Overview

Mostly showing graphs and yearly Tukey's for now

Consistent patch contrast across variables except for 2019

No differences between grazer treatments

VOR Graphs

VOR Stats

## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORm: log(VOR_Mean + 1) ~ Management + (1 | Transect/Pasture/Year)
## VORt: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## VORtm: log(VOR_Mean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
##         npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## VORnull    5 2653.8 2687.5 -1321.9   2643.8                          
## VORm       6 2654.8 2695.3 -1321.4   2642.8  0.9878  1     0.3203    
## VORt       9 2588.7 2649.4 -1285.3   2570.7 72.1065  3   1.51e-15 ***
## VORtm     10 2589.8 2657.3 -1284.9   2569.8  0.9044  1     0.3416    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORt: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## VORnull    5 2653.8 2687.5 -1321.9   2643.8                         
## VORt       9 2588.7 2649.4 -1285.3   2570.7 73.094  4  5.039e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## VORnull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORm: log(VOR_Mean + 1) ~ Management + (1 | Transect/Pasture/Year)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## VORnull    5 2653.8 2687.5 -1321.9   2643.8                     
## VORm       6 2654.8 2695.3 -1321.4   2642.8 0.9878  1     0.3203
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = VOR_Mean ~ TSF + (1 | Transect/Pasture/Year), 
##     data = HRECVeg, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0         0.7865     0.1834   4.288  < 0.001 ***
## 2yr3yr - RB == 0         1.4127     0.2100   6.726  < 0.001 ***
## 3yr4yr - RB == 0         1.1935     0.2788   4.281  < 0.001 ***
## Unburned - RB == 0       0.5252     0.1586   3.312  0.00762 ** 
## 2yr3yr - 1yr2yr == 0     0.6262     0.2148   2.915  0.02767 *  
## 3yr4yr - 1yr2yr == 0     0.4070     0.2844   1.431  0.59656    
## Unburned - 1yr2yr == 0  -0.2613     0.1766  -1.480  0.56481    
## 3yr4yr - 2yr3yr == 0    -0.2192     0.2984  -0.735  0.94610    
## Unburned - 2yr3yr == 0  -0.8875     0.2070  -4.288  < 0.001 ***
## Unburned - 3yr4yr == 0  -0.6683     0.2790  -2.396  0.11089    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Overall, TSF significantly influenced VOR and Management did not. Recently burned patches had lower VOR than all other patches (Yay!)

VORt17a <- lmer(log(VOR_Mean+1) ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
Mult_VOR17a <- glht(VORt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR17a) #Unburned higher than RB
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0  0.32499    0.05217    6.23 4.68e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
VORt18a <- lmer(log(VOR_Mean+1) ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_VOR18a <- glht(VORt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR18a) #unburned higher than RB and 1-2
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.16341    0.08616   1.897   0.1386    
## Unburned - RB == 0      0.34437    0.07465   4.613   <0.001 ***
## Unburned - 1yr2yr == 0  0.18096    0.07463   2.425   0.0403 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
VORt19a <- lmer(log(VOR_Mean+1) ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_VOR19a <- glht(VORt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR19a) #no differences
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0       0.012112   0.092308   0.131    0.999
## 2yr3yr - RB == 0       0.149551   0.093007   1.608    0.374
## Unburned - RB == 0     0.153959   0.094069   1.637    0.358
## 2yr3yr - 1yr2yr == 0   0.137438   0.088969   1.545    0.410
## Unburned - 1yr2yr == 0 0.141847   0.092301   1.537    0.415
## Unburned - 2yr3yr == 0 0.004409   0.093000   0.047    1.000
## (Adjusted p values reported -- single-step method)
VORt20a <- lmer(log(VOR_Mean+1) ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
Mult_VOR20a <- glht(VORt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_VOR20a) #RB lower than everyone
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      0.61590    0.08051   7.650   <0.001 ***
## 2yr3yr - RB == 0      0.56275    0.08050   6.990   <0.001 ***
## 3yr4yr - RB == 0      0.72058    0.08052   8.949   <0.001 ***
## 2yr3yr - 1yr2yr == 0 -0.05315    0.08051  -0.660    0.912    
## 3yr4yr - 1yr2yr == 0  0.10468    0.08052   1.300    0.563    
## 3yr4yr - 2yr3yr == 0  0.15784    0.08052   1.960    0.203    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Max Live Height Graphs

