+++++++++++++++++++***************************+++++++++++++++++++++++++++

It is now 420 days since the first COVID-19 case was reported in Nigeria. As at April 23, 2021 the confirmed cases are 167,522 with 2,061 (1.25%) fatalities, however, 154,643 (93.93%) have recovered leaving 7,929 (4.82%) active cases.

Based on equal days forecast, by June 17, 2022, Nigeria’s aggregate confirmed COVID-19 cases are forecast to be:

Model Confirmed cases Recoveries Fatalities Active RMSE
Without knots 3,478,739 3,267,580 43,484 167,675 195
Upper ARIMA 822,879 772,930 10,286 39,663 200
Essembled with equal weight 664,124 623,811 8,302 32,011 231
Essembled based on weight of fit 329,337 309,346 4,117 15,874 291
Essembled based on weight 50,381 47,323 630 2,428 173
Quadratic Polynomial 27,750 26,065 347 1,338 397
With knots 19,360 18,185 242 933 179
Essembled based on summed weight -184,392 -173,200 -2,305 -8,888 178
Smooth Spline -668,039 -627,489 -8,350 -32,199 387
Lower ARIMA -759,095 -713,018 -9,489 -36,588 200

Refer to Table 2 and Table 3 as well as Fig. 18-20 for more details on how the estimates and forecasts were obtained.

+++++++++++++++++++***************************+++++++++++++++++++++++++++

The visuals below supports this facts, take a look!

Fig. 1a Daily observed cases of COVID-19 in Nigeria

Fig. 2 Perecentages and previous days differences of COVID-19 in Nigeria Starting from February 29, 2020 to April 23, 2021

Fig. 3 Cases recorded in percentages Starting from February 29, 2020 to April 23, 2021 (legend as Fig. 2)

Fig. 4 Cumulative cases and Forecast of COVID-19 cases in Nigeria Starting from April 23, 2021 to June 17, 2022

Fig. 4a Components of COVID-19 cases in Nigeria between February 29, 2020 and April 23, 2021

Fig. 5 Number of days since average recorded cases exceeded one in each State

Fig. 6 Daily confirmed Coronavirus cases, by number of the days since 1 first daily case recorded

Fig. 7 Number of days from February 29, 2020 to April 23, 2021 that cases were recorded in the States

Fig. 8 Number of days the last COVID19 case was recorded as at April 23, 2021

Fig. 9 Diverging Bars of COVID-19 cases in the States (normalised)

Fig. 10 Monthly summary of COVID19 cases in the States

Fig. 11 Daily recorded cases of COVID19 in the States

Fig. 12 Number of days since average recorded cases exceeded one in each geo-political zone

Fig. 13 Number of days from February 29, 2020 to April 23, 2021 that cases were recorded in the Zones

Fig. 14 Monthly summary of COVID19 cases in the Zones

Table 1 Regression estimates of factors that might have stressed Nigeria’s economy within the period of the COVID-19 pandemic

COVID19PMSInflationTeledensityBirth ratePopulation
(Intercept)-314.283     -1041.323     -265.706    535.259     -42.626 ****15.902 ****
(471.641)    (2340.704)    (301.446)   (502.257)    (7.679)    (0.367)    
PMSprice-0.183 ****         0.112 ***0.208 ****0.001     0.000     
(0.030)             (0.024)   (0.029)    (0.002)    (0.001)    
Inflation1.199 *** 6.366 ***         -1.137 **  -0.030 *   0.006     
(0.321)    (1.341)            (0.420)    (0.014)    (0.005)    
Teledensity0.816 ****4.096 ****-0.395 **          0.000     -0.003     
(0.132)    (0.571)    (0.146)            (0.010)    (0.003)    
`Birth rate`4.372     29.389     -11.533 *  0.420              0.298 ****
(9.864)    (47.844)    (5.222)   (11.000)             (0.047)    
Population14.072     37.199     20.142    -27.346     2.752 ****         
(29.945)    (147.934)    (18.532)   (32.172)    (0.430)             
COVID19         -4.380 ****0.507 ***0.993 ****0.005     0.002     
         (0.731)    (0.136)   (0.160)    (0.011)    (0.004)    
nobs15         15         15        15         15         15         
r.squared0.893     0.953     0.927    0.932     0.917     0.911     
adj.r.squared0.834     0.927     0.887    0.894     0.871     0.861     
sigma1.015     4.973     0.660    1.120     0.034     0.011     
statistic15.044     36.345     22.894    24.585     19.963     18.314     
p.value0.000     0.000     0.000    0.000     0.000     0.000     
df5.000     5.000     5.000    5.000     5.000     5.000     
logLik-17.682     -41.513     -11.227    -19.155     33.293     49.970     
AIC49.363     97.027     36.454    52.310     -52.586     -85.940     
BIC54.319     101.983     41.410    57.267     -47.630     -80.983     
deviance9.279     222.580     3.924    11.293     0.010     0.001     
df.residual9.000     9.000     9.000    9.000     9.000     9.000     
nobs.115.000     15.000     15.000    15.000     15.000     15.000     
**** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1.

