South ural state university, Chelyabinsk, Russian federation
#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(ascii)
library(pander)
##
## Attaching package: 'pander'
## The following object is masked from 'package:ascii':
##
## Pandoc
##Global vriable##
Full_original_data <- read.csv("data.csv") # path of your data ( time series data)
original_data<-Full_original_data$Infections
y_lab <- "Forecasting Cumulative Covid 19 infection cases in Chelyabinsk" # input name of data
Actual_date_interval <- c("2020/03/12","2021/04/09")
Forecast_date_interval <- c("2021/04/10","2021/04/30")
validation_data_days <-7
frequency<-"day"
Number_Neural<-5 # Number of Neural For model NNAR Model
NNAR_Model<- FALSE #create new model (TRUE/FALSE)
frequency<-"days"
Population <-1130319 # population in England for SIR Model
country.name <- "Chelyabinsk"
# Data Preparation & calculate some of statistics measures
summary(original_data) # Summary your time series
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 5166 15331 20702 34932 56513
# calculate standard deviation
data.frame(kurtosis=kurtosis(original_data)) # calculate Cofficient of kurtosis
## kurtosis
## 1 2.090858
data.frame(skewness=skewness(original_data)) # calculate Cofficient of skewness
## skewness
## 1 0.6291764
data.frame(Standard.deviation =sd(original_data))
## Standard.deviation
## 1 17959.76
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD) # put names of Forecasting dates
#NNAR Model
if(NNAR_Model==TRUE){
data_series<-ts(training_data)
model_NNAR<-nnetar(data_series, size = Number_Neural)
saveRDS(model_NNAR, file = "model_NNAR.RDS")
my_model <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
if(NNAR_Model==FALSE){
data_series<-ts(training_data)
#model_NNAR<-nnetar(data_series, size = Number_Numeral)
model_NNAR <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR) # accuracy on training data #Print Model Parameters
model_NNAR
}
## Series: data_series
## Model: NNAR(1,5)
## Call: nnetar(y = data_series, size = Number_Neural)
##
## Average of 20 networks, each of which is
## a 1-5-1 network with 16 weights
## options were - linear output units
##
## sigma^2 estimated as 916.1
# Testing Data Evaluation
forecasting_NNAR <- forecast(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using NNAR Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in NNAR Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
paste(MAPE_Mean_All,"%")
## [1] "0.458 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in NNAR Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_NNAR | validation_data_by_name | actual_data | forecasting_NNAR | MAPE_NNAR_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-04-03 | Saturday | 55783.00 | 55719.97 | 0.113 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-04-04 | Sunday | 55908.00 | 55782.10 | 0.225 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-04-05 | Monday | 56031.00 | 55841.47 | 0.338 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-04-06 | Tuesday | 56153.00 | 55898.19 | 0.454 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-04-07 | Wednesday | 56274.00 | 55952.34 | 0.572 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-04-08 | Thursday | 56394.00 | 56004.02 | 0.692 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-04-09 | Friday | 56513.00 | 56053.32 | 0.813 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +====+============+=================+=====================+
## | 1 | 2021-04-10 | Saturday | 56100.34 |
## +----+------------+-----------------+---------------------+
## | 2 | 2021-04-11 | Sunday | 56145.15 |
## +----+------------+-----------------+---------------------+
## | 3 | 2021-04-12 | Monday | 56187.85 |
## +----+------------+-----------------+---------------------+
## | 4 | 2021-04-13 | Tuesday | 56228.52 |
## +----+------------+-----------------+---------------------+
## | 5 | 2021-04-14 | Wednesday | 56267.25 |
## +----+------------+-----------------+---------------------+
## | 6 | 2021-04-15 | Thursday | 56304.11 |
## +----+------------+-----------------+---------------------+
## | 7 | 2021-04-16 | Friday | 56339.19 |
## +----+------------+-----------------+---------------------+
## | 8 | 2021-04-17 | Saturday | 56372.56 |
## +----+------------+-----------------+---------------------+
## | 9 | 2021-04-18 | Sunday | 56404.30 |
## +----+------------+-----------------+---------------------+
## | 10 | 2021-04-19 | Monday | 56434.47 |
## +----+------------+-----------------+---------------------+
## | 11 | 2021-04-20 | Tuesday | 56463.14 |
## +----+------------+-----------------+---------------------+
## | 12 | 2021-04-21 | Wednesday | 56490.39 |
## +----+------------+-----------------+---------------------+
## | 13 | 2021-04-22 | Thursday | 56516.28 |
## +----+------------+-----------------+---------------------+
## | 14 | 2021-04-23 | Friday | 56540.87 |
## +----+------------+-----------------+---------------------+
## | 15 | 2021-04-24 | Saturday | 56564.22 |
## +----+------------+-----------------+---------------------+
## | 16 | 2021-04-25 | Sunday | 56586.39 |
## +----+------------+-----------------+---------------------+
## | 17 | 2021-04-26 | Monday | 56607.44 |
## +----+------------+-----------------+---------------------+
## | 18 | 2021-04-27 | Tuesday | 56627.41 |
## +----+------------+-----------------+---------------------+
## | 19 | 2021-04-28 | Wednesday | 56646.36 |
## +----+------------+-----------------+---------------------+
## | 20 | 2021-04-29 | Thursday | 56664.34 |
## +----+------------+-----------------+---------------------+
## | 21 | 2021-04-30 | Friday | 56681.39 |
## +----+------------+-----------------+---------------------+
plot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.4316178 11.44078 6.540191 NaN Inf 0.04536005 -0.002938951
