidad de elegir un número primo?,
¿Cuál es la probabilidad de elegir un número par?,
¿Cuál es la probabilidad de elegir un número impar o non?
S <- seq(1, 50, 3)
primos <- c(1, 7, 13, 19, 31, 37, 43)
pares <- c(4, 10, 16, 22, 28, 34, 40, 46)
nones <- c(1, 7, 13, 19, 25, 31, 37, 43, 49)
S
## [1] 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
primos
## [1] 1 7 13 19 31 37 43
pares
## [1] 4 10 16 22 28 34 40 46
nones
## [1] 1 7 13 19 25 31 37 43 49
La probabilidad de elegir un número primo
La función length(primos %in% S) que utiliza el operador %in% devuelve valor booleano TRUE o FALSE para saber si un valor está contenido en un conjunto y combinado con length() determina la cantidad de ocasiones.
n.primos <- length(primos %in% S)
N <- length(S) #
n.primos
## [1] 7
N
## [1] 17
prob <- n.primos/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número primo es : ", prob, "%")
## [1] "La probabilidad de que elegir un número primo es : 41.18 %"
La probabilidad de elegir un número par
n.pares <- length(pares %in% S)
N <- length(S) #
n.pares
## [1] 8
N
## [1] 17
prob <- n.pares/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número par es : ", prob, "%")
## [1] "La probabilidad de que elegir un número par es : 47.06 %"
La probabilidad de elegir un número non o impar
n.nones <- length(nones %in% S)
N <- length(S) #
n.nones
## [1] 9
N
## [1] 17
prob <- n.nones/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de que elegir un número non es : ", prob, "%")
## [1] "La probabilidad de que elegir un número non es : 52.94 %"
Una bolsa contiene canicas 20 canicas, 14 rojas y 6 canicas negras,
¿cuál es la probabilidad de extraer de la bolsa una canica de color negra? 6/20
o una canica de color roja? 14/20
o una canica de color blanca?. CERO
S <- c(rep("NEGRA", 6), rep("ROJA", 14))
S
## [1] "NEGRA" "NEGRA" "NEGRA" "NEGRA" "NEGRA" "NEGRA" "ROJA" "ROJA" "ROJA"
## [10] "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA" "ROJA"
## [19] "ROJA" "ROJA"
N <- length(S) #
N
## [1] 20
negras <- rep("NEGRA", 6)
rojas <- rep("ROJA", 14)
n.negras <- length(negras %in% S)
n.rojas <- length(rojas %in% S)
n.negras
## [1] 6
n.rojas
## [1] 14
Probabilidad de canicas negras
prob <- round(n.negras / N,2) * 100
prob
## [1] 30
Probabilidad de canicas rojas
prob <- round(n.rojas /N, 2) * 100
prob
## [1] 70
En un espacio muestral de una lista de 70 nombres, algunos se repiten?, cual es la probabilidad de elegir a un nombre en particular?
\(S\) es el espacio muestral que contiene una lista de nombres de personas.
\(N\) El total de nombres en la lista.
n la cantidad de ocasiones que aparece un nombre en la lista.
\(prob\) es la probabilidad de elegir aleatoriamente a un nombre de la lista.
Con la función sample() se genera un nombre aleatorio a partir del espacio muestral SS
Se utiliza length(which(S == nombre )) para determinar en cuántas veces existe en S el valor del nombre que ha sido generado aleatoriamente.
S <- c("Juan", "Paty", "Pedro", "Joaquín", "Lourdes", "Agustín", "Manuel", "Olga",
"Lucy", "José", "Rubén", "Pedro",
"Olga", "Luis", "Fernando", "Oscar",
"María", "Esmeralda", "Ernesto", "Saúl", "José", "María", "Pedro", "Saúl", "Ernesto", "María", "Luis", "Gerardo", "Héctor", "Saúl", "María", "Luis", "Lourdes", "Saúl", "Luis", "Fernando", "Rubén", "Agustín", "Joaquín", "Agustín", "Lucy", "José", "Juan", "Lucy", "Olga", "María", "Paty", "Olga", "María", "Paty", "Luis", "Rubén", "Oscar", "Gerardo", "Lucy", "Luis", "María", "José", "Juan", "Luis", "Lucy", "María", "Juan", "José", "Saúl", "María", "Fernando", "Oscar", "José", "Luis")
S
## [1] "Juan" "Paty" "Pedro" "Joaquín" "Lourdes" "Agustín"
## [7] "Manuel" "Olga" "Lucy" "José" "Rubén" "Pedro"
## [13] "Olga" "Luis" "Fernando" "Oscar" "María" "Esmeralda"
## [19] "Ernesto" "Saúl" "José" "María" "Pedro" "Saúl"
## [25] "Ernesto" "María" "Luis" "Gerardo" "Héctor" "Saúl"
## [31] "María" "Luis" "Lourdes" "Saúl" "Luis" "Fernando"
## [37] "Rubén" "Agustín" "Joaquín" "Agustín" "Lucy" "José"
## [43] "Juan" "Lucy" "Olga" "María" "Paty" "Olga"
## [49] "María" "Paty" "Luis" "Rubén" "Oscar" "Gerardo"
## [55] "Lucy" "Luis" "María" "José" "Juan" "Luis"
## [61] "Lucy" "María" "Juan" "José" "Saúl" "María"
## [67] "Fernando" "Oscar" "José" "Luis"
N <- length(S)
N
## [1] 70
nombre <- sample(x = S,size = 1 )
nombre
## [1] "Fernando"
n <- length(which(S == nombre ))
n
## [1] 3
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a ", nombre, " de la lista de pesonas es del:" , prob, "%")
## [1] "La probabilidad de elegir a Fernando de la lista de pesonas es del: 4.29 %"
Con tabla de distribución
tabla.distribucion <- table(S)
tabla.distribucion
## S
## Agustín Ernesto Esmeralda Fernando Gerardo Héctor Joaquín José
## 3 2 1 3 2 1 2 6
## Juan Lourdes Lucy Luis Manuel María Olga Oscar
## 4 2 5 8 1 9 4 3
## Paty Pedro Rubén Saúl
## 3 3 3 5
En un espacio muestral en donde existen 6500 alumnos en una institución educativa de nivel superior que cursan diferentes carreras cada uno de ellos ¿cual es la probabilidad de elegir aleatoriamente a un estudiante una carrera en particular?
