Mostly showing graphs and yearly Tukey's for now
Consistent patch contrast across variables except for 2019
No differences between grazer treatments
## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORm: log(VOR_Mean + 1) ~ Management + (1 | Transect/Pasture/Year)
## VORt: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## VORtm: log(VOR_Mean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## VORnull 5 2653.8 2687.5 -1321.9 2643.8
## VORm 6 2654.8 2695.3 -1321.4 2642.8 0.9878 1 0.3203
## VORt 9 2588.7 2649.4 -1285.3 2570.7 72.1065 3 1.51e-15 ***
## VORtm 10 2589.8 2657.3 -1284.9 2569.8 0.9044 1 0.3416
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORt: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## VORnull 5 2653.8 2687.5 -1321.9 2643.8
## VORt 9 2588.7 2649.4 -1285.3 2570.7 73.094 4 5.039e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORm: log(VOR_Mean + 1) ~ Management + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## VORnull 5 2653.8 2687.5 -1321.9 2643.8
## VORm 6 2654.8 2695.3 -1321.4 2642.8 0.9878 1 0.3203
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = VOR_Mean ~ TSF + (1 | Transect/Pasture/Year),
## data = HRECVeg, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.7865 0.1834 4.288 < 0.001 ***
## 2yr3yr - RB == 0 1.4127 0.2100 6.726 < 0.001 ***
## 3yr4yr - RB == 0 1.1935 0.2788 4.281 < 0.001 ***
## Unburned - RB == 0 0.5252 0.1586 3.312 0.00762 **
## 2yr3yr - 1yr2yr == 0 0.6262 0.2148 2.915 0.02767 *
## 3yr4yr - 1yr2yr == 0 0.4070 0.2844 1.431 0.59656
## Unburned - 1yr2yr == 0 -0.2613 0.1766 -1.480 0.56481
## 3yr4yr - 2yr3yr == 0 -0.2192 0.2984 -0.735 0.94610
## Unburned - 2yr3yr == 0 -0.8875 0.2070 -4.288 < 0.001 ***
## Unburned - 3yr4yr == 0 -0.6683 0.2790 -2.396 0.11089
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
Overall, TSF significantly influenced VOR and Management did not. Recently burned patches had lower VOR than all other patches (Yay!)
VORt17a <- lmer(log(VOR_Mean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
Mult_VOR17a <- glht(VORt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR17a) #Unburned higher than RB
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 0.32499 0.05217 6.23 4.68e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
VORt18a <- lmer(log(VOR_Mean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_VOR18a <- glht(VORt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR18a) #unburned higher than RB and 1-2
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.16341 0.08616 1.897 0.1386
## Unburned - RB == 0 0.34437 0.07465 4.613 <0.001 ***
## Unburned - 1yr2yr == 0 0.18096 0.07463 2.425 0.0403 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
VORt19a <- lmer(log(VOR_Mean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_VOR19a <- glht(VORt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR19a) #no differences
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.012112 0.092308 0.131 0.999
## 2yr3yr - RB == 0 0.149551 0.093007 1.608 0.374
## Unburned - RB == 0 0.153959 0.094069 1.637 0.358
## 2yr3yr - 1yr2yr == 0 0.137438 0.088969 1.545 0.410
## Unburned - 1yr2yr == 0 0.141847 0.092301 1.537 0.415
## Unburned - 2yr3yr == 0 0.004409 0.093000 0.047 1.000
## (Adjusted p values reported -- single-step method)
VORt20a <- lmer(log(VOR_Mean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
Mult_VOR20a <- glht(VORt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR20a) #RB lower than everyone
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.61590 0.08051 7.650 <0.001 ***
## 2yr3yr - RB == 0 0.56275 0.08050 6.990 <0.001 ***
## 3yr4yr - RB == 0 0.72058 0.08052 8.949 <0.001 ***
## 2yr3yr - 1yr2yr == 0 -0.05315 0.08051 -0.660 0.912
## 3yr4yr - 1yr2yr == 0 0.10468 0.08052 1.300 0.563
## 3yr4yr - 2yr3yr == 0 0.15784 0.08052 1.960 0.203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLm: MaxLive ~ Management + (1 | Transect/Pasture/Year)
## MLt: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
## MLtm: MaxLive ~ Management + TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MLnull 5 23425 23458 -11707 23415
## MLm 6 23425 23466 -11707 23413 1.4438 1 0.2295
## MLt 9 23400 23461 -11691 23382 30.9618 3 8.659e-07 ***
## MLtm 10 23401 23468 -11690 23381 1.3581 1 0.2439
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLt: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MLnull 5 23425 23458 -11707 23415
## MLt 9 23400 23461 -11691 23382 32.406 4 1.581e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLm: MaxLive ~ Management + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MLnull 5 23425 23458 -11707 23415
