summary(data)
##   Ship_Mode             Profit         Unit_Price     Shipping_Cost  
##  Length:264         Min.   : -1766   Min.   :  2.88   Min.   : 0.50  
##  Class :character   1st Qu.: 48154   1st Qu.:  5.28   1st Qu.:74.35  
##  Mode  :character   Median :123915   Median : 40.42   Median :74.35  
##                     Mean   :125237   Mean   :101.48   Mean   :70.51  
##                     3rd Qu.:199676   3rd Qu.:120.98   3rd Qu.:74.35  
##                     Max.   :275438   Max.   :500.98   Max.   :74.35  
##  Customer_Name     
##  Length:264        
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
set.seed(45)
samp_mean <- function(x,i){
  mean(x[i])}

BOOTSTRAP<-boot(data$Profit,samp_mean, 100)
plot(BOOTSTRAP)

boot.ci(BOOTSTRAP,type = "perc")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 100 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = BOOTSTRAP, type = "perc")
## 
## Intervals : 
## Level     Percentile     
## 95%   (116054, 137222 )  
## Calculations and Intervals on Original Scale
## Some percentile intervals may be unstable

Hypothesis test comparing the mean to a fixed value. I will also be stating my null and alternative hypothesis.

t.test

H0:μ=1 HA:μ≠1

t.test(data$Profit, mu = 4)
## 
##  One Sample t-test
## 
## data:  data$Profit
## t = 23.677, df = 263, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
##  114822.6 135651.5
## sample estimates:
## mean of x 
##    125237

\[ t = \frac{\mu-\overline x}{SE} \]

BOOTSTRAP$t0
## [1] 125237

P Value

SE<-sd(BOOTSTRAP$t)
c(BOOTSTRAP$t0-2*SE,BOOTSTRAP$t0+2*SE)
## [1] 115591.8 134882.3

Confidence Intervals

t=(3-BOOTSTRAP$t0)/SE
pt(t,100)
## [1] 1.522668e-46

The mean of result.

mean(0 == BOOTSTRAP$t)
## [1] 0
mean(1<=BOOTSTRAP$t)
## [1] 1

Since the mean of 1<=BOOTSTRAP$t it is 0 and the inference in correct statistical terms.

