##Assignment

The Earned Income Tax Credit (EITC) is a refundable tax credit for low income wage workers. In order to qualify for the EITC a person must have some earnings, but have an adjusted gross income below a threshold that varies by year and family size. The credit also depends on the number of children (0, 1, 2+). In essence, EITC can be thought as a wage subsidy, and in order to receive this subsidy, one has to be employed at the first place.This credit was substantially expanded in 1993. Suppose, we would like to estimate the effects of the 1993 expansion on labor supply. Essentially, we will compare labor supply for single women before and after 1993 by whether or not they had children: the EITC largely applied to women with children. In this exercise, we measure labor force participation by employment status (employed or not employed).To simplify the analysis, we just use a small sample with a selected variable from a large dataset. In blackboard, you will find a dataset called eitcRR.dta. This dataset contains CPS data for single women 20-54 with less than a high school education, as this group is most likely to be affected by the EITC.

The first thing I do is import Earned Income Tax Credit (EITC) data.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(haven)
eitcRR <- read_dta("C:/Users/lower/Downloads/eitcRR.dta")
head(eitcRR)
## # A tibble: 6 x 10
##   state  year children nonwhite   finc   earn   age    ed  work unearn
##   <dbl> <dbl>    <dbl>    <dbl>  <dbl>  <dbl> <dbl> <dbl> <dbl>  <dbl>
## 1    11  1991        0        0  9630      0     53     7     0   9.63
## 2    11  1991        0        1 18714. 18714.    26    10     1   0   
## 3    11  1991        0        0 31228. 14730.    48    11     1  16.5 
## 4    11  1991        0        0 54331. 17676.    44    11     0  36.7 
## 5    11  1991        0        0  8249.  8249.    20    10     1   0   
## 6    11  1991        1        0  7499.     0     27    10     0   7.50
  1. To prepare the data, we need to add a couple of state control variables. I extracted some data from University of Kentucky Center for Poverty Research national Welfare Database (UKCPR_National_Data_Final_Update). From the dataset, please first identify three important socioeconomic and/or demographic factors at the state level, and then merge these variables to the main eitcRR.dta file.
library(readxl)
UKCPR <- read_excel("C:/Users/lower/Downloads/UKCPR_National_Welfare_Data_Final_Update_20180116_0.xlsx", sheet = "Data")
head(UKCPR) 
## # A tibble: 6 x 73
##   state_name state  year Population Employment Unemployment `Unemployment rate`
##   <chr>      <dbl> <dbl>      <dbl>      <dbl>        <dbl>               <dbl>
## 1 AL             1  1980    3893888    1521183       148106                 8.9
## 2 AK             2  1980     401851     169397        18008                 9.6
## 3 AZ             3  1980    2718215    1146371        81630                 6.6
## 4 AR             4  1980    2286435     922894        75386                 7.6
## 5 CA             5  1980   23667902   10787673       791379                 6.8
## 6 CO             6  1980    2889964    1405381        86267                 5.8
## # ... with 66 more variables: Marginally Food Insecure <lgl>,
## #   Food Insecure <lgl>, Very Low Food Secure <lgl>, Gross State Product <dbl>,
## #   Number of low income uninsured children <dbl>,
## #   Percent Low Income Unisured Children <dbl>, Personal income <dbl>,
## #   Workers' compensation <dbl>, AFDC/TANF Recipients <dbl>,
## #   AFDC/TANF Caseloads <dbl>, Food Stamp/SNAP Recipients <dbl>,
## #   Food Stamp/SNAP Caseloads <dbl>,
## #   AFDC/TANF Benefit for 2-Person family <dbl>,
## #   AFDC/TANF Benefit for 3-person family <dbl>,
## #   AFDC/TANF benefit for 4-person family <dbl>,
## #   FS/SNAP Benefit for 1-person family <dbl>,
## #   FS/SNAP Benefit for 2-person family <dbl>,
## #   FS/SNAP Benefit for 3-person family <dbl>,
## #   FS/SNAP Benefit for 4-person family <dbl>,
## #   AFDC/TANF_FS 2-Person Benefit <dbl>, AFDC/TANF_FS 3-Person Benefit <dbl>,
## #   AFDC/TANF_FS 4-Person Benefit <dbl>, Child-only AFDC/TANF cases <dbl>,
## #   SSI-Federal <dbl>, SSI-State <dbl>, Total SSI <dbl>, SSI_FS Benefit <dbl>,
## #   Number of Poor (thousands) <dbl>, Poverty Rate <dbl>,
## #   Governor is Democrat (1=Yes) <dbl>, Number in Lower House Democrat <dbl>,
## #   Number in Lower House Republican <dbl>,
## #   Fraction of State House that is Democrat <dbl>,
## #   Number in Upper House Democrat <dbl>,
## #   Number in Upper House Republican <dbl>,
## #   Fraction of State Senate that is Democrat <dbl>,
## #   EITC Phase-In Rate No Dependents <dbl>,
## #   EITC Phase-In Rate 1 Dependent <dbl>,
## #   EITC Phase-In Rate 2 Dependents <dbl>,
## #   EITC Phase-In Rate 3 Dependents <dbl>,
## #   EITC Maximum Credit No Dependents <dbl>,
## #   EITC Maximum Credit 1 Dependent <dbl>,
## #   EITC Maximum Credit 2 Dependents <dbl>,
## #   EITC Maximum Credit 3 Dependents <dbl>,
## #   EITC Phase-Out Rate No Dependents <dbl>,
## #   EITC Phase-Out Rate 1 Dependent <dbl>,
## #   EITC Phase-Out Rate 2 Dependents <dbl>,
## #   EITC Phase-Out Rate 3 Dependents <dbl>, State EITC Rate <dbl>,
## #   Wisconsin EITC Rate 2 Dependents <dbl>,
## #   Wisconsin EITC Rate 3 Dependents <dbl>,
## #   Refundable State EITC (1=Yes) <dbl>, Federal Minimum Wage <dbl>,
## #   State Minimum Wage <dbl>, SSI recipients <dbl>, SSI recipients--Aged <dbl>,
## #   SSI recipients--Blind <dbl>, SSI recipients--Disabled <dbl>,
## #   Medicaid beneficiaries <dbl>, WIC participation <dbl>,
## #   NSLP Free Participation <dbl>, NSLP Reduced Participation <dbl>,
## #   NSLP Total Participation <dbl>, SBP Free Participation <dbl>,
## #   SBP Reduced Participation <dbl>, SBP Total Participation <dbl>

Before merging the aforementioned dataframes, I had to correct for a couple problems.