Max Live Height Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLm: MaxLive ~ Management + (1 | Transect/Pasture/Year)
## MLt: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
## MLtm: MaxLive ~ Management + TSF + (1 | Transect/Pasture/Year)
##        npar   AIC   BIC logLik deviance   Chisq Df Pr(>Chisq)    
## MLnull    5 23425 23458 -11707    23415                          
## MLm       6 23425 23466 -11707    23413  1.4438  1     0.2295    
## MLt       9 23400 23461 -11691    23382 30.9618  3  8.659e-07 ***
## MLtm     10 23401 23468 -11690    23381  1.3581  1     0.2439    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLt: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
##        npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## MLnull    5 23425 23458 -11707    23415                         
## MLt       9 23400 23461 -11691    23382 32.406  4  1.581e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MLnull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MLm: MaxLive ~ Management + (1 | Transect/Pasture/Year)
##        npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## MLnull    5 23425 23458 -11707    23415                     
## MLm       6 23425 23466 -11707    23413 1.4438  1     0.2295
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture/Year), data = HRECVeg, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0         1.4030     0.3233   4.340  < 0.001 ***
## 2yr3yr - RB == 0         1.9750     0.3686   5.358  < 0.001 ***
## 3yr4yr - RB == 0         1.0565     0.4876   2.167  0.18424    
## Unburned - RB == 0       0.5974     0.2786   2.145  0.19295    
## 2yr3yr - 1yr2yr == 0     0.5720     0.3773   1.516  0.54078    
## 3yr4yr - 1yr2yr == 0    -0.3465     0.4986  -0.695  0.95566    
## Unburned - 1yr2yr == 0  -0.8056     0.3072  -2.622  0.06274 .  
## 3yr4yr - 2yr3yr == 0    -0.9185     0.5246  -1.751  0.39128    
## Unburned - 2yr3yr == 0  -1.3776     0.3580  -3.848  0.00109 ** 
## Unburned - 3yr4yr == 0  -0.4591     0.4826  -0.951  0.87157    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
MLt17a <- lmer(MaxLive ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_ML17a <- glht(MLt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML17a) #Unburned > RB
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)   
## Unburned - RB == 0   0.7381     0.2643   2.793  0.00522 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
MLt18a <- lmer(MaxLive ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
Mult_ML18a <- glht(MLt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML18a) #RB lower than other two patches
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0         0.8906     0.3573   2.493   0.0336 *  
## Unburned - RB == 0       1.4396     0.3095   4.651   <0.001 ***
## Unburned - 1yr2yr == 0   0.5491     0.3095   1.774   0.1771    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
MLt19a <- lmer(MaxLive ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
Mult_ML19a <- glht(MLt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML19a) #no difference
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                         Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0       -0.578809   0.532381  -1.087    0.697
## 2yr3yr - RB == 0       -0.041031   0.536257  -0.077    1.000
## Unburned - RB == 0     -0.039175   0.542622  -0.072    1.000
## 2yr3yr - 1yr2yr == 0    0.537778   0.510630   1.053    0.718
## Unburned - 1yr2yr == 0  0.539634   0.532340   1.014    0.741
## Unburned - 2yr3yr == 0  0.001856   0.536217   0.003    1.000
## (Adjusted p values reported -- single-step method)
#2020
MLt20a <- lmer(MaxLive ~ TSF  + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00604857 (tol = 0.002, component 1)
Mult_ML20a <- glht(MLt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_ML20a) #RB lower than other patches
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture), data = subset(HRECVeg, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      2.70805    0.36941   7.331   <1e-04 ***
## 2yr3yr - RB == 0      2.09720    0.36939   5.678   <1e-04 ***
## 3yr4yr - RB == 0      2.65104    0.36951   7.174   <1e-04 ***
## 2yr3yr - 1yr2yr == 0 -0.61084    0.36939  -1.654    0.349    
## 3yr4yr - 1yr2yr == 0 -0.05701    0.36951  -0.154    0.999    
## 3yr4yr - 2yr3yr == 0  0.55384    0.36950   1.499    0.438    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Max Dead Height Graphs