## MLm 6 23425 23466 -11707 23413 1.4438 1 0.2295
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture/Year), data = HRECVeg,
## REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 1.4030 0.3233 4.340 < 0.001 ***
## 2yr3yr - RB == 0 1.9750 0.3686 5.358 < 0.001 ***
## 3yr4yr - RB == 0 1.0565 0.4876 2.167 0.18424
## Unburned - RB == 0 0.5974 0.2786 2.145 0.19295
## 2yr3yr - 1yr2yr == 0 0.5720 0.3773 1.516 0.54078
## 3yr4yr - 1yr2yr == 0 -0.3465 0.4986 -0.695 0.95566
## Unburned - 1yr2yr == 0 -0.8056 0.3072 -2.622 0.06274 .
## 3yr4yr - 2yr3yr == 0 -0.9185 0.5246 -1.751 0.39128
## Unburned - 2yr3yr == 0 -1.3776 0.3580 -3.848 0.00109 **
## Unburned - 3yr4yr == 0 -0.4591 0.4826 -0.951 0.87157
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
MLt17a <- lmer(MaxLive ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_ML17a <- glht(MLt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML17a) #Unburned > RB
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 0.7381 0.2643 2.793 0.00522 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
MLt18a <- lmer(MaxLive ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
Mult_ML18a <- glht(MLt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML18a) #RB lower than other two patches
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.8906 0.3573 2.493 0.0336 *
## Unburned - RB == 0 1.4396 0.3095 4.651 <0.001 ***
## Unburned - 1yr2yr == 0 0.5491 0.3095 1.774 0.1771
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
MLt19a <- lmer(MaxLive ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
Mult_ML19a <- glht(MLt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML19a) #no difference
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.578809 0.532381 -1.087 0.697
## 2yr3yr - RB == 0 -0.041031 0.536257 -0.077 1.000
## Unburned - RB == 0 -0.039175 0.542622 -0.072 1.000
## 2yr3yr - 1yr2yr == 0 0.537778 0.510630 1.053 0.718
## Unburned - 1yr2yr == 0 0.539634 0.532340 1.014 0.741
## Unburned - 2yr3yr == 0 0.001856 0.536217 0.003 1.000
## (Adjusted p values reported -- single-step method)
#2020
MLt20a <- lmer(MaxLive ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00604857 (tol = 0.002, component 1)
Mult_ML20a <- glht(MLt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML20a) #RB lower than other patches
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 2.70805 0.36941 7.331 <1e-04 ***
## 2yr3yr - RB == 0 2.09720 0.36939 5.678 <1e-04 ***
## 3yr4yr - RB == 0 2.65104 0.36951 7.174 <1e-04 ***
## 2yr3yr - 1yr2yr == 0 -0.61084 0.36939 -1.654 0.349
## 3yr4yr - 1yr2yr == 0 -0.05701 0.36951 -0.154 0.999
## 3yr4yr - 2yr3yr == 0 0.55384 0.36950 1.499 0.438
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDm: log(MaxDead + 1) ~ Management + (1 | Transect/Pasture/Year)
## MDt: log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year)
## MDtm: log(MaxDead + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MDnull 5 5914.0 5947.8 -2952.0 5904.0
## MDm 6 5915.1 5955.7 -2951.6 5903.1 0.8664 1 0.3519
## MDt 9 5672.2 5732.9 -2827.1 5654.2 248.9628 3 <2e-16 ***
## MDtm 10 5673.1 5740.6 -2826.6 5653.1 1.0698 1 0.3010
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDt: log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MDnull 5 5914.0 5947.8 -2952.0 5904.0
## MDt 9 5672.2 5732.9 -2827.1 5654.2 249.83 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDm: log(MaxDead + 1) ~ Management + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## MDnull 5 5914.0 5947.8 -2952.0 5904.0
## MDm 6 5915.1 5955.7 -2951.6 5903.1 0.8664 1 0.3519
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year),
## data = HRECVeg, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.51740 0.04476 11.559 <1e-04 ***
## 2yr3yr - RB == 0 0.85433 0.05164 16.545 <1e-04 ***
## 3yr4yr - RB == 0 1.21928 0.06838 17.830 <1e-04 ***
## Unburned - RB == 0 0.46460 0.03869 12.009 <1e-04 ***
## 2yr3yr - 1yr2yr == 0 0.33693 0.05332 6.318 <1e-04 ***
## 3yr4yr - 1yr2yr == 0 0.70188 0.06971 10.069 <1e-04 ***
## Unburned - 1yr2yr == 0 -0.05280 0.04374 -1.207 0.739
## 3yr4yr - 2yr3yr == 0 0.36495 0.07293 5.004 <1e-04 ***
## Unburned - 2yr3yr == 0 -0.38973 0.05176 -7.529 <1e-04 ***
## Unburned - 3yr4yr == 0 -0.75468 0.06930 -10.890 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
MDt17a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
Mult_MDt17a <- glht(MDt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt17a) #different
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 0.59683 0.04404 13.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
MDt18a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_MDt18a <- glht(MDt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt18a) #Unburned > 1-2 > RB