I had to extract state codes from the “eticrr” dataframe and put them into their own data frame, called “eitcst”. I did this so that I can merge these states codes into another dataframe (BLS) from the Bureau of Labor Statistics. For context, the BLS dataset contains both FIPS codes and Postal abbreviations. Both of these variables were invaluable because they allowed me to to merge both the eitcrr and UKCPR dataframes into one singular dataframe. For instance, the “eitcrr” dataframe has a variable called “Label” that matches with a column in the FIPSmerge dataframe called “State.” Both these variables pertain to the actual name of the state. Conversely, the UKCPR has a variable called “state_name” which is an abbreviated spelling of the state’s name and matches with the “Postal” variable in the BLS dataset. The final dataframe is called masterdf. I print the first 6 rows of the FIPSmerge dataset to give an idea of how the dataframes were merged.

eitcst               <- read_excel("C:/Users/lower/Downloads/eitcst.xlsx")
BLS <- read_excel("C:/Users/lower/Downloads/state-geocodes-v2018.xlsx")




FIPSmerge     = merge(eitcst, BLS, by.x="Label",by.y="State")
eitcrr_st = merge(eitcRR, FIPSmerge, by.x="state",by.y="Code")
eitcrr_st$stateco <- as.numeric(eitcrr_st$FIPS)




df1 = merge(UKCPR, BLS, by.x="state_name",by.y="Postal")
df1$stateco <- as.numeric(df1$FIPS)

masterdf = merge(eitcrr_st, df1, by.x=c("stateco","year"), by.y=c("stateco","year"),all.x = TRUE)



head(FIPSmerge)
##        Label Code Postal FIPS
## 1    Alabama   63     AL    1
## 2     Alaska   94     AK    2
## 3    Arizona   86     AZ    4
## 4   Arkansas   71     AR    5
## 5 California   93     CA    6
## 6   Colorado   84     CO    8
  1. Justify your selection of these state-level variables.

I made the decision to choose the following state-level variables: Gross State Product, Uemployment Rate, and Food Stamp/SNAP Caseloads. I believe these to variables help to contextualize the economic condition of each state by considering their relative output produced by labor (GSP), hardship in terms of acquiring work (unemployment rate) and the nominal burden that each state has in terms of welfare allotments (Food stamp/SNAP caseloads).

  1. Describe and summarize your data (show me some evidence that you examined the data, and the merge is properly done).

In order to verify that the merge was done correctly, I investigate distribution of each variable via the summary fucntion and I also estimate means for each of the aforementioned state-level variables. For the latter task, I then choose one state (in this case, Texas) and compare it to the orginal UKCPR dataset (before it was merged). If the values are the same, it indicates that the merge was done correctly. As shown below, both estimates are the same. Estimates are computed for every state, implying that the merge was successful.