Non-Parametric Statistics

data$Profit[is.na(data$Shipping_Cost)] <- 0
data$Profit
##   [1]   -213.25    457.81     46.71   1198.97     -4.72    782.91     93.80
##   [8]    440.72   -481.04    -11.68    313.58     26.92     -5.77   -172.88
##  [15]   -144.55      5.76    252.66  -1766.01   -236.27     80.44    118.94
##  [22]   3424.22   -213.25    457.81     46.71   1198.97   2351.23   3503.50
##  [29]   4655.76   5808.03   6960.29   8112.55   9264.82  10417.08  11569.34
##  [36]  12721.61  13873.87  15026.13  16178.40  17330.66  18482.92  19635.19
##  [43]  20787.45  21939.71  23091.98  24244.24  25396.50  26548.77  27701.03
##  [50]  28853.30  30005.56  31157.82  32310.09  33462.35  34614.61  35766.88
##  [57]  36919.14  38071.40  39223.67  40375.93  41528.19  42680.46  43832.72
##  [64]  44984.98  46137.25  47289.51  48441.77  49594.04  50746.30  51898.57
##  [71]  53050.83  54203.09  55355.36  56507.62  57659.88  58812.15  59964.41
##  [78]  61116.67  62268.94  63421.20  64573.46  65725.73  66877.99  68030.25
##  [85]  69182.52  70334.78  71487.04  72639.31  73791.57  74943.84  76096.10
##  [92]  77248.36  78400.63  79552.89  80705.15  81857.42  83009.68  84161.94
##  [99]  85314.21  86466.47  87618.73  88771.00  89923.26  91075.52  92227.79
## [106]  93380.05  94532.31  95684.58  96836.84  97989.11  99141.37 100293.63
## [113] 101445.90 102598.16 103750.42 104902.69 106054.95 107207.21 108359.48
## [120] 109511.74 110664.00 111816.27 112968.53 114120.79 115273.06 116425.32
## [127] 117577.58 118729.85 119882.11 121034.38 122186.64 123338.90 124491.17
## [134] 125643.43 126795.69 127947.96 129100.22 130252.48 131404.75 132557.01
## [141] 133709.27 134861.54 136013.80 137166.06 138318.33 139470.59 140622.85
## [148] 141775.12 142927.38 144079.65 145231.91 146384.17 147536.44 148688.70
## [155] 149840.96 150993.23 152145.49 153297.75 154450.02 155602.28 156754.54
## [162] 157906.81 159059.07 160211.33 161363.60 162515.86 163668.12 164820.39
## [169] 165972.65 167124.92 168277.18 169429.44 170581.71 171733.97 172886.23
## [176] 174038.50 175190.76 176343.02 177495.29 178647.55 179799.81 180952.08
## [183] 182104.34 183256.60 184408.87 185561.13 186713.39 187865.66 189017.92
## [190] 190170.19 191322.45 192474.71 193626.98 194779.24 195931.50 197083.77
## [197] 198236.03 199388.29 200540.56 201692.82 202845.08 203997.35 205149.61
## [204] 206301.87 207454.14 208606.40 209758.66 210910.93 212063.19 213215.46
## [211] 214367.72 215519.98 216672.25 217824.51 218976.77 220129.04 221281.30
## [218] 222433.56 223585.83 224738.09 225890.35 227042.62 228194.88 229347.14
## [225] 230499.41 231651.67 232803.93 233956.20 235108.46 236260.73 237412.99
## [232] 238565.25 239717.52 240869.78 242022.04 243174.31 244326.57 245478.83
## [239] 246631.10 247783.36 248935.62 250087.89 251240.15 252392.41 253544.68
## [246] 254696.94 255849.20 257001.47 258153.73 259306.00 260458.26 261610.52
## [253] 262762.79 263915.05 265067.31 266219.58 267371.84 268524.10 269676.37
## [260] 270828.63 271980.89 273133.16 274285.42 275437.68
samp_mean <- function(x, i){
  mean(x[i])
}

BOOTSTRAP1<-boot(data$Profit,samp_mean, R = 1000)
plot(BOOTSTRAP1)

boot.ci(BOOTSTRAP1, type =  "perc")
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## 
## CALL : 
## boot.ci(boot.out = BOOTSTRAP1, type = "perc")
## 
## Intervals : 
## Level     Percentile     
## 95%   (115222, 135224 )  
## Calculations and Intervals on Original Scale
mean(3<=BOOTSTRAP1$t)
## [1] 1

CV or Cross Validation

library(caret)
## Loading required package: lattice
## 
## Attaching package: 'lattice'
## The following object is masked from 'package:boot':
## 
##     melanoma
## Loading required package: ggplot2
library(lattice)
library(boot)
library(ggplot2)

data$Profit[is.na(data$Customer_Name)] <- 0
data$Customer_Name[is.na(data$Shipping_Cost)] <- 0