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.22277 0.05079 4.386 3.22e-05 ***
## Unburned - RB == 0 0.44043 0.04404 10.000 < 1e-05 ***
## Unburned - 1yr2yr == 0 0.21766 0.04401 4.946 < 1e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
MDt19a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
Mult_MDt19a <- glht(MDt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt19a) #RB lower than everybody, others equal
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.29476 0.06878 4.285 0.000107 ***
## 2yr3yr - RB == 0 0.39428 0.06913 5.703 < 1e-04 ***
## Unburned - RB == 0 0.33128 0.06943 4.771 < 1e-04 ***
## 2yr3yr - 1yr2yr == 0 0.09951 0.06780 1.468 0.457077
## Unburned - 1yr2yr == 0 0.03652 0.06877 0.531 0.951563
## Unburned - 2yr3yr == 0 -0.06300 0.06912 -0.911 0.798755
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
MDt20a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_MDt20a <- glht(MDt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt20a) #RB lower than everybody, others equal
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 1.01550 0.10018 10.137 <0.001 ***
## 2yr3yr - RB == 0 1.12683 0.10017 11.249 <0.001 ***
## 3yr4yr - RB == 0 1.20602 0.10021 12.035 <0.001 ***
## 2yr3yr - 1yr2yr == 0 0.11133 0.10017 1.111 0.683
## 3yr4yr - 1yr2yr == 0 0.19052 0.10021 1.901 0.228
## 3yr4yr - 2yr3yr == 0 0.07919 0.10020 0.790 0.859
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#Transect/Pasture/Year
LMnull <- lmer(log(LitMean+1) ~ 1 + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMt <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMm <- lmer(log(LitMean+1) ~ Management + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMtm <- lmer(log(LitMean+1) ~ Management + TSF +(1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00636183 (tol = 0.002, component 1)
anova(LMnull, LMt, LMm, LMtm) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMm: log(LitMean + 1) ~ Management + (1 | Transect/Pasture/Year)
## LMt: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## LMtm: log(LitMean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LMnull 5 3785.4 3819.2 -1887.7 3775.4
## LMm 6 3786.7 3827.3 -1887.4 3774.7 0.6632 1 0.4154
## LMt 9 3687.2 3748.0 -1834.6 3669.2 105.5049 3 <2e-16 ***
## LMtm 10 3688.3 3755.8 -1834.2 3668.3 0.9288 1 0.3352
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(LMnull, LMt) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMt: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LMnull 5 3785.4 3819.2 -1887.7 3775.4
## LMt 9 3687.2 3748.0 -1834.6 3669.2 106.17 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(LMnull, LMm) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMm: log(LitMean + 1) ~ Management + (1 | Transect/Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LMnull 5 3785.4 3819.2 -1887.7 3775.4
## LMm 6 3786.7 3827.3 -1887.4 3774.7 0.6632 1 0.4154
Mult_LMta <- glht(LMt, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMta) #3-4 > 2-3 = Unburned > 1-2 > RB
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year),
## data = HRECVeg, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.21904 0.05795 3.780 0.00144 **
## 2yr3yr - RB == 0 0.44864 0.06573 6.826 < 0.001 ***
## 3yr4yr - RB == 0 0.82587 0.08578 9.628 < 0.001 ***
## Unburned - RB == 0 0.39446 0.04945 7.977 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 0.22960 0.06808 3.373 0.00642 **
## 3yr4yr - 1yr2yr == 0 0.60683 0.08821 6.879 < 0.001 ***
## Unburned - 1yr2yr == 0 0.17541 0.05375 3.263 0.00914 **
## 3yr4yr - 2yr3yr == 0 0.37723 0.09341 4.039 < 0.001 ***
## Unburned - 2yr3yr == 0 -0.05419 0.06213 -0.872 0.90292
## Unburned - 3yr4yr == 0 -0.43141 0.08311 -5.191 < 0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
LMt17a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt17a <- glht(LMt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt17a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 0.18805 0.04495 4.184 2.86e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
LMt18a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt18a <- glht(LMt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt18a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.05945 0.05935 1.002 0.574
## Unburned - RB == 0 0.42198 0.05144 8.204 <1e-04 ***
## Unburned - 1yr2yr == 0 0.36253 0.05142 7.051 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
LMt19a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt19a <- glht(LMt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt19a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.15448 0.06087 2.538 0.05407 .