summary(masterdf)
##     stateco           year         state.x         children    
##  Min.   : 1.00   Min.   :1991   Min.   :11.00   Min.   :0.000  
##  1st Qu.:12.00   1st Qu.:1992   1st Qu.:31.00   1st Qu.:0.000  
##  Median :28.00   Median :1993   Median :56.00   Median :1.000  
##  Mean   :26.69   Mean   :1993   Mean   :54.52   Mean   :1.193  
##  3rd Qu.:37.00   3rd Qu.:1995   3rd Qu.:81.00   3rd Qu.:2.000  
##  Max.   :56.00   Max.   :1996   Max.   :95.00   Max.   :9.000  
##                                                                
##     nonwhite           finc             earn             age       
##  Min.   :0.0000   Min.   :     0   Min.   :     0   Min.   :20.00  
##  1st Qu.:0.0000   1st Qu.:  5123   1st Qu.:     0   1st Qu.:26.00  
##  Median :1.0000   Median :  9637   Median :  3332   Median :34.00  
##  Mean   :0.6007   Mean   : 15255   Mean   : 10432   Mean   :35.21  
##  3rd Qu.:1.0000   3rd Qu.: 18659   3rd Qu.: 14321   3rd Qu.:44.00  
##  Max.   :1.0000   Max.   :575617   Max.   :537881   Max.   :54.00  
##                                                                    
##        ed              work           unearn           Label          
##  Min.   : 0.000   Min.   :0.000   Min.   :  0.000   Length:13746      
##  1st Qu.: 7.000   1st Qu.:0.000   1st Qu.:  0.000   Class :character  
##  Median :10.000   Median :1.000   Median :  2.973   Mode  :character  
##  Mean   : 8.806   Mean   :0.513   Mean   :  4.823                     
##  3rd Qu.:11.000   3rd Qu.:1.000   3rd Qu.:  6.864                     
##  Max.   :11.000   Max.   :1.000   Max.   :134.058                     
##                                                                       
##     Postal              FIPS.x       state_name           state.y     
##  Length:13746       Min.   : 1.00   Length:13746       Min.   : 1.00  
##  Class :character   1st Qu.:12.00   Class :character   1st Qu.:10.00  
##  Mode  :character   Median :28.00   Mode  :character   Median :25.00  
##                     Mean   :26.69                      Mean   :24.01  
##                     3rd Qu.:37.00                      3rd Qu.:34.00  
##                     Max.   :56.00                      Max.   :51.00  
##                                                                       
##    Population         Employment        Unemployment     Unemployment rate
##  Min.   :  457739   Min.   :  223326   Min.   :  10125   Min.   : 2.600   
##  1st Qu.: 4091025   1st Qu.: 1779490   1st Qu.: 123566   1st Qu.: 5.800   
##  Median : 9659871   Median : 4558922   Median : 318682   Median : 6.900   
##  Mean   :12161467   Mean   : 5589981   Mean   : 441987   Mean   : 6.758   
##  3rd Qu.:18140894   3rd Qu.: 8112684   3rd Qu.: 605728   3rd Qu.: 7.700   
##  Max.   :31780829   Max.   :14300443   Max.   :1444167   Max.   :11.300   
##                                                                           
##  Marginally Food Insecure Food Insecure  Very Low Food Secure
##  Mode:logical             Mode:logical   Mode:logical        
##  NA's:13746               NA's:13746     NA's:13746          
##                                                              
##                                                              
##                                                              
##                                                              
##                                                              
##  Gross State Product Number of low income uninsured children
##  Min.   : 11691      Min.   : NA                            
##  1st Qu.: 95866      1st Qu.: NA                            
##  Median :251573      Median : NA                            
##  Mean   :328892      Mean   :NaN                            
##  3rd Qu.:519704      3rd Qu.: NA                            
##  Max.   :964186      Max.   : NA                            
##                      NA's   :13746                          
##  Percent Low Income Unisured Children Personal income     Workers' compensation
##  Min.   : NA                          Min.   :  8564768   Min.   :   2497      
##  1st Qu.: NA                          1st Qu.: 80680540   1st Qu.:  51772      
##  Median : NA                          Median :224967367   Median : 171516      
##  Mean   :NaN                          Mean   :284418505   Mean   : 526903      
##  3rd Qu.: NA                          3rd Qu.:432623921   3rd Qu.:1288489      
##  Max.   : NA                          Max.   :828822422   Max.   :1917500      
##  NA's   :13746                                                                 
##  AFDC/TANF Recipients AFDC/TANF Caseloads Food Stamp/SNAP Recipients
##  Min.   :  12839      Min.   :  4732      Min.   :  30266           
##  1st Qu.: 171745      1st Qu.: 60985      1st Qu.: 396863           
##  Median : 560561      Median :200699      Median :1022140           
##  Mean   : 764624      Mean   :268553      Mean   :1229376           
##  3rd Qu.:1053433      3rd Qu.:371889      3rd Qu.:2153627           
##  Max.   :2679653      Max.   :919471      Max.   :3174651           
##                                                                     
##  Food Stamp/SNAP Caseloads AFDC/TANF Benefit for 2-Person family
##  Min.   :  10102           Min.   : 93                          
##  1st Qu.: 166259           1st Qu.:236                          
##  Median : 418277           Median :322                          
##  Mean   : 492952           Mean   :338                          
##  3rd Qu.: 884777           3rd Qu.:468                          
##  Max.   :1179193           Max.   :821                          
##                                                                 
##  AFDC/TANF Benefit for 3-person family AFDC/TANF benefit for 4-person family
##  Min.   :120.0                         Min.   : 144.0                       
##  1st Qu.:294.0                         1st Qu.: 346.0                       
##  Median :409.0                         Median : 488.0                       
##  Mean   :418.5                         Mean   : 496.3                       
##  3rd Qu.:577.0                         3rd Qu.: 687.0                       
##  Max.   :924.0                         Max.   :1027.0                       
##                                                                             
##  FS/SNAP Benefit for 1-person family FS/SNAP Benefit for 2-person family
##  Min.   :105.0                       Min.   :193.0                      
##  1st Qu.:111.0                       1st Qu.:203.0                      
##  Median :111.0                       Median :203.0                      
##  Mean   :112.3                       Mean   :206.1                      
##  3rd Qu.:115.0                       3rd Qu.:212.0                      
##  Max.   :198.0                       Max.   :364.0                      
##                                                                         
##  FS/SNAP Benefit for 3-person family FS/SNAP Benefit for 4-person family
##  Min.   :277.0                       Min.   :352.0                      
##  1st Qu.:292.0                       1st Qu.:370.0                      
##  Median :292.0                       Median :370.0                      
##  Mean   :295.9                       Mean   :375.5                      
##  3rd Qu.:304.0                       3rd Qu.:386.0                      
##  Max.   :522.0                       Max.   :663.0                      
##                                                                         
##  AFDC/TANF_FS 2-Person Benefit AFDC/TANF_FS 3-Person Benefit
##  Min.   : 286.0                Min.   : 397                 
##  1st Qu.: 444.0                1st Qu.: 592                 
##  Median : 523.0                Median : 677                 
##  Mean   : 527.5                Mean   : 681                 
##  3rd Qu.: 630.0                3rd Qu.: 794                 
##  Max.   :1052.0                Max.   :1245                 
##                                                             
##  AFDC/TANF_FS 4-Person Benefit Child-only AFDC/TANF cases  SSI-Federal   
##  Min.   : 496                  Min.   :   370             Min.   :407.0  
##  1st Qu.: 716                  1st Qu.: 10343             1st Qu.:422.0  
##  Median : 808                  Median : 21445             Median :434.0  
##  Mean   : 819                  Mean   : 49971             Mean   :437.6  
##  3rd Qu.: 949                  3rd Qu.: 52116             3rd Qu.:458.0  
##  Max.   :1427                  Max.   :223455             Max.   :470.0  
##                                                                          
##    SSI-State        Total SSI     SSI_FS Benefit  Number of Poor (thousands)
##  Min.   :  0.00   Min.   :407.0   Min.   :481.0   Min.   :  45              
##  1st Qu.:  0.00   1st Qu.:434.0   1st Qu.:513.0   1st Qu.: 595              
##  Median : 14.00   Median :465.0   Median :545.0   Median :1340              
##  Mean   : 53.01   Mean   :490.5   Mean   :558.3   Mean   :1943              
##  3rd Qu.: 86.00   3rd Qu.:532.0   3rd Qu.:592.0   3rd Qu.:3020              
##  Max.   :374.00   Max.   :832.0   Max.   :933.0   Max.   :5803              
##  NA's   :40                                                                 
##   Poverty Rate   Governor is Democrat (1=Yes) Number in Lower House Democrat
##  Min.   : 5.30   Min.   :0.0000               Min.   : 13.00                
##  1st Qu.:12.30   1st Qu.:0.0000               1st Qu.: 47.00                
##  Median :15.70   Median :0.0000               Median : 69.00                
##  Mean   :15.15   Mean   :0.4397               Mean   : 68.85                
##  3rd Qu.:17.00   3rd Qu.:1.0000               3rd Qu.: 93.00                
##  Max.   :26.40   Max.   :1.0000               Max.   :145.00                
##                  NA's   :266                  NA's   :343                   
##  Number in Lower House Republican Fraction of State House that is Democrat
##  Min.   :  6.00                   Min.   :0.190                           
##  1st Qu.: 33.00                   1st Qu.:0.530                           
##  Median : 43.00                   Median :0.600                           
##  Mean   : 45.88                   Mean   :0.592                           
##  3rd Qu.: 55.00                   3rd Qu.:0.640                           
##  Max.   :282.00                   Max.   :0.910                           
##  NA's   :343                      NA's   :343                             
##  Number in Upper House Democrat Number in Upper House Republican
##  Min.   :10.00                  Min.   : 1.00                   
##  1st Qu.:20.00                  1st Qu.:11.00                   
##  Median :25.00                  Median :16.00                   
##  Mean   :24.79                  Mean   :17.82                   
##  3rd Qu.:27.00                  3rd Qu.:23.00                   
##  Max.   :46.00                  Max.   :35.00                   
##  NA's   :343                    NA's   :343                     
##  Fraction of State Senate that is Democrat EITC Phase-In Rate No Dependents
##  Min.   :0.3200                            Min.   :0.00000                 
##  1st Qu.:0.4700                            1st Qu.:0.00000                 
##  Median :0.5800                            Median :0.00000                 
##  Mean   :0.5904                            Mean   :0.03531                 
##  3rd Qu.:0.7000                            3rd Qu.:0.07650                 
##  Max.   :0.9700                            Max.   :0.07650                 
##  NA's   :343                                                               
##  EITC Phase-In Rate 1 Dependent EITC Phase-In Rate 2 Dependents
##  Min.   :0.1670                 Min.   :0.173                  
##  1st Qu.:0.1760                 1st Qu.:0.184                  
##  Median :0.1850                 Median :0.195                  
##  Mean   :0.2345                 Mean   :0.261                  
##  3rd Qu.:0.3400                 3rd Qu.:0.360                  
##  Max.   :0.3400                 Max.   :0.400                  
##                                                                
##  EITC Phase-In Rate 3 Dependents EITC Maximum Credit No Dependents
##  Min.   :0.173                   Min.   :  0.0                    
##  1st Qu.:0.184                   1st Qu.:  0.0                    
##  Median :0.195                   Median :  0.0                    
##  Mean   :0.261                   Mean   :144.9                    
##  3rd Qu.:0.360                   3rd Qu.:314.0                    
##  Max.   :0.400                   Max.   :323.0                    
##                                                                   
##  EITC Maximum Credit 1 Dependent EITC Maximum Credit 2 Dependents
##  Min.   :1192                    Min.   :1235                    
##  1st Qu.:1324                    1st Qu.:1384                    
##  Median :1434                    Median :1511                    
##  Mean   :1672                    Mean   :2144                    
##  3rd Qu.:2094                    3rd Qu.:3110                    
##  Max.   :2152                    Max.   :3556                    
##                                                                  
##  EITC Maximum Credit 3 Dependents EITC Phase-Out Rate No Dependents
##  Min.   :1235                     Min.   :0.00000                  
##  1st Qu.:1384                     1st Qu.:0.00000                  
##  Median :1511                     Median :0.00000                  
##  Mean   :2144                     Mean   :0.03531                  
##  3rd Qu.:3110                     3rd Qu.:0.07650                  
##  Max.   :3556                     Max.   :0.07650                  
##                                                                    
##  EITC Phase-Out Rate 1 Dependent EITC Phase-Out Rate 2 Dependents
##  Min.   :0.1193                  Min.   :0.1236                  
##  1st Qu.:0.1257                  1st Qu.:0.1314                  
##  Median :0.1321                  Median :0.1393                  
##  Mean   :0.1413                  Mean   :0.1610                  
##  3rd Qu.:0.1598                  3rd Qu.:0.2022                  
##  Max.   :0.1598                  Max.   :0.2106                  
##                                                                  
##  EITC Phase-Out Rate 3 Dependents State EITC Rate  
##  Min.   :0.1236                   Min.   :0.00000  
##  1st Qu.:0.1314                   1st Qu.:0.00000  
##  Median :0.1393                   Median :0.00000  
##  Mean   :0.1610                   Mean   :0.01719  
##  3rd Qu.:0.2022                   3rd Qu.:0.00000  
##  Max.   :0.2106                   Max.   :0.50000  
##                                                    
##  Wisconsin EITC Rate 2 Dependents Wisconsin EITC Rate 3 Dependents
##  Min.   :0.14                     Min.   :0.430                   
##  1st Qu.:0.16                     1st Qu.:0.500                   
##  Median :0.25                     Median :0.750                   
##  Mean   :0.21                     Mean   :0.637                   
##  3rd Qu.:0.25                     3rd Qu.:0.750                   
##  Max.   :0.25                     Max.   :0.750                   
##  NA's   :13618                    NA's   :13618                   
##  Refundable State EITC (1=Yes) Federal Minimum Wage State Minimum Wage
##  Min.   :0.00000               Min.   :4.250        Min.   :1.600     
##  1st Qu.:0.00000               1st Qu.:4.250        1st Qu.:4.250     
##  Median :0.00000               Median :4.250        Median :4.250     
##  Mean   :0.07508               Mean   :4.312        Mean   :4.173     
##  3rd Qu.:0.00000               3rd Qu.:4.250        3rd Qu.:4.250     
##  Max.   :1.00000               Max.   :4.750        Max.   :5.250     
##                                                                       
##  SSI recipients    SSI recipients--Aged SSI recipients--Blind
##  Min.   :   3895   Min.   :   669       Min.   :   53        
##  1st Qu.:  98186   1st Qu.: 20440       1st Qu.: 1150        
##  Median : 194087   Median : 40396       Median : 2526        
##  Mean   : 327061   Mean   : 94721       Mean   : 5327        
##  3rd Qu.: 444546   3rd Qu.:127750       3rd Qu.: 4041        
##  Max.   :1044753   Max.   :335845       Max.   :22602        
##                                                              
##  SSI recipients--Disabled Medicaid beneficiaries WIC participation
##  Min.   :  3117           Min.   :  36804        Min.   :   9272  
##  1st Qu.: 74249           1st Qu.: 486110        1st Qu.: 101836  
##  Median :156696           Median :1171548        Median : 204254  
##  Mean   :227013           Mean   :1683387        Mean   : 285893  
##  3rd Qu.:314428           3rd Qu.:2557701        3rd Qu.: 429818  
##  Max.   :690960           Max.   :5106746        Max.   :1141598  
##                                                                   
##  NSLP Free Participation NSLP Reduced Participation NSLP Total Participation
##  Min.   :  12897         Min.   :  1287             Min.   :  39686         
##  1st Qu.: 174511         1st Qu.: 30995             1st Qu.: 418577         
##  Median : 350257         Median : 54701             Median : 915151         
##  Mean   : 582448         Mean   : 71593             Mean   :1043125         
##  3rd Qu.: 982000         3rd Qu.:114318             3rd Qu.:1659921         
##  Max.   :1686979         Max.   :176436             Max.   :2414950         
##                                                                             
##  SBP Free Participation SBP Reduced Participation SBP Total Participation
##  Min.   :  2339         Min.   :   72.91          Min.   :  3134         
##  1st Qu.: 56525         1st Qu.: 3108.78          1st Qu.: 69656         
##  Median :126334         Median : 9133.00          Median :155581         
##  Mean   :218987         Mean   :11983.09          Mean   :255324         
##  3rd Qu.:335336         3rd Qu.:16856.62          3rd Qu.:403637         
##  Max.   :695687         Max.   :43708.94          Max.   :773287         
##                                                                          
##     State               FIPS.y     
##  Length:13746       Min.   : 1.00  
##  Class :character   1st Qu.:12.00  
##  Mode  :character   Median :28.00  
##                     Mean   :26.69  
##                     3rd Qu.:37.00  
##                     Max.   :56.00  
## 
df2 <- masterdf %>% group_by(State) %>% summarise(gsp = mean(`Gross State Product`),
                                                unemplrate = mean(`Unemployment rate`),
                                                foodsnapca = mean(`Food Stamp/SNAP Caseloads`))%>%arrange(State)