Max Dead Height Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDm: log(MaxDead + 1) ~ Management + (1 | Transect/Pasture/Year)
## MDt: log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year)
## MDtm: log(MaxDead + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance    Chisq Df Pr(>Chisq)    
## MDnull    5 5914.0 5947.8 -2952.0   5904.0                           
## MDm       6 5915.1 5955.7 -2951.6   5903.1   0.8664  1     0.3519    
## MDt       9 5672.2 5732.9 -2827.1   5654.2 248.9628  3     <2e-16 ***
## MDtm     10 5673.1 5740.6 -2826.6   5653.1   1.0698  1     0.3010    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDt: log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## MDnull    5 5914.0 5947.8 -2952.0   5904.0                         
## MDt       9 5672.2 5732.9 -2827.1   5654.2 249.83  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVeg
## Models:
## MDnull: log(MaxDead + 1) ~ 1 + (1 | Transect/Pasture/Year)
## MDm: log(MaxDead + 1) ~ Management + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## MDnull    5 5914.0 5947.8 -2952.0   5904.0                     
## MDm       6 5915.1 5955.7 -2951.6   5903.1 0.8664  1     0.3519
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = HRECVeg, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.51740    0.04476  11.559   <1e-04 ***
## 2yr3yr - RB == 0        0.85433    0.05164  16.545   <1e-04 ***
## 3yr4yr - RB == 0        1.21928    0.06838  17.830   <1e-04 ***
## Unburned - RB == 0      0.46460    0.03869  12.009   <1e-04 ***
## 2yr3yr - 1yr2yr == 0    0.33693    0.05332   6.318   <1e-04 ***
## 3yr4yr - 1yr2yr == 0    0.70188    0.06971  10.069   <1e-04 ***
## Unburned - 1yr2yr == 0 -0.05280    0.04374  -1.207    0.739    
## 3yr4yr - 2yr3yr == 0    0.36495    0.07293   5.004   <1e-04 ***
## Unburned - 2yr3yr == 0 -0.38973    0.05176  -7.529   <1e-04 ***
## Unburned - 3yr4yr == 0 -0.75468    0.06930 -10.890   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
MDt17a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
Mult_MDt17a <- glht(MDt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt17a) #different
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0  0.59683    0.04404   13.55   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
MDt18a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_MDt18a <- glht(MDt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt18a) #Unburned > 1-2 > RB 
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.22277    0.05079   4.386 3.22e-05 ***
## Unburned - RB == 0      0.44043    0.04404  10.000  < 1e-05 ***
## Unburned - 1yr2yr == 0  0.21766    0.04401   4.946  < 1e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
MDt19a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
Mult_MDt19a <- glht(MDt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt19a) #RB lower than everybody, others equal
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.29476    0.06878   4.285 0.000107 ***
## 2yr3yr - RB == 0        0.39428    0.06913   5.703  < 1e-04 ***
## Unburned - RB == 0      0.33128    0.06943   4.771  < 1e-04 ***
## 2yr3yr - 1yr2yr == 0    0.09951    0.06780   1.468 0.457077    
## Unburned - 1yr2yr == 0  0.03652    0.06877   0.531 0.951563    
## Unburned - 2yr3yr == 0 -0.06300    0.06912  -0.911 0.798755    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
MDt20a <- lmer(log(MaxDead+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_MDt20a <- glht(MDt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_MDt20a) #RB lower than everybody, others equal
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(MaxDead + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      1.01550    0.10018  10.137   <0.001 ***
## 2yr3yr - RB == 0      1.12683    0.10017  11.249   <0.001 ***
## 3yr4yr - RB == 0      1.20602    0.10021  12.035   <0.001 ***
## 2yr3yr - 1yr2yr == 0  0.11133    0.10017   1.111    0.683    
## 3yr4yr - 1yr2yr == 0  0.19052    0.10021   1.901    0.228    
## 3yr4yr - 2yr3yr == 0  0.07919    0.10020   0.790    0.859    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Mean Litter Depth Graphs

Mean Litter Depth Stats

#Transect/Pasture/Year
LMnull <- lmer(log(LitMean+1) ~ 1 + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMt <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMm <- lmer(log(LitMean+1) ~ Management + (1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## boundary (singular) fit: see ?isSingular
LMtm <- lmer(log(LitMean+1) ~ Management + TSF +(1|Transect/Pasture/Year), data=HRECVeg, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00636183 (tol = 0.002, component 1)
anova(LMnull, LMt, LMm, LMtm) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMm: log(LitMean + 1) ~ Management + (1 | Transect/Pasture/Year)
## LMt: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## LMtm: log(LitMean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance    Chisq Df Pr(>Chisq)    
## LMnull    5 3785.4 3819.2 -1887.7   3775.4                           
## LMm       6 3786.7 3827.3 -1887.4   3774.7   0.6632  1     0.4154    
## LMt       9 3687.2 3748.0 -1834.6   3669.2 105.5049  3     <2e-16 ***
## LMtm     10 3688.3 3755.8 -1834.2   3668.3   0.9288  1     0.3352    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(LMnull, LMt) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMt: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## LMnull    5 3785.4 3819.2 -1887.7   3775.4                         
## LMt       9 3687.2 3748.0 -1834.6   3669.2 106.17  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(LMnull, LMm) #no difference between sheep and cattle
## Data: HRECVeg
## Models:
## LMnull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LMm: log(LitMean + 1) ~ Management + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LMnull    5 3785.4 3819.2 -1887.7   3775.4                     
## LMm       6 3786.7 3827.3 -1887.4   3774.7 0.6632  1     0.4154
Mult_LMta <- glht(LMt, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMta) #3-4 > 2-3 = Unburned > 1-2  > RB
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = HRECVeg, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.21904    0.05795   3.780  0.00144 ** 
## 2yr3yr - RB == 0        0.44864    0.06573   6.826  < 0.001 ***
## 3yr4yr - RB == 0        0.82587    0.08578   9.628  < 0.001 ***
## Unburned - RB == 0      0.39446    0.04945   7.977  < 0.001 ***
## 2yr3yr - 1yr2yr == 0    0.22960    0.06808   3.373  0.00642 ** 
## 3yr4yr - 1yr2yr == 0    0.60683    0.08821   6.879  < 0.001 ***
## Unburned - 1yr2yr == 0  0.17541    0.05375   3.263  0.00914 ** 
## 3yr4yr - 2yr3yr == 0    0.37723    0.09341   4.039  < 0.001 ***
## Unburned - 2yr3yr == 0 -0.05419    0.06213  -0.872  0.90292    
## Unburned - 3yr4yr == 0 -0.43141    0.08311  -5.191  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
LMt17a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2017"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt17a <- glht(LMt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt17a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0  0.18805    0.04495   4.184 2.86e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
LMt18a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2018"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt18a <- glht(LMt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt18a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.05945    0.05935   1.002    0.574    
## Unburned - RB == 0      0.42198    0.05144   8.204   <1e-04 ***
## Unburned - 1yr2yr == 0  0.36253    0.05142   7.051   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
LMt19a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2019"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt19a <- glht(LMt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt19a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        0.15448    0.06087   2.538  0.05407 .  
## 2yr3yr - RB == 0        0.18467    0.06125   3.015  0.01376 *  
## Unburned - RB == 0      0.37744    0.06168   6.119  < 0.001 ***
## 2yr3yr - 1yr2yr == 0    0.03019    0.05949   0.508  0.95732    
## Unburned - 1yr2yr == 0  0.22296    0.06086   3.664  0.00133 ** 
## Unburned - 2yr3yr == 0  0.19277    0.06124   3.148  0.00899 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
LMt20a <- lmer(log(LitMean+1) ~ TSF + (1|Transect/Pasture), data=subset(HRECVeg, Year=="2020"), REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues
Mult_LMt20a <- glht(LMt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_LMt20a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture), 
##     data = subset(HRECVeg, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      0.76204    0.10733   7.100   <1e-04 ***
## 2yr3yr - RB == 0      0.91733    0.10733   8.547   <1e-04 ***
## 3yr4yr - RB == 0      0.88177    0.10735   8.214   <1e-04 ***
## 2yr3yr - 1yr2yr == 0  0.15528    0.10733   1.447    0.470    
## 3yr4yr - 1yr2yr == 0  0.11972    0.10735   1.115    0.680    
## 3yr4yr - 2yr3yr == 0 -0.03556    0.10735  -0.331    0.987    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Bare Ground Cover Graphs