## 2yr3yr - RB == 0 0.18467 0.06125 3.015 0.01376 *
## Unburned - RB == 0 0.37744 0.06168 6.119 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 0.03019 0.05949 0.508 0.95732
## Unburned - 1yr2yr == 0 0.22296 0.06086 3.664 0.00133 **
## Unburned - 2yr3yr == 0 0.19277 0.06124 3.148 0.00899 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
LMt20a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt20a <- glht(LMt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt20a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture),
## data = subset(HRECVeg, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.76204 0.10733 7.100 <1e-04 ***
## 2yr3yr - RB == 0 0.91733 0.10733 8.547 <1e-04 ***
## 3yr4yr - RB == 0 0.88177 0.10735 8.214 <1e-04 ***
## 2yr3yr - 1yr2yr == 0 0.15528 0.10733 1.447 0.470
## 3yr4yr - 1yr2yr == 0 0.11972 0.10735 1.115 0.680
## 3yr4yr - 2yr3yr == 0 -0.03556 0.10735 -0.331 0.987
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGm: log(BGCover + 1) ~ Management + (1 | Pasture/Year)
## BGt: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
## BGtm: log(BGCover + 1) ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## BGnull 4 751.25 765.94 -371.62 743.25
## BGm 5 753.12 771.49 -371.56 743.12 0.1251 1 0.7236
## BGt 8 660.78 690.17 -322.39 644.78 98.3456 3 <2e-16 ***
## BGtm 9 662.65 695.71 -322.33 644.65 0.1279 1 0.7206
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGt: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## BGnull 4 751.25 765.94 -371.62 743.25
## BGt 8 660.78 690.17 -322.39 644.78 98.471 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGm: log(BGCover + 1) ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## BGnull 4 751.25 765.94 -371.62 743.25
## BGm 5 753.12 771.49 -371.56 743.12 0.1251 1 0.7236
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture/Year), data = HRECVegT,
## REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.5499 0.1253 -4.388 < 0.001 ***
## 2yr3yr - RB == 0 -0.8146 0.1473 -5.531 < 0.001 ***
## 3yr4yr - RB == 0 -1.5252 0.1961 -7.777 < 0.001 ***
## Unburned - RB == 0 -0.9874 0.1100 -8.978 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 -0.2647 0.1509 -1.755 0.38845
## 3yr4yr - 1yr2yr == 0 -0.9753 0.1986 -4.911 < 0.001 ***
## Unburned - 1yr2yr == 0 -0.4375 0.1257 -3.481 0.00425 **
## 3yr4yr - 2yr3yr == 0 -0.7106 0.2065 -3.441 0.00481 **
## Unburned - 2yr3yr == 0 -0.1728 0.1520 -1.137 0.77901
## Unburned - 3yr4yr == 0 0.5379 0.2032 2.647 0.05862 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
BGt17a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2017"), REML = FALSE)
Mult_BGt17a <- glht(BGt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt17a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 -0.7563 0.1000 -7.563 3.95e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
BGt18a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2018"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_BGt18a <- glht(BGt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt18a) #RB = 1-2 > Unburned
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.2905 0.1773 -1.638 0.228140
## Unburned - RB == 0 -0.9209 0.1536 -5.997 < 1e-04 ***
## Unburned - 1yr2yr == 0 -0.6304 0.1536 -4.105 0.000107 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
BGt19a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2019"), REML = FALSE)
Mult_BGt19a <- glht(BGt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt19a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.3883 0.2179 -1.782 0.2820
## 2yr3yr - RB == 0 -0.7571 0.2234 -3.389 0.0040 **
## Unburned - RB == 0 -1.2906 0.2234 -5.777 <0.001 ***
## 2yr3yr - 1yr2yr == 0 -0.3688 0.2179 -1.692 0.3276
## Unburned - 1yr2yr == 0 -0.9022 0.2179 -4.140 <0.001 ***
## Unburned - 2yr3yr == 0 -0.5334 0.2234 -2.388 0.0795 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
BGt20a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2020"), REML = FALSE)