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Alpha: 0.985641
## Beta: 0.8084883
## Damping Parameter: 1
##
## Seed States:
## [,1]
## [1,] -6.177343
## [2,] -5.825196
##
## Sigma: 11.44078
## AIC: 4200.291
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "))

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
paste(MAPE_Mean_All.bats,"%")
## [1] "0.037 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_bats | validation_data_by_name | actual_data | forecasting_bats | MAPE_bats_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-04-03 | Saturday | 55783.00 | 55784.24 | 0.002 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-04-04 | Sunday | 55908.00 | 55913.46 | 0.01 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-04-05 | Monday | 56031.00 | 56042.68 | 0.021 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-04-06 | Tuesday | 56153.00 | 56171.90 | 0.034 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-04-07 | Wednesday | 56274.00 | 56301.13 | 0.048 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-04-08 | Thursday | 56394.00 | 56430.35 | 0.064 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-04-09 | Friday | 56513.00 | 56559.57 | 0.082 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56688.79 | 56512.89 | 56419.77 | 56512.89 | 56419.77 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56818.01 | 56610.92 | 56501.30 | 56610.92 | 56501.30 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56947.23 | 56707.32 | 56580.31 | 56707.32 | 56580.31 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57076.45 | 56802.14 | 56656.93 | 56802.14 | 56656.93 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57205.68 | 56895.47 | 56731.26 | 56895.47 | 56731.26 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57334.90 | 56987.36 | 56803.39 | 56987.36 | 56803.39 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57464.12 | 57077.87 | 56873.40 | 57077.87 | 56873.40 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57593.34 | 57167.03 | 56941.36 | 57167.03 | 56941.36 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57722.56 | 57254.91 | 57007.34 | 57254.91 | 57007.34 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57851.78 | 57341.52 | 57071.41 | 57341.52 | 57071.41 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57981.01 | 57426.92 | 57133.61 | 57426.92 | 57133.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58110.23 | 57511.13 | 57193.99 | 57511.13 | 57193.99 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58239.45 | 57594.19 | 57252.61 | 57594.19 | 57252.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58368.67 | 57676.12 | 57309.51 | 57676.12 | 57309.51 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58497.89 | 57756.95 | 57364.72 | 57756.95 | 57364.72 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58627.11 | 57836.70 | 57418.28 | 57836.70 | 57418.28 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58756.33 | 57915.40 | 57470.23 | 57915.40 | 57470.23 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58885.56 | 57993.06 | 57520.60 | 57993.06 | 57520.60 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59014.78 | 58069.71 | 57569.43 | 58069.71 | 57569.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59144.00 | 58145.37 | 57616.73 | 58145.37 | 57616.73 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59273.22 | 58220.06 | 57662.55 | 58220.06 | 57662.55 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph1

## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 0.4294133 11.34378 6.647381 NaN Inf 0.04610347 -0.002703582
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 0.9794355
## Beta: 0.8160431
## Damping Parameter: 1
## Gamma-1 Values: -0.001024159
## Gamma-2 Values: -0.0002236461
##
## Seed States:
## [,1]
## [1,] -6.3221139
## [2,] -5.7677411
## [3,] 0.5029448
## [4,] -0.3633024
## [5,] 1.0302208
## [6,] 0.3373406
##
## Sigma: 11.34378
## AIC: 4205.7
plot(model_TBATS,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using TBATS Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in TBATS Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "0.041 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in TBATS Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | | date_TBATS | validation_data_by_name | actual_data | forecasting_TBATS | MAPE_TBATS_Model |
## +===+============+=========================+=============+===================+==================+
## | 1 | 2021-04-03 | Saturday | 55783.00 | 55783.40 | 0.001 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 2 | 2021-04-04 | Sunday | 55908.00 | 55913.63 | 0.01 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 3 | 2021-04-05 | Monday | 56031.00 | 56043.19 | 0.022 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 4 | 2021-04-06 | Tuesday | 56153.00 | 56173.80 | 0.037 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 5 | 2021-04-07 | Wednesday | 56274.00 | 56305.35 | 0.056 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 6 | 2021-04-08 | Thursday | 56394.00 | 56434.04 | 0.071 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
## | 7 | 2021-04-09 | Friday | 56513.00 | 56562.46 | 0.088 % |
## +---+------------+-------------------------+-------------+-------------------+------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56692.70 | 56652.47 | 56631.18 | 56732.93 | 56754.22 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56822.26 | 56779.63 | 56757.06 | 56864.89 | 56887.45 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56952.87 | 56907.96 | 56884.19 | 56997.77 | 57021.54 