INFERENCE ABOUT A POPULATION
*Nous allons simuler une distribution de Revenus dans une population de taille \(N=1000000\).
*On va supposer que le revenu moyen \(\mu=2500\) et l’ecart type \(\sigma=300\).
*On va utiliser pour cela la Loi Log_Normale pour generer nos donnes.
- Calcule en \(https://www.wolframalpha.com/\)solve[exp(m+s^2/2)==2500&& (exp(s2)-1)exp(2m+s2)==(300^2),{m,s}
set.seed(123) #Pour qu'on ait les meme data
Income=rlnorm(1000000,7.8169,0.119571)
N=length(Income)
mu=mean(Income) # mu
sigma=sd(Income) # sigma
hist(Income)
replace = Tirage sans remise
set.seed(123)
Echantillion=sample(Income,50,replace = FALSE)
n=length(Echantillion)
xbar=mean(Echantillion)
s=sd(Echantillion)
n
xbar
s
- On va tirer plusiers fois la moyenne \(\bar{x}\) de l’echantillion e regarder sa distribution. *Cela nous permet d’entrevoir la distribution d’echantiollnnage de \[\bar{X}\].
xbars=c()
for(i in 1:1000)
{
xbars=c(xbars,mean(sample(Income,50,replace = FALSE)))
}
hist(xbars)
- Lhistograme ressemble a une cloche en raison du Theoreme de la Limite Centrale.
sd(xbars) ## Cette valeur est Ecart Type de x bar, est le sigma /racine de n.
sigma/sqrt(50)
EXERCICE
On preleve un echantillion de taille \(n=20\) dans une population grande et pas “trop non normale”.
on trouve \(\bar{x}=4.6\) et un Ecart-Type \(sd=2.1\).
Donez une intervalle de confiance pour la moyenne \(\mu\).
*on a Loi de Stdent $=frac(xbar - ) (S/sqrt n)
qt(0.025,19,lower.tail = FALSE)
4.6-2.09*2.1/sqrt(20) ## S'appelle LCL_Lower Confidence Limit
4.6+2.09*2.1/sqrt(20) ## S'appelle UCL_Upper Confidence Limit
EXAMPLE 12.2 Tax Collected from Audited Returns (Import Data Xm 12-02)
*In 2007 (the latest year reported), 134,543,000 tax returns were filed in the United States (Source: Statistical Abstract of the United States, 2009, Table 463). The Internal Revenue Service (IRS) examined 1.03% or 1,385,000 of them to determine if they were correctly done. To determine how well the auditors are performing, a random sample of these returns was drawn and the additional tax was reported, which is listed next. Estimate with 95% confidence the mean additional income tax collected from the 1,385,000 files audited. (Adapted from U.S. Internal Revenue Service, IRS Data Book, annual, Publication 55B.)
hist(Xm12_02$Taxes)
n = length(Xm12_02$Taxes)
xbar = mean(Xm12_02$Taxes)