Mult_BGt20a <- glht(BGt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt20a)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -1.1296 0.3241 -3.485 0.00294 **
## 2yr3yr - RB == 0 -1.0188 0.3241 -3.143 0.00924 **
## 3yr4yr - RB == 0 -1.7572 0.3241 -5.421 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 0.1108 0.3241 0.342 0.98626
## 3yr4yr - 1yr2yr == 0 -0.6276 0.3241 -1.936 0.21298
## 3yr4yr - 2yr3yr == 0 -0.7384 0.3241 -2.278 0.10337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gm: GCover ~ Management + (1 | Pasture/Year)
## Gt: GCover ~ TSF + (1 | Pasture/Year)
## Gmt: GCover ~ TSF + Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Gnull 4 2194.0 2208.7 -1093.0 2186.0
## Gm 5 2192.6 2210.9 -1091.3 2182.6 3.398 1 0.06528 .
## Gt 8 2152.3 2181.7 -1068.2 2136.3 46.279 3 4.948e-10 ***
## Gmt 9 2151.1 2184.1 -1066.5 2133.1 3.222 1 0.07265 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gt: GCover ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Gnull 4 2194.0 2208.7 -1093.0 2186.0
## Gt 8 2152.3 2181.7 -1068.2 2136.3 49.677 4 4.218e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gm: GCover ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Gnull 4 2194.0 2208.7 -1093.0 2186.0
## Gm 5 2192.6 2210.9 -1091.3 2182.6 3.398 1 0.06528 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 -11.848 1.533 -7.729 1.09e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -3.7323 2.0576 -1.814 0.164
## Unburned - RB == 0 -3.5931 1.7820 -2.016 0.107
## Unburned - 1yr2yr == 0 0.1392 1.7820 0.078 0.997
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -12.369 3.193 -3.874 0.000619 ***
## 2yr3yr - RB == 0 -13.943 3.276 -4.257 < 1e-04 ***
## Unburned - RB == 0 -14.960 3.276 -4.567 < 1e-04 ***
## 2yr3yr - 1yr2yr == 0 -1.575 3.193 -0.493 0.960618
## Unburned - 1yr2yr == 0 -2.591 3.193 -0.812 0.848994
## Unburned - 2yr3yr == 0 -1.017 3.276 -0.310 0.989644
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -6.026 4.148 -1.453 0.4663
## 2yr3yr - RB == 0 -1.172 4.148 -0.282 0.9921
## 3yr4yr - RB == 0 -12.180 4.148 -2.936 0.0173 *
## 2yr3yr - 1yr2yr == 0 4.854 4.148 1.170 0.6456
## 3yr4yr - 1yr2yr == 0 -6.154 4.148 -1.484 0.4474
## 3yr4yr - 2yr3yr == 0 -11.008 4.148 -2.654 0.0397 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCm: LitCover ~ Management + (1 | Pasture/Year)
## LCt: LitCover ~ TSF + (1 | Pasture/Year)
## LCtm: LitCover ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LCnull 4 2187.2 2201.8 -1089.6 2179.2
## LCm 5 2188.7 2207.1 -1089.4 2178.7 0.4279 1 0.5130
## LCt 8 2069.1 2098.5 -1026.6 2053.1 125.6062 3 <2e-16 ***
## LCtm 9 2070.6 2103.6 -1026.3 2052.6 0.5340 1 0.4649
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCt: LitCover ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LCnull 4 2187.2 2201.8 -1089.6 2179.2
## LCt 8 2069.1 2098.5 -1026.6 2053.1 126.03 4 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCm: LitCover ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## LCnull 4 2187.2 2201.8 -1089.6 2179.2
## LCm 5 2188.7 2207.1 -1089.4 2178.7 0.4279 1 0.513
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture/Year), data = HRECVegT,
## REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 9.6379 1.4115 6.828 <1e-04 ***
## 2yr3yr - RB == 0 11.3174 1.6576 6.828 <1e-04 ***
## 3yr4yr - RB == 0 22.2778 2.2061 10.098 <1e-04 ***
## Unburned - RB == 0 11.5044 1.2377 9.295 <1e-04 ***
## 2yr3yr - 1yr2yr == 0 1.6795 1.6989 0.989 0.855
## 3yr4yr - 1yr2yr == 0 12.6398 2.2350 5.655 <1e-04 ***
## Unburned - 1yr2yr == 0 1.8664 1.4128 1.321 0.668
## 3yr4yr - 2yr3yr == 0 10.9604 2.3249 4.714 <1e-04 ***
## Unburned - 2yr3yr == 0 0.1869 1.7074 0.109 1.000
## Unburned - 3yr4yr == 0 -10.7734 2.2822 -4.721 <1e-04 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 12.444 1.229 10.13 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 2.3410 1.1013 2.126 0.084 .