UKCPR %>% filter(state_name == "TX") %>% summarise(gsp = mean(`Gross State Product`),
                                                unemplrate = mean(`Unemployment rate`),
                                                foodsnapca = mean(`Food Stamp/SNAP Caseloads`))
## # A tibble: 1 x 3
##       gsp unemplrate foodsnapca
##     <dbl>      <dbl>      <dbl>
## 1 761949.       6.19    851503.
library(kableExtra)#table decor 
## 
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
## 
##     group_rows
# Make Table
kable(df2, caption = "Table 1. Mean estimates of Gross State Product, unemployment rate and food stamps/SNAP caseloads", digits=2, booktabs = FALSE, format.args = list(big.mark = ",")) %>%
  kable_classic_2(full_width = F, html_font = "Times")%>%
    kable_styling(font_size = 14)%>%
  row_spec(dim(df2)[1], bold = F) %>% # format last row
  column_spec(1, italic = F) # format first column
Table 1. Mean estimates of Gross State Product, unemployment rate and food stamps/SNAP caseloads
State gsp unemplrate foodsnapca
Alabama 89,169.06 6.47 206,533.34
Alaska 23,443.08 8.17 13,135.22
Arizona 99,018.60 6.03 168,514.82
Arkansas 49,318.43 6.08 103,797.05
California 855,873.77 8.40 1,050,085.62
Colorado 100,359.42 4.84 101,995.88
Connecticut 113,906.59 6.20 90,624.55
Delaware 24,937.40 5.23 19,676.83
District of Columbia 45,352.18 8.37 39,768.01
Florida 314,892.67 6.70 556,805.46
Georgia 182,906.09 5.39 305,895.95
Hawaii 36,555.06 4.72 45,510.94
Idaho 24,147.69 5.79 27,908.67
Illinois 331,483.19 6.60 483,010.42
Indiana 133,785.40 5.43 160,315.60
Iowa 66,081.13 4.09 74,715.56
Kansas 60,386.73 4.54 69,133.02
Kentucky 83,057.24 6.22 191,444.26
Louisiana 103,603.15 7.38 270,868.98
Maine 25,665.21 6.89 57,770.99
Maryland 130,196.23 5.64 156,356.43
Massachusetts 177,550.78 7.04 181,149.15
Michigan 231,593.37 7.18 416,329.34
Minnesota 122,547.20 4.56 127,937.96
Mississippi 49,203.00 6.99 189,674.68
Missouri 125,616.12 5.69 224,494.86
Montana 16,037.04 6.05 26,402.44
Nebraska 43,686.56 2.70 43,438.54
Nevada 42,243.22 6.06 39,889.81
New Hampshire 28,389.83 5.89 23,725.55
New Jersey 241,801.25 7.21 209,958.60
New Mexico 39,081.02 6.91 81,575.30
New York 549,996.13 7.20 927,157.24
North Carolina 170,360.37 5.14 240,494.74
North Dakota 13,549.39 4.01 17,122.74
Ohio 268,945.71 6.12 514,589.21
Oklahoma 67,226.84 5.43 140,837.49
Oregon 72,634.08 6.19 120,557.08
Pennsylvania 285,869.32 6.69 499,960.64
Rhode Island 24,210.56 7.22 39,025.45
South Carolina 77,570.54 6.28 134,900.44
South Dakota 16,010.47 3.31 18,897.56
Tennessee 121,560.84 5.81 282,316.16
Texas 461,910.03 6.69 905,784.23
Utah 40,723.39 4.10 44,023.96
Vermont 12,837.62 5.62 23,840.18
Virginia 171,340.52 5.25 213,824.92
Washington 144,249.79 6.68 186,592.98
West Virginia 33,040.72 9.54 118,846.69
Wisconsin 121,594.23 4.70 115,576.08
Wyoming 14,098.98 5.11 12,425.16
  1. Calculate the sample means of all variables for (a) single women with no children, (b) single women with 1 child, and (c) single women with 2+ children. Earning are reported as zero for women who are not employed. Create a new variable with earnings conditional on working (missing for non-employed) and calculate the means of this by group as well.