Se crea por medio de una simulación un conjunto de datos semejante al utilizado en el caso 2. El data.frame contiene dos variables: un identificador de número de alumno y la carrera que cursa.
La variable carrera contiene las carreras profesionales de una institución educativa de nivel superior.
La variable distribuyen contiene la cantidad de alumnos por cada carrera.
carreras <- c("Arquitectura", "Civil", "Sistemas", "TIC", "Gestión")
distribuyen <- c(2000, 1800, 650, 150, 1800)
carreras
## [1] "Arquitectura" "Civil" "Sistemas" "TIC" "Gestión"
distribuyen
## [1] 2000 1800 650 150 1800
Generando los datos o el espacio muestral \(S\)
En la variable S.datos se crea un conjunto de datos aleatorio de 6500 alumnos distribuidos en distintas carreras, conorme y de acuerdo a la distribución.
Dentro de la función sample() que genera valores aleatorios, existe el atributo prob que se usa prob = c(distribuyen/N) para determinar las proporciones de alumnos por carrera.
\(N\) es el total de elementos del espacio muestral 6500
Se utiliza la semilla set.seed(2021) para que salgan los mismos resultados en la generación de alumnos.
head() y tail() indican que sólo se presenten los primeros y últimos diez registros.
N = 6500
set.seed(2021)
S.datos <- data.frame(numero = 1:N, carrera = sample(x = carreras, size = N, replace = TRUE, prob = c(distribuyen/N)))
head(S.datos, 10)
## numero carrera
## 1 1 Gestión
## 2 2 Civil
## 3 3 Civil
## 4 4 Gestión
## 5 5 Civil
## 6 6 Civil
## 7 7 Civil
## 8 8 Arquitectura
## 9 9 Civil
## 10 10 TIC
tail(S.datos, 10)
## numero carrera
## 6491 6491 Civil
## 6492 6492 Sistemas
## 6493 6493 Sistemas
## 6494 6494 Arquitectura
## 6495 6495 Sistemas
## 6496 6496 Gestión
## 6497 6497 TIC
## 6498 6498 Civil
## 6499 6499 Civil
## 6500 6500 Gestión
Generando una tabla de distribución para conocer cantidad de alumnos que se generaron o simulados por cada carrera utilizando precisamente la variable carrera del data.frame o del espacio meustral S.Datos.
tabla.distribucion <- table(S.datos$carrera)
tabla.distribucion
##
## Arquitectura Civil Gestión Sistemas TIC
## 2050 1787 1827 662 174
¿Cuál es la probabilidad de elegir a un alumno de TIC?
Se utiliza which(S.datos$carrera == “TIC”) para determinar la cantidad de \(n\), o sea el número de alumnos de esa carrera y debe concordar con la tabla de distribución
Luego se determina de manera natural la probabilidad de que sea elegido un alumno de esa carrera.
n <- length(which(S.datos$carrera == "TIC"))
n
## [1] 174
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de TIC es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de TIC es: 2.68 %"
¿Cuál es la probabilidad de elegir a un alumno de Arquitectura?
n <- length(which(S.datos$carrera == "Arquitectura"))
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de Arquitectura es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de Arquitectura es: 31.54 %"
¿Cuál es la probabilidad de elegir a un alumno de Sistemas?
n <- length(which(S.datos$carrera == "Sistemas"))
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de Sistemas es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de Sistemas es: 10.18 %"
¿Cuál es la probabilidad de elegir a un alumno de Civil?
n <- length(which(S.datos$carrera == "Civil"))
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de Civil es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de Civil es: 27.49 %"
¿Cuál es la probabilidad de elegir a un alumno de Gestión?
n <- length(which(S.datos$carrera == "Gestión"))
prob <- n/N #
prob <- round(prob * 100,2)
paste ("La probabilidad de elegir a un alumno de Gestión es:" , prob, "%")
## [1] "La probabilidad de elegir a un alumno de Gestión es: 28.11 %"
Este caso, el cual no era tan complicado nos dejo con algunos conocimientos estadísticos, el principal diría yo que es el poder saber cuantos hay de cada cosa en el conjunto de datos, es decir, que si queremos saber cuantos “Luis” o cuantos “Pedro” hay en un conjunto de datos, ahora lo podemos saber. Esto nos puede servir para poder obtener porcentajes de una manera más rápida, ya que es tan sencillo como poner el número de veces que se repite eso que quieres entre el número total de datos que tienes y una vez teniendo eso, es tan sencillo como multiplicar por 100. Como consideración personal opino que esta forma es una mucho más digerible para las personas, ya que hay ocasiones en la que los términos no llegan a ser tan sencillos para todas las personas.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.