## Unburned - RB == 0 8.5832 0.9538 8.999 <0.001 ***
## Unburned - 1yr2yr == 0 6.2422 0.9538 6.545 <0.001 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 11.847 3.366 3.520 0.00222 **
## 2yr3yr - RB == 0 9.393 3.453 2.720 0.03295 *
## Unburned - RB == 0 10.742 3.453 3.111 0.01019 *
## 2yr3yr - 1yr2yr == 0 -2.454 3.366 -0.729 0.88546
## Unburned - 1yr2yr == 0 -1.105 3.366 -0.328 0.98779
## Unburned - 2yr3yr == 0 1.349 3.453 0.391 0.97977
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 14.4480 3.0841 4.685 < 0.001 ***
## 2yr3yr - RB == 0 14.8246 3.0841 4.807 < 0.001 ***
## 3yr4yr - RB == 0 24.6234 3.0841 7.984 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 0.3766 3.0841 0.122 0.99935
## 3yr4yr - 1yr2yr == 0 10.1754 3.0841 3.299 0.00518 **
## 3yr4yr - 2yr3yr == 0 9.7988 3.0841 3.177 0.00833 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbm: log(Forb + 1) ~ Management + (1 | Pasture/Year)
## Forbt: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
## Forbtm: log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Forbnull 4 597.62 612.31 -294.81 589.62
## Forbm 5 595.21 613.58 -292.61 585.21 4.4024 1 0.03589 *
## Forbt 8 595.99 625.38 -290.00 579.99 5.2188 3 0.15646
## Forbtm 9 593.60 626.66 -287.80 575.60 4.3989 1 0.03596 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbt: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Forbnull 4 597.62 612.31 -294.81 589.62
## Forbt 8 595.99 625.38 -290.00 579.99 9.6212 4 0.04731 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbm: log(Forb + 1) ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Forbnull 4 597.62 612.31 -294.81 589.62
## Forbm 5 595.21 613.58 -292.61 585.21 4.4024 1 0.03589 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbtm: log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Forbnull 4 597.62 612.31 -294.81 589.62
## Forbtm 9 593.60 626.66 -287.80 575.60 14.02 5 0.01548 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.7351 0.2886 -2.547 0.0109 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.08805 0.11015 0.799 0.9277