CV <- createDataPartition(data$Shipping_Cost, p=0.66,list = FALSE)
CV
##        Resample1
##   [1,]         2
##   [2,]         3
##   [3,]         4
##   [4,]         5
##   [5,]         6
##   [6,]         8
##   [7,]         9
##   [8,]        10
##   [9,]        11
##  [10,]        12
##  [11,]        14
##  [12,]        15
##  [13,]        17
##  [14,]        18
##  [15,]        19
##  [16,]        20
##  [17,]        21
##  [18,]        23
##  [19,]        24
##  [20,]        25
##  [21,]        26
##  [22,]        27
##  [23,]        28
##  [24,]        32
##  [25,]        35
##  [26,]        36
##  [27,]        38
##  [28,]        39
##  [29,]        42
##  [30,]        43
##  [31,]        45
##  [32,]        46
##  [33,]        47
##  [34,]        51
##  [35,]        52
##  [36,]        53
##  [37,]        54
##  [38,]        55
##  [39,]        56
##  [40,]        58
##  [41,]        59
##  [42,]        60
##  [43,]        61
##  [44,]        62
##  [45,]        65
##  [46,]        66
##  [47,]        68
##  [48,]        69
##  [49,]        71
##  [50,]        72
##  [51,]        75
##  [52,]        77
##  [53,]        82
##  [54,]        83
##  [55,]        84
##  [56,]        86
##  [57,]        87
##  [58,]        88
##  [59,]        89
##  [60,]        91
##  [61,]        92
##  [62,]        94
##  [63,]        95
##  [64,]        98
##  [65,]        99
##  [66,]       102
##  [67,]       104
##  [68,]       107
##  [69,]       108
##  [70,]       109
##  [71,]       110
##  [72,]       111
##  [73,]       112
##  [74,]       113
##  [75,]       116
##  [76,]       118
##  [77,]       120
##  [78,]       121
##  [79,]       122
##  [80,]       123
##  [81,]       124
##  [82,]       125
##  [83,]       129
##  [84,]       130
##  [85,]       131
##  [86,]       132
##  [87,]       134
##  [88,]       137
##  [89,]       138
##  [90,]       139
##  [91,]       141
##  [92,]       142
##  [93,]       143
##  [94,]       145
##  [95,]       147
##  [96,]       148
##  [97,]       149
##  [98,]       151
##  [99,]       152
## [100,]       153
## [101,]       154
## [102,]       156
## [103,]       157
## [104,]       163
## [105,]       164
## [106,]       165
## [107,]       167
## [108,]       168
## [109,]       172
## [110,]       173
## [111,]       174
## [112,]       175
## [113,]       176
## [114,]       178
## [115,]       179
## [116,]       180
## [117,]       181
## [118,]       184
## [119,]       185
## [120,]       186
## [121,]       188
## [122,]       190
## [123,]       194
## [124,]       195
## [125,]       196
## [126,]       197
## [127,]       198
## [128,]       199
## [129,]       200
## [130,]       201
## [131,]       202
## [132,]       203
## [133,]       204
## [134,]       205
## [135,]       206
## [136,]       209
## [137,]       210
## [138,]       213
## [139,]       214
## [140,]       215
## [141,]       216
## [142,]       217
## [143,]       219
## [144,]       220
## [145,]       221
## [146,]       222
## [147,]       223
## [148,]       224
## [149,]       225
## [150,]       228
## [151,]       231
## [152,]       232
## [153,]       233
## [154,]       238
## [155,]       239
## [156,]       241
## [157,]       242
## [158,]       244
## [159,]       245
## [160,]       247
## [161,]       248
## [162,]       249
## [163,]       251
## [164,]       252
## [165,]       253
## [166,]       254
## [167,]       255
## [168,]       256
## [169,]       257
## [170,]       258
## [171,]       259
## [172,]       260
## [173,]       261
## [174,]       262
## [175,]       263
hw <- data[CV,]
HW <- data[CV,]
HW
