Data
Search for Best Configuration
M1 <- 1
M2 <- 1000000
Xsum <- numeric(0)
Values_mat <- numeric(0)
for(k in M1:M2){
set.seed(k)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
Xsum <- c(Xsum, red_and_black(class_roll)$Xsum)
Values_mat <- rbind(Values_mat, red_and_black(class_roll)$Values)
}
colnames(Values_mat) <- paste0("X", 1:6)
# Values_mat
# pairs(Values_mat)
cor(Values_mat) %>%
round(4)
## X1 X2 X3 X4 X5 X6
## X1 1.0000 -0.0051 0.0214 0.0044 -0.0030 -0.0029
## X2 -0.0051 1.0000 -0.0026 0.0013 -0.0041 0.0001
## X3 0.0214 -0.0026 1.0000 0.0029 -0.0014 -0.0031
## X4 0.0044 0.0013 0.0029 1.0000 -0.0029 0.0033
## X5 -0.0030 -0.0041 -0.0014 -0.0029 1.0000 -0.0037
## X6 -0.0029 0.0001 -0.0031 0.0033 -0.0037 1.0000
names(Xsum) <- M1:M2
Xsum %>%
summary %>%
round(2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.31 16.44 20.41 21.04 24.96 68.25
Xsum %>%
sd %>%
round(2)
## [1] 6.41
Xsum %>%
`<=`(5) %>%
which %>%
`[`(Xsum, .) %>%
round(2)
## 1900 16384 24646 33185 37083 55344 67299 80874 100233 108774 115137
## 4.63 4.51 4.88 4.68 4.36 4.04 4.34 4.78 3.31 4.86 3.82
## 118923 124060 131851 152699 155447 157619 186470 213067 223340 225595 244478
## 4.37 4.65 4.73 4.38 4.67 4.72 4.79 4.48 3.68 4.99 4.25
## 253340 255575 270187 274802 275441 281145 283401 287655 319414 321610 324435
## 4.15 4.93 4.99 4.63 4.48 4.88 4.10 4.25 4.13 3.68 4.26
## 326385 337292 351139 361306 369784 370282 373869 384228 391026 413053 414754
## 4.69 4.50 4.09 4.64 3.70 4.46 4.79 4.31 4.31 4.46 4.81
## 422266 431524 441132 441650 456587 457217 463176 482861 489554 492638 502211
## 4.63 4.69 4.89 4.63 4.31 4.53 4.70 4.73 4.12 4.91 4.16
## 504636 504988 509393 509657 516585 516916 526907 527513 529318 548289 554452
## 4.85 4.30 4.74 4.68 4.51 4.28 4.44 4.93 3.74 4.43 4.41
## 568354 585241 594445 605087 618265 636580 639558 645885 646680 654583 657844
## 4.50 3.81 4.78 4.46 4.62 4.96 4.88 4.55 4.53 4.59 3.31
## 660599 660971 672332 672681 682193 686028 699464 713810 734647 744170 759972
## 4.23 4.15 4.80 4.46 4.09 4.54 3.99 4.03 4.95 4.96 4.68
## 776720 784663 808624 809179 811607 815626 816982 833888 840796 846764 880678
## 3.58 4.86 4.57 4.21 4.64 4.95 4.85 4.99 4.53 4.97 4.64
## 883771 885118 897421 921431 924497 925634 925874 925909 935059 941709 946958
## 4.45 4.91 4.63 3.72 4.79 4.87 4.98 4.52 4.93 4.82 4.87
## 948219 948558 956837 968932 971916
## 4.52 4.01 4.18 4.09 4.78
Xmin <- names(Xsum[which(Xsum == min(Xsum))])
Xmin
## [1] "657844"
Plot
hist(Xsum, prob = TRUE, nclass = 30, xlim = c(0, 50), ylim = c(0, 0.065))
x <- seq(0, 50, by = 0.1)
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

plot(density(Xsum), xlim = c(0, 50), main = "Density Estimation of Xsum")
lines(x, dchisq(x, df = 21), col = "red")
legend("topright", inset = 0.05, legend = c("Xsum", "Chi-square(21)"), col = c("black", "red"), lty = 1)

Randomization
set.seed(Xmin)
N <- nrow(class_roll)
class_roll$group <-
sample(1:N) %%
2 %>%
factor(levels = c(0, 1), labels = c("Red", "Black"))
red_and_black(class_roll)
## $Values
## [1] 2.086401926 0.008232683 0.000000000 0.015766423 0.805979526 0.390605741
##
## $Xsum
## [1] 3.306986
학번
class_roll$id_2 <-
class_roll$id %>%
ifelse(. <= 2015, "2015", .)
tbl1 <- class_roll %$%
table(.$group, .$id_2 %>% substr(1, 4)) %>%
`colnames<-`(c("2015 이전", 2016:2021))
tbl1 %>%
pander
Red |
16 |
37 |
33 |
36 |
20 |
64 |
37 |
Black |
16 |
31 |
31 |
38 |
15 |
68 |
44 |
X1 <- tbl1 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X1
## X-squared
## 2.086402
학번 홀짝
tbl2 <- class_roll$id %>%
as.numeric %>%
`%%`(2) %>%
factor(levels = c(1, 0), labels = c("홀", "짝")) %>%
table(class_roll$group, .)
tbl2 %>%
pander
Red |
120 |
123 |
Black |
119 |
124 |
X2 <- tbl2 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X2
## X-squared
## 0.008232683
학적 상태
tbl3 <- class_roll$status %>%
table(class_roll$group, .)
tbl3 %>%
pander
X3 <- tbl3 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X3
## X-squared
## 0
e-mail 서비스업체
tbl4 <- class_roll$email %>%
strsplit("@", fixed = TRUE) %>%
sapply("[", 2) %>%
`==`("naver.com") %>%
ifelse("네이버", "기타서비스") %>%
factor(levels = c("네이버", "기타서비스")) %>%
table(class_roll$group, .)
tbl4 %>%
pander
X4 <- tbl4 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X4
## X-squared
## 0.01576642
전화번호의 분포
cut_label <- paste(paste0(0:9, "000"), paste0(0:9, "999"),
sep = "~")
tbl5 <- class_roll$cell_no %>%
substr(start = 8, stop = 11) %>%
sapply(as.numeric) %>%
cut(labels = cut_label,
breaks = seq(0, 10000, by = 1000)) %>%
table(class_roll$group, .)
tbl5 %>%
pander
Red |
20 |
23 |
23 |
26 |
30 |
21 |
22 |
29 |
25 |
24 |
Black |
21 |
20 |
22 |
27 |
29 |
23 |
20 |
29 |
24 |
28 |
X5 <- tbl5 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X5
## X-squared
## 0.8059795
성씨 분포
f_name <- class_roll$name %>%
substring(first = 1, last = 1)
tbl6 <- f_name %>%
`%in%`(c("김", "이", "박")) %>%
ifelse(f_name, "기타") %>%
factor(levels = c("김", "이", "박", "기타")) %>%
table(class_roll$group, .)
tbl6 %>%
pander
Red |
46 |
39 |
16 |
142 |
Black |
46 |
44 |
15 |
138 |
X6 <- tbl6 %>%
chisq.test(simulate.p.value = TRUE) %>%
`[[`(1)
X6
## X-squared
## 0.3906057
Sum of Chi_Squares
Xsum <- X1 + X2 + X3 + X4 + X5 + X6
Xsum
## X-squared
## 3.306986