## 2yr3yr - RB == 0 0.17163 0.12915 1.329 0.6628
## 3yr4yr - RB == 0 0.07117 0.17159 0.415 0.9935
## Unburned - RB == 0 -0.18800 0.09640 -1.950 0.2805
## 2yr3yr - 1yr2yr == 0 0.08358 0.13255 0.631 0.9687
## 3yr4yr - 1yr2yr == 0 -0.01688 0.17404 -0.097 1.0000
## Unburned - 1yr2yr == 0 -0.27605 0.10973 -2.516 0.0825 .
## 3yr4yr - 2yr3yr == 0 -0.10046 0.18130 -0.554 0.9805
## Unburned - 2yr3yr == 0 -0.35963 0.13237 -2.717 0.0486 *
## Unburned - 3yr4yr == 0 -0.25917 0.17685 -1.465 0.5736
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.7056 0.3072 -2.297 0.0216 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 -0.1073 0.2096 -0.512 0.609
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.7258 0.2328 -3.118 0.00182 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.07782 0.18052 0.431 0.902
## Unburned - RB == 0 -0.10621 0.15634 -0.679 0.774
## Unburned - 1yr2yr == 0 -0.18402 0.15634 -1.177 0.465
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.5757 0.3822 -1.506 0.132
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.1486 0.1569 0.947 0.77951
## 2yr3yr - RB == 0 -0.1108 0.1608 -0.689 0.90127
## Unburned - RB == 0 -0.3991 0.1608 -2.482 0.06301 .
## 2yr3yr - 1yr2yr == 0 -0.2594 0.1569 -1.653 0.34887
## Unburned - 1yr2yr == 0 -0.5477 0.1569 -3.490 0.00265 **
## Unburned - 2yr3yr == 0 -0.2883 0.1608 -1.793 0.27662
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.9172 0.3082 -2.976 0.00292 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.08766 0.18793 -0.466 0.966
## 2yr3yr - RB == 0 0.29431 0.18793 1.566 0.398
## 3yr4yr - RB == 0 0.12973 0.18793 0.690 0.901
## 2yr3yr - 1yr2yr == 0 0.38197 0.18793 2.033 0.176
## 3yr4yr - 1yr2yr == 0 0.21739 0.18793 1.157 0.654
## 3yr4yr - 2yr3yr == 0 -0.16458 0.18793 -0.876 0.817
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumem: log(Legume + 1) ~ Management + (1 | Pasture/Year)
## Legumet: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
## Legumetm: log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Legumenull 4 706.91 721.60 -349.45 698.91
## Legumem 5 700.94 719.30 -345.47 690.94 7.9722 1 0.00475 **
## Legumet 8 700.83 730.22 -342.42 684.83 6.1035 3 0.10668
## Legumetm 9 693.49 726.55 -337.75 675.49 9.3416 1 0.00224 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumet: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Legumenull 4 706.91 721.60 -349.45 698.91
## Legumet 8 700.83 730.22 -342.42 684.83 14.076 4 0.007057 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumem: log(Legume + 1) ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Legumenull 4 706.91 721.6 -349.45 698.91
## Legumem 5 700.94 719.3 -345.47 690.94 7.9722 1 0.00475 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumetm: log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Legumenull 4 706.91 721.60 -349.45 698.91
## Legumetm 9 693.49 726.55 -337.75 675.49 23.417 5 0.0002809 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.7242 0.2005 -3.612 0.000303 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.23047 0.13070 -1.763 0.38305
## 2yr3yr - RB == 0 -0.31486 0.15410 -2.043 0.23546
## 3yr4yr - RB == 0 -0.38164 0.20592 -1.853 0.33159
## Unburned - RB == 0 0.20767 0.11517 1.803 0.35978
## 2yr3yr - 1yr2yr == 0 -0.08439 0.15738 -0.536 0.98271
## 3yr4yr - 1yr2yr == 0 -0.15117 0.20803 -0.727 0.94791
## Unburned - 1yr2yr == 0 0.43813 0.13236 3.310 0.00777 **
## 3yr4yr - 2yr3yr == 0 -0.06678 0.21563 -0.310 0.99789
## Unburned - 2yr3yr == 0 0.52252 0.16070 3.252 0.00941 **
## Unburned - 3yr4yr == 0 0.58930 0.21502 2.741 0.04530 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 0.2652 0.3528 0.752 0.452
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 -0.1921 0.2190 -0.877 0.38
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -0.7258 0.1516 -4.788 1.68e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.0009758 0.2143703 -0.005 1.0000
## Unburned - RB == 0 0.5179389 0.1856501 2.790 0.0144 *
## Unburned - 1yr2yr == 0 0.5189147 0.1856501 2.795 0.0143 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -1.175 0.161 -7.296 2.96e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.38741 0.22485 -1.723 0.3116