##          Ship_Mode    Profit Unit_Price Shipping_Cost      Customer_Name
## 2   Delivery Truck    457.81     208.16         68.02       Barry French
## 3      Regular Air     46.71       8.69          2.99       Barry French
## 4      Regular Air   1198.97     195.99          3.99      Clay Rozendal
## 5      Regular Air     -4.72       5.28          2.99      Claudia Miner
## 6      Regular Air    782.91      39.89          3.04    Neola Schneider
## 8   Delivery Truck    440.72     100.98         26.22    Sylvia Foulston
## 9      Regular Air   -481.04     100.98         69.00    Sylvia Foulston
## 10     Regular Air    -11.68      65.99          5.26        Jim Radford
## 11     Regular Air    313.58     155.99          8.99        Jim Radford
## 12     Express Air     26.92       3.69          0.50     Carlos Soltero
## 14     Regular Air   -172.88      15.99         13.18        Carl Ludwig
## 15     Regular Air   -144.55       4.89          4.93        Carl Ludwig
## 17     Regular Air    252.66      40.96          1.99         Jack Garza
## 18  Delivery Truck  -1766.01      95.95         74.35         Julia West
## 19     Regular Air   -236.27       3.89         74.35     Eugene Barchas
## 20  Delivery Truck     80.44     120.98         74.35     Eugene Barchas
## 21     Regular Air    118.94     500.98         74.35     Eugene Barchas
## 23     Regular Air   -213.25      38.94         74.35 Muhammed MacIntyre
## 24  Delivery Truck    457.81     208.16         74.35       Barry French
## 25     Regular Air     46.71       8.69         74.35       Barry French
## 26     Regular Air   1198.97     195.99         74.35      Clay Rozendal
## 27     Regular Air   2351.23       5.28         74.35      Claudia Miner
## 28     Regular Air   3503.50      39.89         74.35    Neola Schneider
## 32     Regular Air   8112.55      65.99         74.35        Jim Radford
## 35     Regular Air  11569.34       4.71         74.35     Carlos Soltero
## 36     Regular Air  12721.61      15.99         74.35        Carl Ludwig
## 38     Regular Air  15026.13       2.88         74.35         Don Miller
## 39     Regular Air  16178.40      40.96         74.35         Jack Garza
## 42  Delivery Truck  19635.19     120.98         74.35     Eugene Barchas
## 43     Regular Air  20787.45     500.98         74.35     Eugene Barchas
## 45     Regular Air  23091.98      38.94         74.35 Muhammed MacIntyre
## 46  Delivery Truck  24244.24     208.16         74.35       Barry French
## 47     Regular Air  25396.50       8.69         74.35       Barry French
## 51     Regular Air  30005.56      15.74         74.35   Allen Rosenblatt
## 52  Delivery Truck  31157.82     100.98         74.35    Sylvia Foulston
## 53     Regular Air  32310.09     100.98         74.35    Sylvia Foulston
## 54     Regular Air  33462.35      65.99         74.35        Jim Radford
## 55     Regular Air  34614.61     155.99         74.35        Jim Radford
## 56     Express Air  35766.88       3.69         74.35     Carlos Soltero
## 58     Regular Air  38071.40      15.99         74.35        Carl Ludwig
## 59     Regular Air  39223.67       4.89         74.35        Carl Ludwig
## 60     Regular Air  40375.93       2.88         74.35         Don Miller
## 61     Regular Air  41528.19      40.96         74.35         Jack Garza
## 62  Delivery Truck  42680.46      95.95         74.35         Julia West
## 65     Regular Air  46137.25     500.98         74.35     Eugene Barchas
## 66  Delivery Truck  47289.51     500.98         74.35       Edward Hooks
## 68  Delivery Truck  49594.04     208.16         74.35       Barry French
## 69     Regular Air  50746.30       8.69         74.35       Barry French
## 71     Regular Air  53050.83       5.28         74.35      Claudia Miner
## 72     Regular Air  54203.09      39.89         74.35    Neola Schneider
## 75     Regular Air  57659.88     100.98         