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57084.42 | 57037.35 | 57012.44 | 57131.48 | 57156.40 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57213.11 | 57163.98 | 57137.97 | 57262.24 | 57288.25 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57341.53 | 57290.43 | 57263.38 | 57392.63 | 57419.68 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57471.77 | 57418.78 | 57390.72 | 57524.76 | 57552.81 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57601.33 | 57546.51 | 57517.49 | 57656.14 | 57685.16 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57731.93 | 57675.36 | 57645.40 | 57788.51 | 57818.47 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57863.49 | 57805.20 | 57774.34 | 57921.78 | 57952.63 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57992.18 | 57932.23 | 57900.50 | 58052.12 | 58083.86 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58120.60 | 58059.05 | 58026.47 | 58182.15 | 58214.74 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58250.84 | 58187.73 | 58154.32 | 58313.95 | 58347.35 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58380.39 | 58315.77 | 58281.55 | 58445.02 | 58479.24 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58511.00 | 58444.89 | 58409.89 | 58577.12 | 58612.12 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58642.55 | 58574.99 | 58539.22 | 58710.12 | 58745.89 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58771.25 | 58702.26 | 58665.75 | 58840.23 | 58876.74 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58899.67 | 58829.31 | 58792.06 | 58970.03 | 59007.28 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59029.90 | 58958.19 | 58920.23 | 59101.62 | 59139.58 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59159.46 | 59086.43 | 59047.76 | 59232.50 | 59271.16 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59290.07 | 59215.73 | 59176.38 | 59364.41 | 59403.76 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph2

## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -0.5620706 11.73011 7.066356 Inf Inf 0.04900932 0.1667545
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.6407
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.6195
##
## Initial states:
## l = -1.503
## b = -0.1886
##
## sigma: 0.885
##
## AIC AICc BIC
## 2217.329 2217.487 2237.121
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -0.5620706 11.73011 7.066356 Inf Inf 0.04900932 0.1667545
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using holt Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in holt Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
paste(MAPE_Mean_All.Holt,"%")
## [1] "0.043 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in holt Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)), type = "rest")
##
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | | date_holt | validation_data_by_name | actual_data | forecasting_holt | MAPE_holt_Model |
## +===+============+=========================+=============+==================+=================+
## | 1 | 2021-04-03 | Saturday | 55783.00 | 55784.84 | 0.003 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 2 | 2021-04-04 | Sunday | 55908.00 | 55914.80 | 0.012 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 3 | 2021-04-05 | Monday | 56031.00 | 56044.86 | 0.025 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 4 | 2021-04-06 | Tuesday | 56153.00 | 56175.03 | 0.039 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 5 | 2021-04-07 | Wednesday | 56274.00 | 56305.30 | 0.056 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 6 | 2021-04-08 | Thursday | 56394.00 | 56435.69 | 0.074 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
## | 7 | 2021-04-09 | Friday | 56513.00 | 56566.18 | 0.094 % |
## +---+------------+-------------------------+-------------+------------------+-----------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56696.79 | 56129.25 | 55829.65 | 57266.37 | 57568.72 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56827.50 | 56163.37 | 55812.94 | 57494.42 | 57848.60 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56958.32 | 56192.65 | 55788.84 | 57727.70 | 58136.48 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57089.24 | 56217.30 | 55757.67 | 57966.00 | 58432.07 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57220.28 | 56237.51 | 55719.74 | 58209.15 | 58735.09 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57351.42 | 56253.45 | 55675.32 | 58456.99 | 59045.31 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57482.67 | 56265.28 | 55624.63 | 58709.40 | 59362.55 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57614.03 | 56273.13 | 55567.90 | 58966.24 | 59686.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57745.50 | 56277.12 | 55505.32 | 59227.41 | 60017.34 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57877.07 | 56277.37 | 55437.08 | 59492.82 | 60354.59 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 58008.75 | 56273.99 | 55363.34 | 59762.36 | 60698.24 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58140.54 | 56267.06 | 55284.25 | 60035.97 | 61048.17 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58272.44 | 56256.68 | 55199.96 | 60313.57 | 61404.26 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58404.44 | 56242.93 | 55110.60 | 60595.08 | 61766.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58536.55 | 56225.89 | 55016.29 | 60880.46 | 62134.58 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58668.77 | 56205.64 | 54917.16 | 61169.63 | 62508.63 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58801.09 | 56182.23 | 54813.32 | 61462.56 | 62888.51 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58933.53 | 56155.74 | 54704.87 | 61759.18 | 63274.15 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59066.07 | 56126.23 | 54591.91 | 62059.45 | 63665.47 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59198.71 | 56093.75 | 54474.54 | 62363.33 | 64062.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59331.47 | 56058.36 | 54352.84 | 62670.78 | 64464.96 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph3

#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 6.1522, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = -1.1993, Truncation lag parameter = 5, p-value