Bare Ground Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGm: log(BGCover + 1) ~ Management + (1 | Pasture/Year)
## BGt: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
## BGtm: log(BGCover + 1) ~ Management + TSF + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## BGnull    4 751.25 765.94 -371.62   743.25                          
## BGm       5 753.12 771.49 -371.56   743.12  0.1251  1     0.7236    
## BGt       8 660.78 690.17 -322.39   644.78 98.3456  3     <2e-16 ***
## BGtm      9 662.65 695.71 -322.33   644.65  0.1279  1     0.7206    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGt: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## BGnull    4 751.25 765.94 -371.62   743.25                         
## BGt       8 660.78 690.17 -322.39   644.78 98.471  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## BGnull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGm: log(BGCover + 1) ~ Management + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## BGnull    4 751.25 765.94 -371.62   743.25                     
## BGm       5 753.12 771.49 -371.56   743.12 0.1251  1     0.7236
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture/Year), data = HRECVegT, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        -0.5499     0.1253  -4.388  < 0.001 ***
## 2yr3yr - RB == 0        -0.8146     0.1473  -5.531  < 0.001 ***
## 3yr4yr - RB == 0        -1.5252     0.1961  -7.777  < 0.001 ***
## Unburned - RB == 0      -0.9874     0.1100  -8.978  < 0.001 ***
## 2yr3yr - 1yr2yr == 0    -0.2647     0.1509  -1.755  0.38845    
## 3yr4yr - 1yr2yr == 0    -0.9753     0.1986  -4.911  < 0.001 ***
## Unburned - 1yr2yr == 0  -0.4375     0.1257  -3.481  0.00425 ** 
## 3yr4yr - 2yr3yr == 0    -0.7106     0.2065  -3.441  0.00481 ** 
## Unburned - 2yr3yr == 0  -0.1728     0.1520  -1.137  0.77901    
## Unburned - 3yr4yr == 0   0.5379     0.2032   2.647  0.05862 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2017
BGt17a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2017"), REML = FALSE)
Mult_BGt17a <- glht(BGt17a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt17a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0  -0.7563     0.1000  -7.563 3.95e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2018
BGt18a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2018"), REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_BGt18a <- glht(BGt18a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt18a) #RB = 1-2 > Unburned
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        -0.2905     0.1773  -1.638 0.228140    
## Unburned - RB == 0      -0.9209     0.1536  -5.997  < 1e-04 ***
## Unburned - 1yr2yr == 0  -0.6304     0.1536  -4.105 0.000107 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2019
BGt19a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2019"), REML = FALSE)
Mult_BGt19a <- glht(BGt19a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt19a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        -0.3883     0.2179  -1.782   0.2820    
## 2yr3yr - RB == 0        -0.7571     0.2234  -3.389   0.0040 ** 
## Unburned - RB == 0      -1.2906     0.2234  -5.777   <0.001 ***
## 2yr3yr - 1yr2yr == 0    -0.3688     0.2179  -1.692   0.3276    
## Unburned - 1yr2yr == 0  -0.9022     0.2179  -4.140   <0.001 ***
## Unburned - 2yr3yr == 0  -0.5334     0.2234  -2.388   0.0795 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
#2020
BGt20a <- lmer(log(BGCover+1) ~ TSF + (1|Pasture), data=subset(HRECVegT, Year=="2020"), REML = FALSE)
Mult_BGt20a <- glht(BGt20a, linfct=mcp(TSF = "Tukey"))
summary(Mult_BGt20a)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      -1.1296     0.3241  -3.485  0.00294 ** 
## 2yr3yr - RB == 0      -1.0188     0.3241  -3.143  0.00924 ** 
## 3yr4yr - RB == 0      -1.7572     0.3241  -5.421  < 0.001 ***
## 2yr3yr - 1yr2yr == 0   0.1108     0.3241   0.342  0.98626    
## 3yr4yr - 1yr2yr == 0  -0.6276     0.3241  -1.936  0.21298    
## 3yr4yr - 2yr3yr == 0  -0.7384     0.3241  -2.278  0.10337    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Ground Litter Cover Graphs