74.35    Sylvia Foulston
## 77     Regular Air  59964.41     155.99         74.35        Jim Radford
## 82     Regular Air  65725.73       2.88         74.35         Don Miller
## 83     Regular Air  66877.99      40.96         74.35         Jack Garza
## 84  Delivery Truck  68030.25      95.95         74.35         Julia West
## 86  Delivery Truck  70334.78     120.98         74.35     Eugene Barchas
## 87     Regular Air  71487.04     500.98         74.35     Eugene Barchas
## 88  Delivery Truck  72639.31     500.98         74.35       Edward Hooks
## 89     Regular Air  73791.57      38.94         74.35 Muhammed MacIntyre
## 91     Regular Air  76096.10       8.69         74.35       Barry French
## 92     Regular Air  77248.36     195.99         74.35      Clay Rozendal
## 94     Regular Air  79552.89      39.89         74.35    Neola Schneider
## 95     Regular Air  80705.15      15.74         74.35   Allen Rosenblatt
## 98     Regular Air  84161.94      65.99         74.35        Jim Radford
## 99     Regular Air  85314.21     155.99         74.35        Jim Radford
## 102    Regular Air  88771.00      15.99         74.35        Carl Ludwig
## 104    Regular Air  91075.52       2.88         74.35         Don Miller
## 107    Regular Air  94532.31       3.89         74.35     Eugene Barchas
## 108 Delivery Truck  95684.58     120.98         74.35     Eugene Barchas
## 109    Regular Air  96836.84     500.98         74.35     Eugene Barchas
## 110 Delivery Truck  97989.11     500.98         74.35       Edward Hooks
## 111    Regular Air  99141.37      38.94         74.35 Muhammed MacIntyre
## 112 Delivery Truck 100293.63     208.16         74.35       Barry French
## 113    Regular Air 101445.90       8.69         74.35       Barry French
## 116    Regular Air 104902.69      39.89         74.35    Neola Schneider
## 118 Delivery Truck 107207.21     100.98         74.35    Sylvia Foulston
## 120    Regular Air 109511.74      65.99         74.35        Jim Radford
## 121    Regular Air 110664.00     155.99         74.35        Jim Radford
## 122    Express Air 111816.27       3.69         74.35     Carlos Soltero
## 123    Regular Air 112968.53       4.71         74.35     Carlos Soltero
## 124    Regular Air 114120.79      15.99         74.35        Carl Ludwig
## 125    Regular Air 115273.06       4.89         74.35        Carl Ludwig
## 129    Regular Air 119882.11       3.89         74.35     Eugene Barchas
## 130 Delivery Truck 121034.38     120.98         74.35     Eugene Barchas
## 131    Regular Air 122186.64     500.98         74.35     Eugene Barchas
## 132 Delivery Truck 123338.90     500.98         74.35       Edward Hooks
## 134 Delivery Truck 125643.43     208.16         74.35       Barry French
## 137    Regular Air 129100.22       5.28         74.35      Claudia Miner
## 138    Regular Air 130252.48      39.89         74.35    Neola Schneider
## 139    Regular Air 131404.75      15.74         74.35   Allen Rosenblatt
## 141    Regular Air 133709.27     100.98         74.35    Sylvia Foulston
## 142    Regular Air 134861.54      65.99         74.35        Jim Radford
## 143    Regular Air 136013.80     155.99         74.35        Jim Radford
## 145    Regular Air 138318.33       4.71         74.35     Carlos Soltero
## 147    Regular Air 140622.85       4.89         74.35        Carl Ludwig
## 148    Regular Air 141775.12       2.88         74.35         Don Miller
## 149    Regular Air 142927.38      40.96         74.35         Jack Garza
## 151    Regular Air 145231.91       3.89         74.35     Eugene Barchas
## 152 Delivery Truck 146384.17     120.98         74.35     Eugene Barchas
## 153    Regular Air 147536.44     500.98         74.35     Eugene Barchas
## 154 Delivery Truck 