## = 0.9842
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -3.4538, Lag order = 7, p-value = 0.04719
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main = "1nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 3.9696, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1) # applay pp test after taking first differences
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -1.8717, Truncation lag parameter = 5, p-value
## = 0.9724
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -0.49021, Lag order = 7, p-value = 0.9821
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab ,main = "2nd differenced series")

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
kpss.test(diff2_x1) # applay kpss test after taking Second differences
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.35539, Truncation lag parameter = 5, p-value = 0.09638
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -435.74, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -6.6133, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,2,0) : 2988.391
## ARIMA(0,2,1) : 2974.147
## ARIMA(0,2,2) : 2976.106
## ARIMA(0,2,3) : 2973.714
## ARIMA(0,2,4) : 2974.144
## ARIMA(0,2,5) : 2967.241
## ARIMA(1,2,0) : 2973.806
## ARIMA(1,2,1) : 2975.831
## ARIMA(1,2,2) : 2977.821
## ARIMA(1,2,3) : 2975.381
## ARIMA(1,2,4) : 2970.371
## ARIMA(2,2,0) : 2975.833
## ARIMA(2,2,1) : Inf
## ARIMA(2,2,2) : 2978.748
## ARIMA(2,2,3) : 2967.901
## ARIMA(3,2,0) : 2977.293
## ARIMA(3,2,1) : 2977.207
## ARIMA(3,2,2) : 2970.983
## ARIMA(4,2,0) : 2967.396
## ARIMA(4,2,1) : 2964.695
## ARIMA(5,2,0) : 2965.317
##
##
##
## Best model: ARIMA(4,2,1)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(4,2,1)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1
## -0.6737 -0.0999 -0.0780 -0.1985 0.4827
## s.e. 0.1475 0.0667 0.0603 0.0507 0.1456
##
## sigma^2 estimated as 126.9: log likelihood=-1476.24
## AIC=2964.47 AICc=2964.7 BIC=2988.19
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 4 2 1
strtoi(bestmodel[3])
## [1] 1
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" ") , ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ma1
## -0.6737 -0.0999 -0.0780 -0.1985 0.4827
## s.e. 0.1475 0.0667 0.0603 0.0507 0.1456
##
## sigma^2 estimated as 125.2: log likelihood = -1476.24, aic = 2964.47
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE
## Training set 0.4635585 11.16239 6.49806 0.3410782 1.864202 0.04506785
## ACF1
## Training set 0.0008884164
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(4,2,1)
## Q* = 9.2535, df = 5, p-value = 0.09937
##
## Model df: 5. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 168.18, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 2300.8, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "0.041 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)), type = "rest")
##
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | | date_auto.arima | validation_data_by_name | actual_data | forecasting_auto.arima | MAPE_auto.arima_Model |
## +===+=================+=========================+=============+========================+=======================+
## | 1 | 2021-04-03 | Saturday | 55783.00 | 55784.49 | 0.003 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 2 | 2021-04-04 | Sunday | 55908.00 | 55914.23 | 0.011 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 3 | 2021-04-05 | Monday | 56031.00 | 56044.03 | 0.023 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 4 | 2021-04-06 | Tuesday | 56153.00 | 56173.92 | 0.037 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 5 | 2021-04-07 | Wednesday | 56274.00 | 56303.63 | 0.053 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 6 | 2021-04-08 | Thursday | 56394.00 | 56433.40 | 0.07 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
## | 7 | 2021-04-09 | Friday | 56513.00 | 56563.12 | 0.089 % |
## +---+-----------------+-------------------------+-------------+------------------------+-----------------------+
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56692.87 | 56528.85 | 56442.02 | 56856.89 | 56943.71 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56822.64 | 56630.71 | 56529.11 | 57014.57 | 57116.17 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56952.38 | 56731.21 | 56614.12 | 57173.55 | 57290.63 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57082.14 | 56830.30 | 56696.98 | 57333.99 | 57467.31 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57211.89 | 56928.17 | 56777.97 | 57495.61 | 57645.80 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57341.64 | 57024.76 | 56857.01 | 57658.52 | 57826.27 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57471.40 | 57120.18 | 56934.25 | 57822.62 | 58008.54 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57601.15 | 57214.44 | 57009.72 | 57987.86 | 58192.57 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57730.90 | 57307.57 | 57083.47 | 58154.24 | 58378.34 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57860.65 | 57399.63 | 57155.58 | 58321.68 | 58565.73 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57990.41 | 57490.62 | 57226.05 | 58490.19 | 58754.76 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58120.16 | 57580.60 | 57294.97 | 58659.72 | 58945.35 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58249.91 | 57669.57 | 57362.35 | 58830.26 | 59137.47 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58379.66 | 57757.56 | 57428.23 | 59001.77 | 59331.09 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58509.42 | 57844.60 | 57492.66 | 59174.24 | 59526.17 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58639.17 | 57930.70 | 57555.66 | 59347.64 | 59722.68 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58768.92 | 58015.89 | 57617.26 | 59521.96 | 59920.59 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58898.68 | 58100.18 | 57677.49 | 59697.17 | 60119.86 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59028.43 | 58183.60 | 57736.37 | 59873.26 | 60320.49 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59158.18 | 58266.15 | 57793.94 | 60050.21 | 60522.43 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59287.93 | 58347.85 | 57850.20 | 60228.01 | 60725.66 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in", frequency ,y_lab , sep=" "), ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "0.041 % MAPE 7 days Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
# SIR Model
#install.packages("dplyr")
library(deSolve)
first<-rows-(validation_data_days+N_forecasting_days-1)
secondr<-rows-N_forecasting_days
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.06607126 0.05991285
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
MAPE_Mean_SIR<-round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3)
## forecasting by SIR model
Infected <- c(tail(original_data,N_forecasting_days))
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.05065253 0.04491823
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR <-data.frame(out)
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +----+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +====+============+=================+====================+
## | 1 | 2021-04-10 | Saturday | 53902.00 |
## +----+------------+-----------------+--------------------+
## | 2 | 2021-04-11 | Sunday | 54078.04 |
## +----+------------+-----------------+--------------------+
## | 3 | 2021-04-12 | Monday | 54248.32 |
## +----+------------+-----------------+--------------------+
## | 4 | 2021-04-13 | Tuesday | 54412.79 |
## +----+------------+-----------------+--------------------+
## | 5 | 2021-04-14 | Wednesday | 54571.39 |
## +----+------------+-----------------+--------------------+
## | 6 | 2021-04-15 | Thursday | 54724.05 |
## +----+------------+-----------------+--------------------+
## | 7 | 2021-04-16 | Friday | 54870.73 |
## +----+------------+-----------------+--------------------+
## | 8 | 2021-04-17 | Saturday | 55011.38 |
## +----+------------+-----------------+--------------------+
## | 9 | 2021-04-18 | Sunday | 55145.93 |
## +----+------------+-----------------+--------------------+
## | 10 | 2021-04-19 | Monday | 55274.36 |
## +----+------------+-----------------+--------------------+
## | 11 | 2021-04-20 | Tuesday | 55396.61 |
## +----+------------+-----------------+--------------------+
## | 12 | 2021-04-21 | Wednesday | 55512.64 |
## +----+------------+-----------------+--------------------+
## | 13 | 2021-04-22 | Thursday | 55622.42 |
## +----+------------+-----------------+--------------------+
## | 14 | 2021-04-23 | Friday | 55725.91 |
## +----+------------+-----------------+--------------------+
## | 15 | 2021-04-24 | Saturday | 55823.07 |
## +----+------------+-----------------+--------------------+
## | 16 | 2021-04-25 | Sunday | 55913.89 |
## +----+------------+-----------------+--------------------+
## | 17 | 2021-04-26 | Monday | 55998.34 |
## +----+------------+-----------------+--------------------+
## | 18 | 2021-04-27 | Tuesday | 56076.38 |
## +----+------------+-----------------+--------------------+
## | 19 | 2021-04-28 | Wednesday | 56148.01 |
## +----+------------+-----------------+--------------------+
## | 20 | 2021-04-29 | Thursday | 56213.21 |
## +----+------------+-----------------+--------------------+
## | 21 | 2021-04-30 | Friday | 56271.95 |
## +----+------------+-----------------+--------------------+
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
best_recommended_model
## [1] 0.037
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
x6<-if(best_recommended_model >= MAPE_Mean_SIR) {paste("SIR Model")}
panderOptions('table.split.table', Inf)
paste("Forecasting by using BATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using BATS Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days),lower=tail(forecasting_bats$lower,N_forecasting_days),Upper=tail(forecasting_bats$lower,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_bats | lower.80. | lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56688.79 | 56512.89 | 56419.77 | 56512.89 | 56419.77 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56818.01 | 56610.92 | 56501.30 | 56610.92 | 56501.30 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56947.23 | 56707.32 | 56580.31 | 56707.32 | 56580.31 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57076.45 | 56802.14 | 56656.93 | 56802.14 | 56656.93 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57205.68 | 56895.47 | 56731.26 | 56895.47 | 56731.26 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57334.90 | 56987.36 | 56803.39 | 56987.36 | 56803.39 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57464.12 | 57077.87 | 56873.40 | 57077.87 | 56873.40 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57593.34 | 57167.03 | 56941.36 | 57167.03 | 56941.36 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57722.56 | 57254.91 | 57007.34 | 57254.91 | 57007.34 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57851.78 | 57341.52 | 57071.41 | 57341.52 | 57071.41 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57981.01 | 57426.92 | 57133.61 | 57426.92 | 57133.