I perform this for this for all states (total) and for each state:

masterdf$earn_new <- ifelse(masterdf$earn == 0, NA, masterdf$earn)


a <- masterdf %>% summarise(no_children         = mean(children == 0),
                       one_child           = mean(children == 1),
                       two_more_children   = mean(children >= 2),
                       earn                = mean(earn),
                       earn2               = mean(earn_new, na.rm = TRUE))



b <- masterdf %>% group_by(State) %>% summarise(no_children         = mean(children == 0),
                       one_child           = mean(children == 1),
                       two_more_children   = mean(children >= 2),
                       earn                = mean(earn),
                       earn2               = mean(earn_new, na.rm = TRUE))



kable(a, caption = "Table 2. Mean estimates of children and earnings for single women", digits=2, booktabs = FALSE, format.args = list(big.mark = ",")) %>%
  kable_classic_2(full_width = F, html_font = "Times")%>%
    kable_styling(font_size = 14)%>%
  row_spec(dim(a)[1], bold = F) %>% # format last row
  column_spec(1, italic = F) # format first column
Table 2. Mean estimates of children and earnings for single women
no_children one_child two_more_children earn earn2
0.43 0.22 0.35 10,432.48 17,072
kable(b, caption = "Table 3. Mean estimates of children and earnings for single women by state", digits=2, booktabs = FALSE, format.args = list(big.mark = ",")) %>%
  kable_classic_2(full_width = F, html_font = "Times")%>%
    kable_styling(font_size = 14)%>%
  row_spec(dim(b)[1], bold = F) %>% # format last row
  column_spec(1, italic = F) # format first column
Table 3. Mean estimates of children and earnings for single women by state
State no_children one_child two_more_children earn earn2
Alabama 0.47 0.21 0.32 7,958.87 14,604.93
Alaska 0.45 0.31 0.24 13,442.20 21,208.80
Arizona 0.34 0.23 0.44 10,101.77 15,974.89
Arkansas 0.48 0.24 0.29 7,730.55 11,068.75
California 0.36 0.25 0.39 12,425.22 19,371.46
Colorado 0.50 0.19 0.30 11,740.76 18,144.81
Connecticut 0.39 0.21 0.39 9,751.59 15,602.54
Delaware 0.49 0.30 0.20 10,605.23 15,670.41
District of Columbia 0.44 0.23 0.33 11,510.66 18,225.21
Florida 0.45 0.22 0.34 10,511.17 16,057.49
Georgia 0.55 0.18 0.27 11,430.47 16,255.02
Hawaii 0.48 0.17 0.35 22,252.16 34,967.68
Idaho 0.36 0.28 0.36 10,634.77 14,857.40
Illinois 0.45 0.19 0.36 12,402.17 21,970.61
Indiana 0.49 0.21 0.30 14,130.41 20,115.06
Iowa 0.50 0.24 0.26 11,439.76 14,490.36
Kansas 0.45 0.24 0.32 12,422.72 16,498.92
Kentucky 0.37 0.32 0.31 5,743.84 11,629.50
Louisiana 0.38 0.23 0.38 5,865.05 12,791.39
Maine 0.58 0.22 0.20 5,546.43 11,709.13
Maryland 0.47 0.19 0.34 10,497.08 17,858.67
Massachusetts 0.43 0.20 0.37 10,888.22 21,546.00
Michigan 0.44 0.21 0.35 11,498.88 20,166.60
Minnesota 0.39 0.21 0.39 6,030.81 10,194.94
Mississippi 0.40 0.19 0.41 7,899.70 11,804.66
Missouri 0.50 0.29 0.21 6,795.89 10,746.99
Montana 0.38 0.22 0.40 5,196.28 8,700.75
Nebraska 0.55 0.13 0.32 13,114.14 17,410.15
Nevada 0.47 0.18 0.35 15,925.20 20,218.08
New Hampshire 0.46 0.23 0.31 9,758.81 16,661.39
New Jersey 0.46 0.21 0.33 13,491.53 21,724.38
New Mexico 0.38 0.19 0.43 6,291.58 10,166.27
New York 0.40 0.22 0.38 9,027.18 19,524.74
North Carolina 0.51 0.25 0.24 11,096.30 14,943.93
North Dakota 0.55 0.22 0.22 9,402.82 15,365.59
Ohio 0.41 0.19 0.40 7,962.79 13,057.75
Oklahoma 0.48 0.28 0.24 6,810.53 11,322.51
Oregon 0.49 0.25 0.26 10,239.57 15,169.73
Pennsylvania 0.51 0.24 0.25 9,644.32 19,103.17
Rhode Island 0.41 0.23 0.36 12,565.55 18,345.70
South Carolina 0.44 0.21 0.35 11,512.95 17,745.53
South Dakota 0.52 0.23 0.24 9,270.93 13,449.38
Tennessee 0.49 0.18 0.33 10,031.12 16,600.17
Texas 0.42 0.22 0.36 9,918.50 14,040.87
Utah 0.35 0.19 0.46 14,760.41 22,632.63
Vermont 0.40 0.19 0.40 7,558.87 12,283.17
Virginia 0.55 0.21 0.24 12,812.53 17,807.24
Washington 0.43 0.26 0.31 8,705.69 14,565.29
West Virginia 0.52 0.20 0.28 5,692.65 10,849.52
Wisconsin 0.48 0.20 0.31 8,890.23 12,236.02
Wyoming 0.49 0.24 0.27 5,536.51 9,108.45
  1. How do these three samples differ?

Though these estimates are purely descriptive, it is evident that the percent of women without a child make up nearly half of the total sample. The estimates in fact are quite telling across each category. For instance, Maine has the highest proportion of single women without children, while Kentucky and Utah have the largest percentage of one child and two or more children, respectively. Further, when we earnings is set to be conditional on working, Hawaii tends to have the largest earnings per woman.

  1. Construct a variable for the “treatment” and a variable “post” for the time period after the expansion.
masterdf$post      <- ifelse(masterdf$year >= 1993,1,0)
masterdf$treatment <- ifelse(masterdf$children >= 1,1,0)

masterdf$did       <- masterdf$post * masterdf$treatment

summary(masterdf$treatment)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  1.0000  0.5688  1.0000  1.0000
  1. Create a graph which plots mean annual employment rates by year (1991-1996) for single women with children (treatment) and without children (control). Use this graph to discuss the validity of using single women without children as a control group. Given the other expansions prior to 1993, are there difficulties in testing for differences in “pre-treatment” trends?