148688.70     500.98         74.35       Edward Hooks
## 156 Delivery Truck 150993.23     208.16         74.35       Barry French
## 157    Regular Air 152145.49       8.69         74.35       Barry French
## 163    Regular Air 159059.07     100.98         74.35    Sylvia Foulston
## 164    Regular Air 160211.33      65.99         74.35        Jim Radford
## 165    Regular Air 161363.60     155.99         74.35        Jim Radford
## 167    Regular Air 163668.12       4.71         74.35     Carlos Soltero
## 168    Regular Air 164820.39      15.99         74.35        Carl Ludwig
## 172 Delivery Truck 169429.44      95.95         74.35         Julia West
## 173    Regular Air 170581.71       3.89         74.35     Eugene Barchas
## 174 Delivery Truck 171733.97     120.98         74.35     Eugene Barchas
## 175    Regular Air 172886.23     500.98         74.35     Eugene Barchas
## 176 Delivery Truck 174038.50     500.98         74.35       Edward Hooks
## 178 Delivery Truck 176343.02     208.16         74.35       Barry French
## 179    Regular Air 177495.29       8.69         74.35       Barry French
## 180    Regular Air 178647.55     195.99         74.35      Clay Rozendal
## 181    Regular Air 179799.81       5.28         74.35      Claudia Miner
## 184 Delivery Truck 183256.60     100.98         74.35    Sylvia Foulston
## 185    Regular Air 184408.87     100.98         74.35    Sylvia Foulston
## 186    Regular Air 185561.13      65.99         74.35        Jim Radford
## 188    Express Air 187865.66       3.69         74.35     Carlos Soltero
## 190    Regular Air 190170.19      15.99         74.35        Carl Ludwig
## 194 Delivery Truck 194779.24      95.95         74.35         Julia West
## 195    Regular Air 195931.50       3.89         74.35     Eugene Barchas
## 196 Delivery Truck 197083.77     120.98         74.35     Eugene Barchas
## 197    Regular Air 198236.03     500.98         74.35     Eugene Barchas
## 198 Delivery Truck 199388.29     500.98         74.35       Edward Hooks
## 199    Regular Air 200540.56      38.94         74.35 Muhammed MacIntyre
## 200 Delivery Truck 201692.82     208.16         74.35       Barry French
## 201    Regular Air 202845.08       8.69         74.35       Barry French
## 202    Regular Air 203997.35     195.99         74.35      Clay Rozendal
## 203    Regular Air 205149.61       5.28         74.35      Claudia Miner
## 204    Regular Air 206301.87      39.89         74.35    Neola Schneider
## 205    Regular Air 207454.14      15.74         74.35   Allen Rosenblatt
## 206 Delivery Truck 208606.40     100.98         74.35    Sylvia Foulston
## 209    Regular Air 212063.19     155.99         74.35        Jim Radford
## 210    Express Air 213215.46       3.69         74.35     Carlos Soltero
## 213    Regular Air 216672.25       4.89         74.35        Carl Ludwig
## 214    Regular Air 217824.51       2.88         74.35         Don Miller
## 215    Regular Air 218976.77      40.96         74.35         Jack Garza
## 216 Delivery Truck 220129.04      95.95         74.35         Julia West
## 217    Regular Air 221281.30       3.89         74.35     Eugene Barchas
## 219    Regular Air 223585.83     500.98         74.35     Eugene Barchas
## 220 Delivery Truck 224738.09     500.98         74.35       Edward Hooks
## 221    Regular Air 225890.35      38.94         74.35 Muhammed MacIntyre
## 222 Delivery Truck 227042.62     208.16         74.35       Barry French
## 223    Regular Air 228194.88       8.69         74.35       Barry French
## 224    Regular Air 229347.14     195.99         74.35      Clay Rozendal
## 225    Regular Air 230499.41       5.28         74.35      Claudia Miner
## 228 Delivery Truck 233956.20     100.98         74.35    Sylvia Foulston