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58110.23 | 57511.13 | 57193.99 | 57511.13 | 57193.99 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58239.45 | 57594.19 | 57252.61 | 57594.19 | 57252.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58368.67 | 57676.12 | 57309.51 | 57676.12 | 57309.51 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58497.89 | 57756.95 | 57364.72 | 57756.95 | 57364.72 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58627.11 | 57836.70 | 57418.28 | 57836.70 | 57418.28 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58756.33 | 57915.40 | 57470.23 | 57915.40 | 57470.23 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58885.56 | 57993.06 | 57520.60 | 57993.06 | 57520.60 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59014.78 | 58069.71 | 57569.43 | 58069.71 | 57569.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59144.00 | 58145.37 | 57616.73 | 58145.37 | 57616.73 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59273.22 | 58220.06 | 57662.55 | 58220.06 | 57662.55 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using TBATS Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using TBATS Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days),Lower=tail(forecasting_tbats$lower,N_forecasting_days),Upper=tail(forecasting_tbats$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_TBATS | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+======================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56692.70 | 56652.47 | 56631.18 | 56732.93 | 56754.22 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56822.26 | 56779.63 | 56757.06 | 56864.89 | 56887.45 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56952.87 | 56907.96 | 56884.19 | 56997.77 | 57021.54 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57084.42 | 57037.35 | 57012.44 | 57131.48 | 57156.40 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57213.11 | 57163.98 | 57137.97 | 57262.24 | 57288.25 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57341.53 | 57290.43 | 57263.38 | 57392.63 | 57419.68 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57471.77 | 57418.78 | 57390.72 | 57524.76 | 57552.81 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57601.33 | 57546.51 | 57517.49 | 57656.14 | 57685.16 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57731.93 | 57675.36 | 57645.40 | 57788.51 | 57818.47 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57863.49 | 57805.20 | 57774.34 | 57921.78 | 57952.63 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57992.18 | 57932.23 | 57900.50 | 58052.12 | 58083.86 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58120.60 | 58059.05 | 58026.47 | 58182.15 | 58214.74 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58250.84 | 58187.73 | 58154.32 | 58313.95 | 58347.35 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58380.39 | 58315.77 | 58281.55 | 58445.02 | 58479.24 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58511.00 | 58444.89 | 58409.89 | 58577.12 | 58612.12 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58642.55 | 58574.99 | 58539.22 | 58710.12 | 58745.89 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58771.25 | 58702.26 | 58665.75 | 58840.23 | 58876.74 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58899.67 | 58829.31 | 58792.06 | 58970.03 | 59007.28 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59029.90 | 58958.19 | 58920.23 | 59101.62 | 59139.58 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59159.46 | 59086.43 | 59047.76 | 59232.50 | 59271.16 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59290.07 | 59215.73 | 59176.38 | 59364.41 | 59403.76 |
## +----+------------+-----------------+----------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using Holt's Linear Trend Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using Holt's Linear Trend Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days),Lower=tail(forecasting_holt$lower,N_forecasting_days),Upper=tail(forecasting_holt$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_holt | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+=====================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56696.79 | 56129.25 | 55829.65 | 57266.37 | 57568.72 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56827.50 | 56163.37 | 55812.94 | 57494.42 | 57848.60 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56958.32 | 56192.65 | 55788.84 | 57727.70 | 58136.48 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57089.24 | 56217.30 | 55757.67 | 57966.00 | 58432.07 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57220.28 | 56237.51 | 55719.74 | 58209.15 | 58735.09 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57351.42 | 56253.45 | 55675.32 | 58456.99 | 59045.31 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57482.67 | 56265.28 | 55624.63 | 58709.40 | 59362.55 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57614.03 | 56273.13 | 55567.90 | 58966.24 | 59686.61 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57745.50 | 56277.12 | 55505.32 | 59227.41 | 60017.34 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57877.07 | 56277.37 | 55437.08 | 59492.82 | 60354.59 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 58008.75 | 56273.99 | 55363.34 | 59762.36 | 60698.24 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58140.54 | 56267.06 | 55284.25 | 60035.97 | 61048.17 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58272.44 | 56256.68 | 55199.96 | 60313.57 | 61404.26 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58404.44 | 56242.93 | 55110.60 | 60595.08 | 61766.