Ground Litter Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gm: GCover ~ Management + (1 | Pasture/Year)
## Gt: GCover ~ TSF + (1 | Pasture/Year)
## Gmt: GCover ~ TSF + Management + (1 | Pasture/Year)
##       npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## Gnull    4 2194.0 2208.7 -1093.0   2186.0                         
## Gm       5 2192.6 2210.9 -1091.3   2182.6  3.398  1    0.06528 .  
## Gt       8 2152.3 2181.7 -1068.2   2136.3 46.279  3  4.948e-10 ***
## Gmt      9 2151.1 2184.1 -1066.5   2133.1  3.222  1    0.07265 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gt: GCover ~ TSF + (1 | Pasture/Year)
##       npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## Gnull    4 2194.0 2208.7 -1093.0   2186.0                         
## Gt       8 2152.3 2181.7 -1068.2   2136.3 49.677  4  4.218e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Gnull: GCover ~ 1 + (1 | Pasture/Year)
## Gm: GCover ~ Management + (1 | Pasture/Year)
##       npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)  
## Gnull    4 2194.0 2208.7 -1093.0   2186.0                      
## Gm       5 2192.6 2210.9 -1091.3   2182.6 3.398  1    0.06528 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0  -11.848      1.533  -7.729 1.09e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0        -3.7323     2.0576  -1.814    0.164
## Unburned - RB == 0      -3.5931     1.7820  -2.016    0.107
## Unburned - 1yr2yr == 0   0.1392     1.7820   0.078    0.997
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0        -12.369      3.193  -3.874 0.000619 ***
## 2yr3yr - RB == 0        -13.943      3.276  -4.257  < 1e-04 ***
## Unburned - RB == 0      -14.960      3.276  -4.567  < 1e-04 ***
## 2yr3yr - 1yr2yr == 0     -1.575      3.193  -0.493 0.960618    
## Unburned - 1yr2yr == 0   -2.591      3.193  -0.812 0.848994    
## Unburned - 2yr3yr == 0   -1.017      3.276  -0.310 0.989644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)  
## 1yr2yr - RB == 0       -6.026      4.148  -1.453   0.4663  
## 2yr3yr - RB == 0       -1.172      4.148  -0.282   0.9921  
## 3yr4yr - RB == 0      -12.180      4.148  -2.936   0.0173 *
## 2yr3yr - 1yr2yr == 0    4.854      4.148   1.170   0.6456  
## 3yr4yr - 1yr2yr == 0   -6.154      4.148  -1.484   0.4474  
## 3yr4yr - 2yr3yr == 0  -11.008      4.148  -2.654   0.0397 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Vertical Litter Cover Graphs