## 231    Regular Air 237412.99     155.99         74.35        Jim Radford
## 232    Express Air 238565.25       3.69         74.35     Carlos Soltero
## 233    Regular Air 239717.52       4.71         74.35     Carlos Soltero
## 238 Delivery Truck 245478.83      95.95         74.35         Julia West
## 239    Regular Air 246631.10       3.89         74.35     Eugene Barchas
## 241    Regular Air 248935.62     500.98         74.35     Eugene Barchas
## 242 Delivery Truck 250087.89     500.98         74.35       Edward Hooks
## 244 Delivery Truck 252392.41     208.16         74.35       Barry French
## 245    Regular Air 253544.68       8.69         74.35       Barry French
## 247    Regular Air 255849.20       5.28         74.35      Claudia Miner
## 248    Regular Air 257001.47      39.89         74.35    Neola Schneider
## 249    Regular Air 258153.73      15.74         74.35   Allen Rosenblatt
## 251    Regular Air 260458.26     100.98         74.35    Sylvia Foulston
## 252    Regular Air 261610.52      65.99         74.35        Jim Radford
## 253    Regular Air 262762.79     155.99         74.35        Jim Radford
## 254    Express Air 263915.05       3.69         74.35     Carlos Soltero
## 255    Regular Air 265067.31       4.71         74.35     Carlos Soltero
## 256    Regular Air 266219.58      15.99         74.35        Carl Ludwig
## 257    Regular Air 267371.84       4.89         74.35        Carl Ludwig
## 258    Regular Air 268524.10       2.88         74.35         Don Miller
## 259    Regular Air 269676.37      40.96         74.35         Jack Garza
## 260 Delivery Truck 270828.63      95.95         74.35         Julia West
## 261    Regular Air 271980.89       3.89         74.35     Eugene Barchas
## 262 Delivery Truck 273133.16     120.98         74.35     Eugene Barchas
## 263    Regular Air 274285.42     500.98         74.35     Eugene Barchas
model <- lm(Profit ~ Customer_Name, data = HW)
summary(model)
## 
## Call:
## lm(formula = Profit ~ Customer_Name, data = HW)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152965  -79862   -2851   74612  161617 
## 
## Coefficients:
##                                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       141545      40716   3.476 0.000654 ***
## Customer_NameBarry French         -24401      45106  -0.541 0.589276    
## Customer_NameCarl Ludwig          -23420      47432  -0.494 0.622150    
## Customer_NameCarlos Soltero        10954      47910   0.229 0.819445    
## Customer_NameClaudia Miner         -9570      51902  -0.184 0.853942    
## Customer_NameClay Rozendal        -26272      55129  -0.477 0.634335    
## Customer_NameDon Miller           -21498      53309  -0.403 0.687289    
## Customer_NameEdward Hooks           7144      50781   0.141 0.888298    
## Customer_NameEugene Barchas        -2080      43978  -0.047 0.962336    
## Customer_NameJack Garza           -33485      53309  -0.628 0.530816    
## Customer_NameJim Radford          -21652      45760  -0.473 0.636750    
## Customer_NameJulia West             9654      51902   0.186 0.852677    
## Customer_NameMuhammed MacIntyre   -37838      55129  -0.686 0.493489    
## Customer_NameNeola Schneider      -36982      51902  -0.713 0.477174    
## Customer_NameSylvia Foulston      -19102      47910  -0.399 0.690634    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 91040 on 160 degrees of freedom
## Multiple R-squared:  0.02832,    Adjusted R-squared:  -0.0567 
## F-statistic: 0.3331 on 14 and 160 DF,  p-value: 0.9888
col.rainbow <- rainbow(2)
palette(col.rainbow)
plot(data$Unit_Price ~ data$Shipping_Cost,pch=19,col = as.factor(data$Profit))
abline(model)
## Warning in abline(model): only using the first two of 15 regression coefficients