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58536.55 | 56225.89 | 55016.29 | 60880.46 | 62134.58 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58668.77 | 56205.64 | 54917.16 | 61169.63 | 62508.63 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58801.09 | 56182.23 | 54813.32 | 61462.56 | 62888.51 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58933.53 | 56155.74 | 54704.87 | 61759.18 | 63274.15 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59066.07 | 56126.23 | 54591.91 | 62059.45 | 63665.47 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59198.71 | 56093.75 | 54474.54 | 62363.33 | 64062.43 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59331.47 | 56058.36 | 54352.84 | 62670.78 | 64464.96 |
## +----+------------+-----------------+---------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using ARIMA Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using ARIMA Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days),Lower=tail(forecasting_auto_arima$lower,N_forecasting_days),Upper=tail(forecasting_auto_arima$upper,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | | FD | forecating_date | forecasting_by_auto.arima | Lower.80. | Lower.95. | Upper.80. | Upper.95. |
## +====+============+=================+===========================+===========+===========+===========+===========+
## | 1 | 2021-04-10 | Saturday | 56692.87 | 56528.85 | 56442.02 | 56856.89 | 56943.71 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 2 | 2021-04-11 | Sunday | 56822.64 | 56630.71 | 56529.11 | 57014.57 | 57116.17 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 3 | 2021-04-12 | Monday | 56952.38 | 56731.21 | 56614.12 | 57173.55 | 57290.63 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 4 | 2021-04-13 | Tuesday | 57082.14 | 56830.30 | 56696.98 | 57333.99 | 57467.31 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 5 | 2021-04-14 | Wednesday | 57211.89 | 56928.17 | 56777.97 | 57495.61 | 57645.80 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 6 | 2021-04-15 | Thursday | 57341.64 | 57024.76 | 56857.01 | 57658.52 | 57826.27 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 7 | 2021-04-16 | Friday | 57471.40 | 57120.18 | 56934.25 | 57822.62 | 58008.54 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 8 | 2021-04-17 | Saturday | 57601.15 | 57214.44 | 57009.72 | 57987.86 | 58192.57 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 9 | 2021-04-18 | Sunday | 57730.90 | 57307.57 | 57083.47 | 58154.24 | 58378.34 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 10 | 2021-04-19 | Monday | 57860.65 | 57399.63 | 57155.58 | 58321.68 | 58565.73 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 11 | 2021-04-20 | Tuesday | 57990.41 | 57490.62 | 57226.05 | 58490.19 | 58754.76 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 12 | 2021-04-21 | Wednesday | 58120.16 | 57580.60 | 57294.97 | 58659.72 | 58945.35 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 13 | 2021-04-22 | Thursday | 58249.91 | 57669.57 | 57362.35 | 58830.26 | 59137.47 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 14 | 2021-04-23 | Friday | 58379.66 | 57757.56 | 57428.23 | 59001.77 | 59331.09 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 15 | 2021-04-24 | Saturday | 58509.42 | 57844.60 | 57492.66 | 59174.24 | 59526.17 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 16 | 2021-04-25 | Sunday | 58639.17 | 57930.70 | 57555.66 | 59347.64 | 59722.68 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 17 | 2021-04-26 | Monday | 58768.92 | 58015.89 | 57617.26 | 59521.96 | 59920.59 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 18 | 2021-04-27 | Tuesday | 58898.68 | 58100.18 | 57677.49 | 59697.17 | 60119.86 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 19 | 2021-04-28 | Wednesday | 59028.43 | 58183.60 | 57736.37 | 59873.26 | 60320.49 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 20 | 2021-04-29 | Thursday | 59158.18 | 58266.15 | 57793.94 | 60050.21 | 60522.43 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
## | 21 | 2021-04-30 | Friday | 59287.93 | 58347.85 | 57850.20 | 60228.01 | 60725.66 |
## +----+------------+-----------------+---------------------------+-----------+-----------+-----------+-----------+
paste("Forecasting by using NNAR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using NNAR Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))), type = "rest")
##
## +----+------------+-----------------+---------------------+
## | | FD | forecating_date | forecasting_by_NNAR |
## +====+============+=================+=====================+
## | 1 | 2021-04-10 | Saturday | 56100.34 |
## +----+------------+-----------------+---------------------+
## | 2 | 2021-04-11 | Sunday | 56145.15 |
## +----+------------+-----------------+---------------------+
## | 3 | 2021-04-12 | Monday | 56187.85 |
## +----+------------+-----------------+---------------------+
## | 4 | 2021-04-13 | Tuesday | 56228.52 |
## +----+------------+-----------------+---------------------+
## | 5 | 2021-04-14 | Wednesday | 56267.25 |
## +----+------------+-----------------+---------------------+
## | 6 | 2021-04-15 | Thursday | 56304.11 |
## +----+------------+-----------------+---------------------+
## | 7 | 2021-04-16 | Friday | 56339.19 |
## +----+------------+-----------------+---------------------+
## | 8 | 2021-04-17 | Saturday | 56372.56 |
## +----+------------+-----------------+---------------------+
## | 9 | 2021-04-18 | Sunday | 56404.30 |
## +----+------------+-----------------+---------------------+