Fig. 15 COVID-19, inflation, PMS price, Teledensity and birth rate in Nigeria

Fig. 15 Relationship between COVID-19, inflation, PMS price, Teledensity and birth rate in Nigeria

Table 2 The coefficient estimates of the various models for forecasting of COVID-19 for Nigeria1

Spline with knotsSpline without knotsARIMAQuardratic polynomial
(Intercept)175.273 **  -1.620          -64.620     
(75.141)    (75.390)         (58.601)    
bs(niz[, 1], knots = NULL)1-363.578 *                          
(217.172)                           
bs(niz[, 1], knots = NULL)21229.276 ****                       
(137.965)                           
bs(niz[, 1], knots = NULL)330.650                            
(118.597)                           
bs(niz[, 1], knots = BREAKS)1         -1.182                   
         (145.742)                  
bs(niz[, 1], knots = BREAKS)2         19.175                   
         (94.409)                  
bs(niz[, 1], knots = BREAKS)3         833.097 ****              
         (108.223)                  
bs(niz[, 1], knots = BREAKS)4         184.336 **                
         (91.938)                  
bs(niz[, 1], knots = BREAKS)5         169.340 *                 
         (100.662)                  
bs(niz[, 1], knots = BREAKS)6         -27.596                   
         (94.671)                  
bs(niz[, 1], knots = BREAKS)7         2698.340 ****              
         (115.095)                  
bs(niz[, 1], knots = BREAKS)8         -904.006 ****              
         (117.355)                  
bs(niz[, 1], knots = BREAKS)9         319.098 ***               
         (101.601)                  
ar1                  1.005          
                  (0.103)         
ar2                  -0.303          
                  (0.059)         
ma1                  -1.651          
                  (0.095)         
ma2                  0.754          
                  (0.076)         
Day                       4.202 ****
                       (0.643)    
I(Day^2)                       -0.007 ****
                       (0.001)    
nobs420         420         419     420         
r.squared0.203     0.797          0.159     
adj.r.squared0.197     0.792          0.155     
sigma388.426     197.615     201.131 398.419     
statistic35.326     178.516          39.561     
p.value0.000     0.000          0.000     
df3.000     9.000          2.000     
logLik-3098.028     -2811.148     -2815.425 -3109.201     
AIC6206.056     5644.297     5640.851 6226.402     
BIC6226.257     5688.739     5661.040 6242.563     
deviance62763909.877     16011186.663          66193747.337     
df.residual416.000     410.000          417.000     
nobs.1420.000     420.000     419.000 420.000     
**** p < 0.001; *** p < 0.01; ** p < 0.05; * p < 0.1.

Table 3 Various selection criteria for the estimated models2
Spline with knots Spline without knots Smooth spline ARIMA Quardratic polynomial
Absolute Error 124348 44377 37554 43099 119583
Absolute Percent Error Inf Inf Inf Inf Inf
Accuracy 0 0 0 0 0
Adjusted R Square 0.2 0.79 0 0 0.16
Akaike’s Information Criterion AIC 6206 5644 0 5641 6226
Allen’s Prediction Sum-Of-Squares (PRESS, P-Square) 0 0 0 0 0.15
Area under the ROC curve (AUC) 0.2 0.05 0.01 0.02 0.01
Average Precision at k 0 0 0 0 0
Bias 0 0 0 0.52 0
Brier score 149438 38122 32102 39972 157604
Classification Error 1 1 1 1 1
F1 Score 0 0 0 0 0
fScore 0 0 0 0 0
GINI Coefficient 1 1 1 1 1
kappa statistic 0 0 0 0 0
Log Loss Inf Inf Inf Inf Inf
Mallow’s cp 4 10 0 0 3
Matthews Correlation Coefficient 0 0 0 0 0
Mean Log Loss Inf Inf Inf Inf Inf
Mean Absolute Error 296 106 89 103 285
Mean Absolute Percent Error Inf Inf Inf Inf Inf
Mean Average Precision at k 0 0 0 0 0
Mean Absolute Scaled Error 2.5 0.89 0.75 0.86 2.4
Median Absolute Error 260 59 40 52 250
Mean Squared Error 149438 38122 32102 39972 157604
Mean Squared Log Error 2.4 NaN 0.18 0.18 NaN
Model turning point error 215 202 197 273 216
Negative Predictive Value 0 0 0 0 0
Percent Bias -Inf NaN NaN NaN NaN
Positive Predictive Value 0 0 0 0 0
Precision NaN NaN NaN NaN NaN
R Square 0.2 0.8 0 0 0.16
Relative Absolute Error 0.94 0.33 0.28 0.32 0.9
Recall 164 -1.3 -0.16 0.5 -40
Root Mean Squared Error 387 195 179 200 397
Root Mean Squared Log Error 1.5 NaN 0.42 0.43 NaN
Root Relative Squared Error 0.89 0.45 0.41 0.46 0.92
Relative Squared Error 0.8 0.2 0.17 0.21 0.84
Schwarz’s Bayesian criterion BIC 6226 5689 0 5661 6243
Sensitivity 0 0 0 0 0
specificity 0 0 0 0 0
Squared Error 62763910 16011187 13483043 16788341 66193747
Squared Log Error 990 NaN 74 77 NaN
Symmetric Mean Absolute Percentage Error 0.87 0.47 0.34 0.38 0.81
Sum of Squared Errors 62763910 16011187 13483043 16788341 66193747
True negative rate 0 0 0 0 0
True positive rate 0 0 0 0 0