vertical Litter Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCm: LitCover ~ Management + (1 | Pasture/Year)
## LCt: LitCover ~ TSF + (1 | Pasture/Year)
## LCtm: LitCover ~ Management + TSF + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance    Chisq Df Pr(>Chisq)    
## LCnull    4 2187.2 2201.8 -1089.6   2179.2                           
## LCm       5 2188.7 2207.1 -1089.4   2178.7   0.4279  1     0.5130    
## LCt       8 2069.1 2098.5 -1026.6   2053.1 125.6062  3     <2e-16 ***
## LCtm      9 2070.6 2103.6 -1026.3   2052.6   0.5340  1     0.4649    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCt: LitCover ~ TSF + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## LCnull    4 2187.2 2201.8 -1089.6   2179.2                         
## LCt       8 2069.1 2098.5 -1026.6   2053.1 126.03  4  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## LCnull: LitCover ~ 1 + (1 | Pasture/Year)
## LCm: LitCover ~ Management + (1 | Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LCnull    4 2187.2 2201.8 -1089.6   2179.2                     
## LCm       5 2188.7 2207.1 -1089.4   2178.7 0.4279  1      0.513
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture/Year), data = HRECVegT, 
##     REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0         9.6379     1.4115   6.828   <1e-04 ***
## 2yr3yr - RB == 0        11.3174     1.6576   6.828   <1e-04 ***
## 3yr4yr - RB == 0        22.2778     2.2061  10.098   <1e-04 ***
## Unburned - RB == 0      11.5044     1.2377   9.295   <1e-04 ***
## 2yr3yr - 1yr2yr == 0     1.6795     1.6989   0.989    0.855    
## 3yr4yr - 1yr2yr == 0    12.6398     2.2350   5.655   <1e-04 ***
## Unburned - 1yr2yr == 0   1.8664     1.4128   1.321    0.668    
## 3yr4yr - 2yr3yr == 0    10.9604     2.3249   4.714   <1e-04 ***
## Unburned - 2yr3yr == 0   0.1869     1.7074   0.109    1.000    
## Unburned - 3yr4yr == 0 -10.7734     2.2822  -4.721   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)    
## Unburned - RB == 0   12.444      1.229   10.13   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0         2.3410     1.1013   2.126    0.084 .  
## Unburned - RB == 0       8.5832     0.9538   8.999   <0.001 ***
## Unburned - 1yr2yr == 0   6.2422     0.9538   6.545   <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)   
## 1yr2yr - RB == 0         11.847      3.366   3.520  0.00222 **
## 2yr3yr - RB == 0          9.393      3.453   2.720  0.03295 * 
## Unburned - RB == 0       10.742      3.453   3.111  0.01019 * 
## 2yr3yr - 1yr2yr == 0     -2.454      3.366  -0.729  0.88546   
## Unburned - 1yr2yr == 0   -1.105      3.366  -0.328  0.98779   
## Unburned - 2yr3yr == 0    1.349      3.453   0.391  0.97977   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0      14.4480     3.0841   4.685  < 0.001 ***
## 2yr3yr - RB == 0      14.8246     3.0841   4.807  < 0.001 ***
## 3yr4yr - RB == 0      24.6234     3.0841   7.984  < 0.001 ***
## 2yr3yr - 1yr2yr == 0   0.3766     3.0841   0.122  0.99935    
## 3yr4yr - 1yr2yr == 0  10.1754     3.0841   3.299  0.00518 ** 
## 3yr4yr - 2yr3yr == 0   9.7988     3.0841   3.177  0.00833 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Forb Stats

## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbm: log(Forb + 1) ~ Management + (1 | Pasture/Year)
## Forbt: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
## Forbtm: log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## Forbnull    4 597.62 612.31 -294.81   589.62                       
## Forbm       5 595.21 613.58 -292.61   585.21 4.4024  1    0.03589 *
## Forbt       8 595.99 625.38 -290.00   579.99 5.2188  3    0.15646  
## Forbtm      9 593.60 626.66 -287.80   575.60 4.3989  1    0.03596 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbt: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## Forbnull    4 597.62 612.31 -294.81   589.62                       
## Forbt       8 595.99 625.38 -290.00   579.99 9.6212  4    0.04731 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbm: log(Forb + 1) ~ Management + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## Forbnull    4 597.62 612.31 -294.81   589.62                       
## Forbm       5 595.21 613.58 -292.61   585.21 4.4024  1    0.03589 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Forbnull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## Forbtm: log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)  
## Forbnull    4 597.62 612.31 -294.81   589.62                      
## Forbtm      9 593.60 626.66 -287.80   575.60 14.02  5    0.01548 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Sheep - Cattle == 0  -0.7351     0.2886  -2.547   0.0109 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)  
## 1yr2yr - RB == 0        0.08805    0.11015   0.799   0.9277  
## 2yr3yr - RB == 0        0.17163    0.12915   1.329   0.6628  
## 3yr4yr - RB == 0        0.07117    0.17159   0.415   0.9935  
## Unburned - RB == 0     -0.18800    0.09640  -1.950   0.2805  
## 2yr3yr - 1yr2yr == 0    0.08358    0.13255   0.631   0.9687  
## 3yr4yr - 1yr2yr == 0   -0.01688    0.17404  -0.097   1.0000  
## Unburned - 1yr2yr == 0 -0.27605    0.10973  -2.516   0.0825 .
## 3yr4yr - 2yr3yr == 0   -0.10046    0.18130  -0.554   0.9805  
## Unburned - 2yr3yr == 0 -0.35963    0.13237  -2.717   0.0486 *
## Unburned - 3yr4yr == 0 -0.25917    0.17685  -1.465   0.5736  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Sheep - Cattle == 0  -0.7056     0.3072  -2.297   0.0216 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0  -0.1073     0.2096  -0.512    0.609
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)   
## Sheep - Cattle == 0  -0.7258     0.2328  -3.118  0.00182 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0        0.07782    0.18052   0.431    0.902
## Unburned - RB == 0     -0.10621    0.15634  -0.679    0.774
## Unburned - 1yr2yr == 0 -0.18402    0.15634  -1.177    0.465
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0  -0.5757     0.3822  -1.506    0.132
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)   
## 1yr2yr - RB == 0         0.1486     0.1569   0.947  0.77951   
## 2yr3yr - RB == 0        -0.1108     0.1608  -0.689  0.90127   
## Unburned - RB == 0      -0.3991     0.1608  -2.482  0.06301 . 
## 2yr3yr - 1yr2yr == 0    -0.2594     0.1569  -1.653  0.34887   
## Unburned - 1yr2yr == 0  -0.5477     0.1569  -3.490  0.00265 **
## Unburned - 2yr3yr == 0  -0.2883     0.1608  -1.793  0.27662   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)   
## Sheep - Cattle == 0  -0.9172     0.3082  -2.976  0.00292 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0     -0.08766    0.18793  -0.466    0.966
## 2yr3yr - RB == 0      0.29431    0.18793   1.566    0.398
## 3yr4yr - RB == 0      0.12973    0.18793   0.690    0.901
## 2yr3yr - 1yr2yr == 0  0.38197    0.18793   2.033    0.176
## 3yr4yr - 1yr2yr == 0  0.21739    0.18793   1.157    0.654
## 3yr4yr - 2yr3yr == 0 -0.16458    0.18793  -0.876    0.817
## (Adjusted p values reported -- single-step method)