## | 10 | 2021-04-19 | Monday | 56434.47 |
## +----+------------+-----------------+---------------------+
## | 11 | 2021-04-20 | Tuesday | 56463.14 |
## +----+------------+-----------------+---------------------+
## | 12 | 2021-04-21 | Wednesday | 56490.39 |
## +----+------------+-----------------+---------------------+
## | 13 | 2021-04-22 | Thursday | 56516.28 |
## +----+------------+-----------------+---------------------+
## | 14 | 2021-04-23 | Friday | 56540.87 |
## +----+------------+-----------------+---------------------+
## | 15 | 2021-04-24 | Saturday | 56564.22 |
## +----+------------+-----------------+---------------------+
## | 16 | 2021-04-25 | Sunday | 56586.39 |
## +----+------------+-----------------+---------------------+
## | 17 | 2021-04-26 | Monday | 56607.44 |
## +----+------------+-----------------+---------------------+
## | 18 | 2021-04-27 | Tuesday | 56627.41 |
## +----+------------+-----------------+---------------------+
## | 19 | 2021-04-28 | Wednesday | 56646.36 |
## +----+------------+-----------------+---------------------+
## | 20 | 2021-04-29 | Thursday | 56664.34 |
## +----+------------+-----------------+---------------------+
## | 21 | 2021-04-30 | Friday | 56681.39 |
## +----+------------+-----------------+---------------------+
paste("Forecasting by using SIR Model ==> ", y_lab , sep=" ")
## [1] "Forecasting by using SIR Model ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk"
print(ascii(data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)), type = "rest")
##
## +----+------------+-----------------+--------------------+
## | | FD | forecating_date | forecasting_by_SIR |
## +====+============+=================+====================+
## | 1 | 2021-04-10 | Saturday | 53902.00 |
## +----+------------+-----------------+--------------------+
## | 2 | 2021-04-11 | Sunday | 54078.04 |
## +----+------------+-----------------+--------------------+
## | 3 | 2021-04-12 | Monday | 54248.32 |
## +----+------------+-----------------+--------------------+
## | 4 | 2021-04-13 | Tuesday | 54412.79 |
## +----+------------+-----------------+--------------------+
## | 5 | 2021-04-14 | Wednesday | 54571.39 |
## +----+------------+-----------------+--------------------+
## | 6 | 2021-04-15 | Thursday | 54724.05 |
## +----+------------+-----------------+--------------------+
## | 7 | 2021-04-16 | Friday | 54870.73 |
## +----+------------+-----------------+--------------------+
## | 8 | 2021-04-17 | Saturday | 55011.38 |
## +----+------------+-----------------+--------------------+
## | 9 | 2021-04-18 | Sunday | 55145.93 |
## +----+------------+-----------------+--------------------+
## | 10 | 2021-04-19 | Monday | 55274.36 |
## +----+------------+-----------------+--------------------+
## | 11 | 2021-04-20 | Tuesday | 55396.61 |
## +----+------------+-----------------+--------------------+
## | 12 | 2021-04-21 | Wednesday | 55512.64 |
## +----+------------+-----------------+--------------------+
## | 13 | 2021-04-22 | Thursday | 55622.42 |
## +----+------------+-----------------+--------------------+
## | 14 | 2021-04-23 | Friday | 55725.91 |
## +----+------------+-----------------+--------------------+
## | 15 | 2021-04-24 | Saturday | 55823.07 |
## +----+------------+-----------------+--------------------+
## | 16 | 2021-04-25 | Sunday | 55913.89 |
## +----+------------+-----------------+--------------------+
## | 17 | 2021-04-26 | Monday | 55998.34 |
## +----+------------+-----------------+--------------------+
## | 18 | 2021-04-27 | Tuesday | 56076.38 |
## +----+------------+-----------------+--------------------+
## | 19 | 2021-04-28 | Wednesday | 56148.01 |
## +----+------------+-----------------+--------------------+
## | 20 | 2021-04-29 | Thursday | 56213.21 |
## +----+------------+-----------------+--------------------+
## | 21 | 2021-04-30 | Friday | 56271.95 |
## +----+------------+-----------------+--------------------+
result<-c(x1,x2,x3,x4,x5,x6)
table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,SIR.Model=MAPE_Mean_SIR,Best.Model=result)
library(ascii)
print(ascii(table(table.error)), type = "rest")
##
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+------------+------+
## | | country.name | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | SIR.Model | Best.Model | Freq |
## +===+==============+============+============+=============+============+=============+===========+============+======+
## | 1 | Chelyabinsk | 0.458 | 0.037 | 0.041 | 0.043 | 0.041 | 4.98 | BATS Model | 1.00 |
## +---+--------------+------------+------------+-------------+------------+-------------+-----------+------------+------+
MAPE.Value<-c(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model,MAPE_Mean_SIR)
Model<-c("NNAR.model","BATS.Model","TBATS.Model","Holt.Model","ARIMA.Model" ,"SIR Model")
channel_data<-data.frame(Model,MAPE.Value)
# Normally, the entire expression below would be assigned to an object, but we're
# going bare bones here.
ggplot(channel_data, aes(x = Model, y = MAPE.Value)) +
geom_bar(stat = "identity") +
geom_text(aes(label = MAPE.Value)) + # x AND y INHERITED. WE JUST NEED TO SPECIFY "label"
coord_flip() +
scale_y_continuous(expand = c(0, 0))

message("System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>",y_lab, sep=" ")
## System finished Modelling and Forecasting by using BATS, TBATS, Holt's Linear Trend,ARIMA Model, and SIR Model ==>Forecasting Cumulative Covid 19 infection cases in Chelyabinsk
message(" Thank you for using our System For Modelling and Forecasting ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling and Forecasting ==> Forecasting Cumulative Covid 19 infection cases in Chelyabinsk