Fig. 18 Models of COVID-19 Cases using ensemble technology

Fig. 19 Equal duration forecast of COVID-19 Cases from the ensemble models using a native plotting method

Fig. 20 Forecast of COVID-19 cases in Nigeria Starting from April 23, 2021 to June 17, 2022 using a more advaced plotting method

Fig. 20a Lagged forecasts (1-14 days) of COVID-19 cases in Nigeria

Table 4 Summary of the dynamic COVID-19 forecasts
Model Apr 10, 21 - May 20, 22 Apr 17, 21 - Jun 03, 22 Apr 20, 21 - Jun 09, 22 Apr 21, 21 - Jun 11, 22 Apr 22, 21 - Jun 13, 22 Apr 23, 21 - Jun 15, 22
Without knots -241075 -474037 -565413 -589428 -616302 -640268
Smooth Spline 2306377 2945009 3156764 3267424 3341193 3429841
With knots -152203 -108785 -158406 18928 31322 111174
Quadratic Polynomial 214041 117047 76552 65116 52518 40804
Lower ARIMA -734418 -750904 -758481 -752286 -755388 -752463
Upper ARIMA 796130 805475 809195 818575 819182 825966
Essembled with equal weight 343924 488383 447601 536767 647700 654879
Essembled based on weight 249673 253691 260932 262296 263825 265313
Essembled based on summed weight 128540 77550 56952 49094 44578 37184
Essembled based on weight of fit 203918 249155 216266 265712 326761 326908
Table 3 RMSE of the models in the dynamic forecasts
Model Apr 10, 21 - May 20, 22 Apr 17, 21 - Jun 03, 22 Apr 20, 21 - Jun 09, 22 Apr 21, 21 - Jun 11, 22 Apr 22, 21 - Jun 13, 22 Apr 23, 21 - Jun 15, 22
Without knots 390.48 389.09 388.16 387.75 387.37 386.95
Smooth Spline 194.52 194.42 194.76 194.74 194.88 194.97
With knots 182.11 180.48 179.94 179.75 179.38 179.35
Quadratic Polynomial 395.24 396.85 397.19 397.09 397.08 396.98
Lower ARIMA 203.3 201.58 200.86 200.63 200.39 200.16
Upper ARIMA 203.3 201.58 200.86 200.63 200.39 200.16
Essembled with equal weight 233.11 232.05 231.62 231.41 231.21 231.05
Essembled based on weight 453.25 451.52 450.92 450.6 450.38 450.13
Essembled based on summed weight 451.94 448.76 447.36 446.8 446.3 445.75
Essembled based on weight of fit 210.54 209.08 209.14 209.15 209.23 209.33

Fig. 21 Percentage of COVID19 cases that resulted into casualty per State as at April 23, 2021

Fig. 22 Percentage of COVID19 cases that recovered per State as at April 23, 2021

Fig. 23 Percentage of recoveries and deaths from COVID19 cases per Zone as at April 23, 2021

Fig. 24 Distribution of COVID19 in the States as at April 23, 2021


  1. Note that Smooth spline does not estimate coefficients and other model-characteristic statistics↩︎

  2. Multiclass Area Under the Curve (MAUC) is the mean of the various AUC estimated from the same data↩︎