ggplot(data = data, mapping = aes(Profit,Unit_Price,color = "pink"))+
  geom_jitter()+
  geom_smooth(method = lm)
## `geom_smooth()` using formula 'y ~ x'

pre <- predict(model,data[-data$Shipping_Cost,])
pre
##        6        7        9       10       11       12       14       15 
## 104562.6 141544.7 122442.3 119893.1 119893.1 152498.5 118124.4 118124.4 
##       16       17       18       19       20       21       22       23 
## 120046.7 108059.7 151198.7 139464.7 139464.7 139464.7 148688.7 103707.1 
##       24       25       27       28       29       30       31       32 
## 117143.6 117143.6 131974.4 104562.6 141544.7 122442.3 122442.3 119893.1 
##       33       34       36       37       38       39       40       41 
## 119893.1 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 139464.7 
##       42       43       44       45       46       47       48       49 
## 139464.7 139464.7 148688.7 103707.1 117143.6 117143.6 115273.1 131974.4 
##       50       51       52       53       54       55       56       57 
## 104562.6 141544.7 122442.3 122442.3 119893.1 119893.1 152498.5 152498.5 
##       58       59       60       61       62       63       64       65 
## 118124.4 118124.4 120046.7 108059.7 151198.7 139464.7 139464.7 139464.7 
##       66       67       70       71       72       73       75       76 
## 148688.7 103707.1 115273.1 131974.4 104562.6 141544.7 122442.3 119893.1 
##       77       78       79       80       81       82       83       84 
## 119893.1 152498.5 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 
##       85       86       87       88       89       90       91       92 
## 139464.7 139464.7 139464.7 148688.7 103707.1 117143.6 117143.6 115273.1 
##       93       94       95       96       97       98       99      100 
## 131974.4 104562.6 141544.7 122442.3 122442.3 119893.1 119893.1 152498.5 
##      101      102      103      104      105      106      107      108 
## 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 139464.7 139464.7 
##      109      110      111      112      113      114      115      116 
## 139464.7 148688.7 103707.1 117143.6 117143.6 115273.1 131974.4 104562.6 
##      117      118      119      120      121      122      123      124 
## 141544.7 122442.3 122442.3 119893.1 119893.1 152498.5 152498.5 118124.4 
##      125      126      127      128      129      130      131      132 
## 118124.4 120046.7 108059.7 151198.7 139464.7 139464.7 139464.7 148688.7 
##      133      134      135      136      137      138      139      140 
## 103707.1 117143.6 117143.6 115273.1 131974.4 104562.6 141544.7 122442.3 
##      141      142      143      144      145      146      147      148 
## 122442.3 119893.1 119893.1 152498.5 152498.5 118124.4 118124.4 120046.7 
##      149      150      151      152      153      154      155      156 
## 108059.7 151198.7 139464.7 139464.7 139464.7 148688.7 103707.1 117143.6 
##      157      158      159      160      161      162      163      164 
## 117143.6 115273.1 131974.4 104562.6 141544.7 122442.3 122442.3 119893.1 
##      165      166      167      168      169      170      171      172 
## 119893.1 152498.5 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 
##      173      174      175      176      177      178      179      180 
## 139464.7 139464.7 139464.7 148688.7 103707.1 117143.6 117143.6 115273.1 
##      181      182      183      184      185      186      187      188 
## 131974.4 104562.6 141544.7 122442.3 122442.3 119893.1 119893.1 152498.5 
##      189      190      191      192      193      194      195      196 
## 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 139464.7 139464.7 
##      197      198      199      200      201      202      203      204 
## 139464.7 148688.7 103707.1 117143.6 117143.6 115273.1 131974.4 104562.6 
##      205      206      207      208      209      210      211      212 
## 141544.7 122442.3 122442.3 119893.1 119893.1 152498.5 152498.5 118124.4 
##      213      214      215      216      217      218      219      220 
## 118124.4 120046.7 108059.7 151198.7 139464.7 139464.7 139464.7 148688.7 
##      221      222      223      224      225      226      227      228 
## 103707.1 117143.6 117143.6 115273.1 131974.4 104562.6 141544.7 122442.3 
##      229      230      231      232      233      234      235      236 
## 122442.3 119893.1 119893.1 152498.5 152498.5 118124.4 118124.4 120046.7 
##      237      238      239      240      241      242      243      244 
## 108059.7 151198.7 139464.7 139464.7 139464.7 148688.7 103707.1 117143.6 
##      245      246      247      248      249      250      251      252 
## 117143.6 115273.1 131974.4 104562.6 141544.7 122442.3 122442.3 119893.1 
##      253      254      255      256      257      258      259      260 
## 119893.1 152498.5 152498.5 118124.4 118124.4 120046.7 108059.7 151198.7 
##      261      262      263      264 
## 139464.7 139464.7 139464.7 148688.7
train.control <- trainControl(method = "cv", number = 10)
mode <- train(Profit ~ Shipping_Cost, data = data,
             method="lm",
             trControl=train.control)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
## There were missing values in resampled performance measures.
print(mode)
## Linear Regression 
## 
## 264 samples
##   1 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 237, 236, 240, 238, 237, 237, ... 
## Resampling results:
## 
##   RMSE      Rsquared   MAE     
##   80037.84  0.1537599  68256.43
## 
## Tuning parameter 'intercept' was held constant at a value of TRUE
summary(mode)
## 
## Call:
## lm(formula = .outcome ~ ., data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -134545  -67341    2980   66898  142659 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -13053      22824  -0.572    0.568    
## Shipping_Cost     1961        316   6.207 2.11e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 80390 on 262 degrees of freedom
## Multiple R-squared:  0.1282, Adjusted R-squared:  0.1249 
## F-statistic: 38.52 on 1 and 262 DF,  p-value: 2.106e-09