The graph below indicates that pre-treatment trends exhibit decliens prior to the expansion. SO yes, this may post difficulties.

library(ggplot2)
ggplot(masterdf, aes(x = year, 
                     y = `Unemployment rate`, 
                     color = as.factor(treatment))) +
    stat_summary(geom = 'line') +
    geom_vline(xintercept = 1993) +
    theme_minimal()
## No summary function supplied, defaulting to `mean_se()`

  1. Calculate the unconditional difference-in-difference estimates of the effect of the 1993 EITC expansion on employment of single women. Your table should be parallel to the format found in a typical differences-in-differences paper. Calculate estimates with all women with children as the treatment (single women with no children as the control), women with children as the control. Discuss these results.

The results below indicate that the expected differences are much more stark for women with children, whose effect changed from prior to the expanision from .449 to .476. This make for a difference of almost 3 points. The difference is much more marginal for women without children.

didunco <- masterdf %>% 
  group_by(post, treatment) %>% 
  summarize(women = mean(work))
## `summarise()` has grouped output by 'post'. You can override using the `.groups` argument.
didunco
## # A tibble: 4 x 3
## # Groups:   post [2]
##    post treatment women
##   <dbl>     <dbl> <dbl>
## 1     0         0 0.577
## 2     0         1 0.450
## 3     1         0 0.573
## 4     1         1 0.476
# Compute the four data points needed in the DID calculation:
a = sapply(subset(masterdf, post == 0 & treatment == 0, select=work), mean)
b = sapply(subset(masterdf, post == 0 & treatment == 1, select=work), mean)
c = sapply(subset(masterdf, post == 1 & treatment == 0, select=work), mean)
d = sapply(subset(masterdf, post == 1 & treatment == 1, select=work), mean)
 
# Compute the effect of the EITC on the employment of women with children:
(d-c)-(b-a)
##       work 
## 0.03112796
  1. Now run a regression to estimate the conditional difference-in-difference estimate of the effect of the EITC by only include individual-level controls. Use all women with children as the treatment group. How do these results compare with what you found in (7)? What is the interpretation of the coefficient on the variables you included?

The joinnt interaction term under DiD has a postive association with the outcome. The statistical signficance of this particular model is marginally insignificant

library(tidyverse)   
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.1.0     v purrr   0.3.4
## v tidyr   1.1.3     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter()          masks stats::filter()
## x kableExtra::group_rows() masks dplyr::group_rows()
## x dplyr::lag()             masks stats::lag()
library(tidyverse)   # ggplot(), %>%, mutate(), and friends
library(scales)      # Format numbers with functions like comma(), percent(), and dollar()
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
library(broom)       # Convert models to data frames

model1 <- glm(work ~ treatment + post + did + nonwhite + age,
                  data = masterdf, family = "binomial")
tidy(model1)
## # A tibble: 6 x 5
##   term        estimate std.error statistic  p.value
##   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
## 1 (Intercept)  0.240     0.0817      2.94  3.32e- 3
## 2 treatment   -0.453     0.0585     -7.74  9.64e-15
## 3 post        -0.0147    0.0548     -0.268 7.89e- 1
## 4 did          0.136     0.0723      1.89  5.90e- 2
## 5 nonwhite    -0.260     0.0356     -7.30  2.90e-13
## 6 age          0.00533   0.00177     3.01  2.59e- 3
summary(model1)
## 
## Call:
## glm(formula = work ~ treatment + post + did + nonwhite + age, 
##     family = "binomial", data = masterdf)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4081  -1.1633   0.9708   1.1415   1.3364  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.240028   0.081734   2.937  0.00332 ** 
## treatment   -0.453034   0.058502  -7.744 9.64e-15 ***
## post        -0.014673   0.054818  -0.268  0.78895    
## did          0.136435   0.072250   1.888  0.05898 .  
## nonwhite    -0.259838   0.035599  -7.299 2.90e-13 ***
## age          0.005327   0.001768   3.012  0.00259 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 19047  on 13745  degrees of freedom
## Residual deviance: 18823  on 13740  degrees of freedom
## AIC: 18835
## 
## Number of Fisher Scoring iterations: 4
  1. Add the state economic controls, and allow its effect to vary by the presence of children (hint: using interaction terms). Present your results in a publishable table format, and discuss your results.
model2 <- glm(work ~ treatment + post + did + nonwhite + age + `Gross State Product` + `Food Stamp/SNAP Caseloads`, data = masterdf, family = "binomial")
tidy(model2)
## # A tibble: 8 x 5
##   term                            estimate   std.error statistic  p.value
##   <chr>                              <dbl>       <dbl>     <dbl>    <dbl>
## 1 (Intercept)                  0.282       0.0830          3.40  6.81e- 4
## 2 treatment                   -0.453       0.0586         -7.73  1.10e-14
## 3 post                         0.0178      0.0551          0.322 7.47e- 1
## 4 did                          0.137       0.0723          1.90  5.79e- 2
## 5 nonwhite                    -0.226       0.0375         -6.01  1.83e- 9
## 6 age                          0.00570     0.00177         3.21  1.31e- 3
## 7 `Gross State Product`        0.000000930 0.000000194     4.80  1.63e- 6
## 8 `Food Stamp/SNAP Caseloads` -0.000000816 0.000000142    -5.75  8.70e- 9
summary(model2)
## 
## Call:
## glm(formula = work ~ treatment + post + did + nonwhite + age + 
##     `Gross State Product` + `Food Stamp/SNAP Caseloads`, family = "binomial", 
##     data = masterdf)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.465  -1.165   0.947   1.143   1.450  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  2.821e-01  8.303e-02   3.397 0.000681 ***
## treatment                   -4.525e-01  5.856e-02  -7.727 1.10e-14 ***
## post                         1.778e-02  5.515e-02   0.322 0.747079    
## did                          1.372e-01  7.234e-02   1.897 0.057852 .  
## nonwhite                    -2.256e-01  3.752e-02  -6.012 1.83e-09 ***
## age                          5.695e-03  1.772e-03   3.213 0.001313 ** 
## `Gross State Product`        9.297e-07  1.939e-07   4.795 1.63e-06 ***
## `Food Stamp/SNAP Caseloads` -8.163e-07  1.419e-07  -5.754 8.70e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 19047  on 13745  degrees of freedom
## Residual deviance: 18786  on 13738  degrees of freedom
## AIC: 18802
## 
## Number of Fisher Scoring iterations: 4
  1. Estimate a “placebo” treatment model. Take data from only the pre-reform period. Use the same treatment and control groups. Introduce a placebo policy that begins in 1992 (so 1992 and 1993 both have this fake policy). What do you find? Discuss the implications of this result.