Legume Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumem: log(Legume + 1) ~ Management + (1 | Pasture/Year)
## Legumet: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
## Legumetm: log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## Legumenull    4 706.91 721.60 -349.45   698.91                        
## Legumem       5 700.94 719.30 -345.47   690.94 7.9722  1    0.00475 **
## Legumet       8 700.83 730.22 -342.42   684.83 6.1035  3    0.10668   
## Legumetm      9 693.49 726.55 -337.75   675.49 9.3416  1    0.00224 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumet: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## Legumenull    4 706.91 721.60 -349.45   698.91                        
## Legumet       8 700.83 730.22 -342.42   684.83 14.076  4   0.007057 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumem: log(Legume + 1) ~ Management + (1 | Pasture/Year)
##            npar    AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## Legumenull    4 706.91 721.6 -349.45   698.91                        
## Legumem       5 700.94 719.3 -345.47   690.94 7.9722  1    0.00475 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Legumenull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## Legumetm: log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## Legumenull    4 706.91 721.60 -349.45   698.91                         
## Legumetm      9 693.49 726.55 -337.75   675.49 23.417  5  0.0002809 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Sheep - Cattle == 0  -0.7242     0.2005  -3.612 0.000303 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)   
## 1yr2yr - RB == 0       -0.23047    0.13070  -1.763  0.38305   
## 2yr3yr - RB == 0       -0.31486    0.15410  -2.043  0.23546   
## 3yr4yr - RB == 0       -0.38164    0.20592  -1.853  0.33159   
## Unburned - RB == 0      0.20767    0.11517   1.803  0.35978   
## 2yr3yr - 1yr2yr == 0   -0.08439    0.15738  -0.536  0.98271   
## 3yr4yr - 1yr2yr == 0   -0.15117    0.20803  -0.727  0.94791   
## Unburned - 1yr2yr == 0  0.43813    0.13236   3.310  0.00777 **
## 3yr4yr - 2yr3yr == 0   -0.06678    0.21563  -0.310  0.99789   
## Unburned - 2yr3yr == 0  0.52252    0.16070   3.252  0.00941 **
## Unburned - 3yr4yr == 0  0.58930    0.21502   2.741  0.04530 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0   0.2652     0.3528   0.752    0.452
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)
## Unburned - RB == 0  -0.1921     0.2190  -0.877     0.38
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Sheep - Cattle == 0  -0.7258     0.1516  -4.788 1.68e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                          Estimate Std. Error z value Pr(>|z|)  
## 1yr2yr - RB == 0       -0.0009758  0.2143703  -0.005   1.0000  
## Unburned - RB == 0      0.5179389  0.1856501   2.790   0.0144 *
## Unburned - 1yr2yr == 0  0.5189147  0.1856501   2.795   0.0143 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Sheep - Cattle == 0   -1.175      0.161  -7.296 2.96e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)  
## 1yr2yr - RB == 0       -0.38741    0.22485  -1.723   0.3116  
## 2yr3yr - RB == 0       -0.05474    0.23055  -0.237   0.9953  
## Unburned - RB == 0      0.16432    0.23055   0.713   0.8921  
## 2yr3yr - 1yr2yr == 0    0.33267    0.22485   1.480   0.4499  
## Unburned - 1yr2yr == 0  0.55172    0.22485   2.454   0.0676 .
## Unburned - 2yr3yr == 0  0.21905    0.23055   0.950   0.7776  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Sheep - Cattle == 0  -1.2752     0.1763  -7.232 4.75e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + Management + (1 | Pasture), 
##     data = subset(HRECVegT, Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)  
## 1yr2yr - RB == 0       0.1050     0.2054   0.511   0.9564  
## 2yr3yr - RB == 0      -0.4453     0.2054  -2.168   0.1322  
## 3yr4yr - RB == 0      -0.2693     0.2054  -1.311   0.5556  
## 2yr3yr - 1yr2yr == 0  -0.5503     0.2054  -2.679   0.0368 *
## 3yr4yr - 1yr2yr == 0  -0.3743     0.2054  -1.823   0.2626  
## 3yr4yr - 2yr3yr == 0   0.1760     0.2054   0.857   0.8270  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Grass Stats

## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grassm: Grass ~ Management + (1 | Pasture/Year)
## Grasst: Grass ~ TSF + (1 | Pasture/Year)
## Grasstm: Grass ~ Management + TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance   Chisq Df Pr(>Chisq)    
## Grassnull    4 2300.6 2315.3 -1146.3   2292.6                          
## Grassm       5 2302.4 2320.7 -1146.2   2292.4  0.2605  1     0.6098    
## Grasst       8 2285.8 2315.2 -1134.9   2269.8 22.5992  3  4.894e-05 ***
## Grasstm      9 2287.5 2320.6 -1134.8   2269.5  0.2705  1     0.6030    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grasst: Grass ~ TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)    
## Grassnull    4 2300.6 2315.3 -1146.3   2292.6                        
## Grasst       8 2285.8 2315.2 -1134.9   2269.8 22.86  4  0.0001351 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grassm: Grass ~ Management + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## Grassnull    4 2300.6 2315.3 -1146.3   2292.6                     
## Grassm       5 2302.4 2320.7 -1146.2   2292.4 0.2605  1     0.6098
## Data: HRECVegT
## Models:
## Grassnull: Grass ~ 1 + (1 | Pasture/Year)
## Grasstm: Grass ~ Management + TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)    
## Grassnull    4 2300.6 2315.3 -1146.3   2292.6                        
## Grasstm      9 2287.5 2320.6 -1134.8   2269.5 23.13  5  0.0003187 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0    1.409      2.702   0.522    0.602
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ Management + TSF + (1 | Pasture/Year), 
##     data = HRECVegT, REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0          5.632      2.043   2.757  0.04359 *  
## 2yr3yr - RB == 0          3.627      2.401   1.511  0.54355    
## 3yr4yr - RB == 0         11.075      3.198   3.463  0.00452 ** 
## Unburned - RB == 0        7.202      1.793   4.016  < 0.001 ***
## 2yr3yr - 1yr2yr == 0     -2.005      2.459  -0.815  0.92259    
## 3yr4yr - 1yr2yr == 0      5.442      3.238   1.681  0.43394    
## Unburned - 1yr2yr == 0    1.569      2.049   0.766  0.93757    
## 3yr4yr - 2yr3yr == 0      7.447      3.366   2.212  0.16733    
## Unburned - 2yr3yr == 0    3.574      2.479   1.442  0.58898    
## Unburned - 3yr4yr == 0   -3.873      3.314  -1.169  0.76082    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0   -2.496      5.186  -0.481     0.63
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2017"), REML = FALSE)
## 
## Linear Hypotheses:
##                    Estimate Std. Error z value Pr(>|z|)   
## Unburned - RB == 0   10.498      3.476    3.02  0.00253 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0    1.601      3.019    0.53    0.596
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2018"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0         3.3617     2.9834   1.127    0.496
## Unburned - RB == 0       2.9781     2.5837   1.153    0.480
## Unburned - 1yr2yr == 0  -0.3836     2.5837  -0.148    0.988
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)
## Sheep - Cattle == 0    1.567      2.948   0.532    0.595
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2019"), REML = FALSE)
## 
## Linear Hypotheses:
##                        Estimate Std. Error z value Pr(>|z|)
## 1yr2yr - RB == 0       -0.84249    3.89301  -0.216    0.996
## 2yr3yr - RB == 0        0.66617    3.99133   0.167    0.998
## Unburned - RB == 0      0.69390    3.99133   0.174    0.998
## 2yr3yr - 1yr2yr == 0    1.50866    3.89301   0.388    0.980
## Unburned - 1yr2yr == 0  1.53639    3.89301   0.395    0.979
## Unburned - 2yr3yr == 0  0.02772    3.99133   0.007    1.000
## (Adjusted p values reported -- single-step method)
## boundary (singular) fit: see ?isSingular
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Sheep - Cattle == 0    4.907      2.241    2.19   0.0285 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + Management + (1 | Pasture), data = subset(HRECVegT, 
##     Year == "2020"), REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)    
## 1yr2yr - RB == 0       13.578      3.169   4.285   <0.001 ***
## 2yr3yr - RB == 0        7.090      3.169   2.238   0.1133    
## 3yr4yr - RB == 0       16.553      3.169   5.224   <0.001 ***
## 2yr3yr - 1yr2yr == 0   -6.488      3.169  -2.048   0.1708    
## 3yr4yr - 1yr2yr == 0    2.975      3.169   0.939   0.7839    
## 3yr4yr - 2yr3yr == 0    9.463      3.169   2.987   0.0152 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)