## 2yr3yr - RB == 0 -0.05474 0.23055 -0.237 0.9953
## Unburned - RB == 0 0.16432 0.23055 0.713 0.8921
## 2yr3yr - 1yr2yr == 0 0.33267 0.22485 1.480 0.4499
## Unburned - 1yr2yr == 0 0.55172 0.22485 2.454 0.0676 .
## Unburned - 2yr3yr == 0 0.21905 0.23055 0.950 0.7776
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -1.2752 0.1763 -7.232 4.75e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture),
## data = subset(HRECVegT, Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 0.1050 0.2054 0.511 0.9564
## 2yr3yr - RB == 0 -0.4453 0.2054 -2.168 0.1322
## 3yr4yr - RB == 0 -0.2693 0.2054 -1.311 0.5556
## 2yr3yr - 1yr2yr == 0 -0.5503 0.2054 -2.679 0.0368 *
## 3yr4yr - 1yr2yr == 0 -0.3743 0.2054 -1.823 0.2626
## 3yr4yr - 2yr3yr == 0 0.1760 0.2054 0.857 0.8270
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grassm: Grass ~ Management + (1 | Pasture/Year)
## Grasst: Grass ~ TSF + (1 | Pasture/Year)
## Grasstm: Grass ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Grassnull 4 2300.6 2315.3 -1146.3 2292.6
## Grassm 5 2302.4 2320.7 -1146.2 2292.4 0.2605 1 0.6098
## Grasst 8 2285.8 2315.2 -1134.9 2269.8 22.5992 3 4.894e-05 ***
## Grasstm 9 2287.5 2320.6 -1134.8 2269.5 0.2705 1 0.6030
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grasst: Grass ~ TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Grassnull 4 2300.6 2315.3 -1146.3 2292.6
## Grasst 8 2285.8 2315.2 -1134.9 2269.8 22.86 4 0.0001351 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grassm: Grass ~ Management + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Grassnull 4 2300.6 2315.3 -1146.3 2292.6
## Grassm 5 2302.4 2320.7 -1146.2 2292.4 0.2605 1 0.6098
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grasstm: Grass ~ Management + TSF + (1 | Pasture/Year)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## Grassnull 4 2300.6 2315.3 -1146.3 2292.6
## Grasstm 9 2287.5 2320.6 -1134.8 2269.5 23.13 5 0.0003187 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 1.409 2.702 0.522 0.602
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ Management + TSF + (1 | Pasture/Year),
## data = HRECVegT, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 5.632 2.043 2.757 0.04359 *
## 2yr3yr - RB == 0 3.627 2.401 1.511 0.54355
## 3yr4yr - RB == 0 11.075 3.198 3.463 0.00452 **
## Unburned - RB == 0 7.202 1.793 4.016 < 0.001 ***
## 2yr3yr - 1yr2yr == 0 -2.005 2.459 -0.815 0.92259
## 3yr4yr - 1yr2yr == 0 5.442 3.238 1.681 0.43394
## Unburned - 1yr2yr == 0 1.569 2.049 0.766 0.93757
## 3yr4yr - 2yr3yr == 0 7.447 3.366 2.212 0.16733
## Unburned - 2yr3yr == 0 3.574 2.479 1.442 0.58898
## Unburned - 3yr4yr == 0 -3.873 3.314 -1.169 0.76082
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 -2.496 5.186 -0.481 0.63
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2017"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0 10.498 3.476 3.02 0.00253 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 1.601 3.019 0.53 0.596
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2018"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 3.3617 2.9834 1.127 0.496
## Unburned - RB == 0 2.9781 2.5837 1.153 0.480
## Unburned - 1yr2yr == 0 -0.3836 2.5837 -0.148 0.988
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 1.567 2.948 0.532 0.595
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2019"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 -0.84249 3.89301 -0.216 0.996
## 2yr3yr - RB == 0 0.66617 3.99133 0.167 0.998
## Unburned - RB == 0 0.69390 3.99133 0.174 0.998
## 2yr3yr - 1yr2yr == 0 1.50866 3.89301 0.388 0.980
## Unburned - 1yr2yr == 0 1.53639 3.89301 0.395 0.979
## Unburned - 2yr3yr == 0 0.02772 3.99133 0.007 1.000
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0 4.907 2.241 2.19 0.0285 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT,
## Year == "2020"), REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0 13.578 3.169 4.285 <0.001 ***
## 2yr3yr - RB == 0 7.090 3.169 2.238 0.1133
## 3yr4yr - RB == 0 16.553 3.169 5.224 <0.001 ***
## 2yr3yr - 1yr2yr == 0 -6.488 3.169 -2.048 0.1708
## 3yr4yr - 1yr2yr == 0 2.975 3.169 0.939 0.7839
## 3yr4yr - 2yr3yr == 0 9.463 3.169 2.987 0.0152 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)