The DiD estimates for the placebo are not significant, but even still, the differences across the artificial policy expansion is largely notable across both groups.

mastplac <- masterdf %>% filter(year < 1994)
mastplac$post_placebo      <- ifelse(mastplac$year >= 1992,1,0)
mastplac$treatment <- ifelse(mastplac$children >= 1,1,0)

mastplac$did       <- mastplac$post_placebo * mastplac$treatment

summary(mastplac$treatment)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0000  0.0000  1.0000  0.5738  1.0000  1.0000
library(ggplot2)
ggplot(mastplac, aes(x = year, 
                     y = `Unemployment rate`, 
                     color = as.factor(treatment))) +
    stat_summary(geom = 'line') +
    geom_vline(xintercept = 1992) +
    theme_minimal()
## No summary function supplied, defaulting to `mean_se()`

diduncob <- mastplac %>% 
  group_by(post_placebo, treatment) %>% 
  summarize(women = mean(work))
## `summarise()` has grouped output by 'post_placebo'. You can override using the `.groups` argument.
diduncob
## # A tibble: 4 x 3
## # Groups:   post_placebo [2]
##   post_placebo treatment women
##          <dbl>     <dbl> <dbl>
## 1            0         0 0.583
## 2            0         1 0.460
## 3            1         0 0.571
## 4            1         1 0.438
# Compute the four data points needed in the DID calculation:
a = sapply(subset(mastplac, post_placebo == 0 & treatment == 0, select=work), mean)
b = sapply(subset(mastplac, post_placebo == 0 & treatment == 1, select=work), mean)
c = sapply(subset(mastplac, post_placebo == 1 & treatment == 0, select=work), mean)
d = sapply(subset(mastplac, post_placebo == 1 & treatment == 1, select=work), mean)
 
# Compute the effect of the EITC on the employment of women with children:
(d-c)-(b-a)
##        work 
## -0.01012815
model11 <- glm(work ~ treatment + post_placebo + did + nonwhite + age,
                  data = mastplac, family = "binomial")
tidy(model11)
## # A tibble: 6 x 5
##   term         estimate std.error statistic     p.value
##   <chr>           <dbl>     <dbl>     <dbl>       <dbl>
## 1 (Intercept)   0.251     0.113       2.23  0.0258     
## 2 treatment    -0.432     0.0816     -5.30  0.000000118
## 3 post_placebo -0.0442    0.0757     -0.583 0.560      
## 4 did          -0.0412    0.0996     -0.414 0.679      
## 5 nonwhite     -0.251     0.0480     -5.22  0.000000176
## 6 age           0.00545   0.00242     2.25  0.0243
summary(model11)
## 
## Call:
## glm(formula = work ~ treatment + post_placebo + did + nonwhite + 
##     age, family = "binomial", data = mastplac)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4162  -1.1364   0.9561   1.1547   1.3549  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.251486   0.112812   2.229   0.0258 *  
## treatment    -0.432176   0.081592  -5.297 1.18e-07 ***
## post_placebo -0.044167   0.075734  -0.583   0.5598    
## did          -0.041250   0.099564  -0.414   0.6787    
## nonwhite     -0.250845   0.048026  -5.223 1.76e-07 ***
## age           0.005448   0.002419   2.252   0.0243 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 10260  on 7400  degrees of freedom
## Residual deviance: 10104  on 7395  degrees of freedom
## AIC: 10116
## 
## Number of Fisher Scoring iterations: 4
model211 <- glm(work ~ treatment + post_placebo + did + nonwhite + age + `Gross State Product` + `Food Stamp/SNAP Caseloads`, data = mastplac, family = "binomial")
tidy(model211)
## # A tibble: 8 x 5
##   term                            estimate   std.error statistic     p.value
##   <chr>                              <dbl>       <dbl>     <dbl>       <dbl>
## 1 (Intercept)                  0.270       0.115          2.36   0.0184     
## 2 treatment                   -0.428       0.0816        -5.24   0.000000163
## 3 post_placebo                -0.00569     0.0767        -0.0742 0.941      
## 4 did                         -0.0466      0.0996        -0.468  0.640      
## 5 nonwhite                    -0.232       0.0510        -4.55   0.00000546 
## 6 age                          0.00579     0.00242        2.39   0.0169     
## 7 `Gross State Product`        0.000000686 0.000000247    2.77   0.00552    
## 8 `Food Stamp/SNAP Caseloads` -0.000000606 0.000000187   -3.23   0.00122
summary(model211)
## 
## Call:
## glm(formula = work ~ treatment + post_placebo + did + nonwhite + 
##     age + `Gross State Product` + `Food Stamp/SNAP Caseloads`, 
##     family = "binomial", data = mastplac)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4516  -1.1391   0.9322   1.1665   1.4454  
## 
## Coefficients:
##                               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                  2.702e-01  1.146e-01   2.358  0.01835 *  
## treatment                   -4.276e-01  8.164e-02  -5.237 1.63e-07 ***
## post_placebo                -5.687e-03  7.668e-02  -0.074  0.94088    
## did                         -4.660e-02  9.964e-02  -0.468  0.64002    
## nonwhite                    -2.319e-01  5.101e-02  -4.546 5.46e-06 ***
## age                          5.793e-03  2.424e-03   2.390  0.01687 *  
## `Gross State Product`        6.864e-07  2.474e-07   2.775  0.00552 ** 
## `Food Stamp/SNAP Caseloads` -6.056e-07  1.872e-07  -3.235  0.00122 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 10260  on 7400  degrees of freedom
## Residual deviance: 10094  on 7393  degrees of freedom
## AIC: 10110
## 
## Number of Fisher Scoring iterations: 4