s = sd(Xm12_02$Taxes)
xbar-qt(0.025,n-1, lower.tail = FALSE)*s/sqrt(n) ## S'appelle LCL_Lower Confidence Limit
xbar+qt(0.025,n-1, lower.tail = FALSE)*s/sqrt(n) ## S'appelle UCL_Upper Confidence Limit
LS0tCnRpdGxlOiAiRXN0aW1hdGlvbnMgVGVzdHMiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OiAKICAgIHRvYzogeWVzCiAgd29yZF9kb2N1bWVudDoKICAgIHRvYzogeWVzCiAgaHRtbF9ub3RlYm9vazogCiAgICB0b2M6IHllcwogIHBkZl9kb2N1bWVudDoKICAgIHRvYzogeWVzCmVkaXRvcl9vcHRpb25zOiAKICBjaHVua19vdXRwdXRfdHlwZTogY29uc29sZQotLS0KCiMgSU5GRVJFTkNFIEFCT1VUIEEgUE9QVUxBVElPTgoKKk5vdXMgYWxsb25zIHNpbXVsZXIgdW5lIGRpc3RyaWJ1dGlvbiBkZSBSZXZlbnVzIGRhbnMgdW5lIHBvcHVsYXRpb24gZGUgdGFpbGxlICROPTEwMDAwMDAkLgoKKk9uIHZhIHN1cHBvc2VyIHF1ZSBsZSByZXZlbnUgbW95ZW4gJFxtdT0yNTAwJCBldCBsJ2VjYXJ0IHR5cGUgJFxzaWdtYT0zMDAkLgoKKk9uIHZhIHV0aWxpc2VyIHBvdXIgY2VsYSBsYSBMb2kgTG9nX05vcm1hbGUgcG91ciBnZW5lcmVyIG5vcyBkb25uZXMuIAoKKiBDYWxjdWxlIGVuICRodHRwczovL3d3dy53b2xmcmFtYWxwaGEuY29tLyRzb2x2ZVtleHAobStzXjIvMik9PTI1MDAmJiAoZXhwKHNeMiktMSlleHAoMm0rc14yKT09KDMwMF4yKSx7bSxzfQpgYGB7cn0Kc2V0LnNlZWQoMTIzKSAjUG91ciBxdSdvbiBhaXQgbGVzIG1lbWUgZGF0YQpJbmNvbWU9cmxub3JtKDEwMDAwMDAsNy44MTY5LDAuMTE5NTcxKQpOPWxlbmd0aChJbmNvbWUpCm11PW1lYW4oSW5jb21lKSAjIG11CnNpZ21hPXNkKEluY29tZSkgIyBzaWdtYQpoaXN0KEluY29tZSkKYGBgCiMgcmVwbGFjZSA9IFRpcmFnZSBzYW5zIHJlbWlzZQoKYGBge3J9CnNldC5zZWVkKDEyMykKRWNoYW50aWxsaW9uPXNhbXBsZShJbmNvbWUsNTAscmVwbGFjZSA9IEZBTFNFKQpuPWxlbmd0aChFY2hhbnRpbGxpb24pCnhiYXI9bWVhbihFY2hhbnRpbGxpb24pCnM9c2QoRWNoYW50aWxsaW9uKQpuCnhiYXIKcwoKYGBgCgoqIE9uIHZhIHRpcmVyIHBsdXNpZXJzIGZvaXMgbGEgbW95ZW5uZSAkXGJhcnt4fSQgZGUgbCdlY2hhbnRpbGxpb24gZSByZWdhcmRlciBzYSBkaXN0cmlidXRpb24uCipDZWxhIG5vdXMgcGVybWV0IGQnZW50cmV2b2lyIGxhIGRpc3RyaWJ1dGlvbiBkJ2VjaGFudGlvbGxubmFnZSBkZSAkJFxiYXJ7WH0kJC4KCmBgYHtyfQp4YmFycz1jKCkKZm9yKGkgaW4gMToxMDAwKQp7CnhiYXJzPWMoeGJhcnMsbWVhbihzYW1wbGUoSW5jb21lLDUwLHJlcGxhY2UgPSBGQUxTRSkpKQp9Cmhpc3QoeGJhcnMpCgpgYGAKKiBMaGlzdG9ncmFtZSByZXNzZW1ibGUgYSB1bmUgY2xvY2hlIGVuIHJhaXNvbiBkdSBUaGVvcmVtZSBkZSBsYSBMaW1pdGUgQ2VudHJhbGUuCmBgYHtyfQpzZCh4YmFycykgIyMgQ2V0dGUgdmFsZXVyIGVzdCBFY2FydCBUeXBlIGRlIHggYmFyLCBlc3QgbGUgc2lnbWEgL3JhY2luZSBkZSBuLgpzaWdtYS9zcXJ0KDUwKQoKCmBgYAoKIyMgRVhFUkNJQ0UKCiogT24gcHJlbGV2ZSB1biBlY2hhbnRpbGxpb24gZGUgdGFpbGxlICRuPTIwJCBkYW5zIHVuZSBwb3B1bGF0aW9uIGdyYW5kZSBldCBwYXMgInRyb3Agbm9uIG5vcm1hbGUiLgoqIG9uIHRyb3V2ZSAkXGJhcnt4fT00LjYkIGV0IHVuIEVjYXJ0LVR5cGUgJHNkPTIuMSQuCgoqIERvbmV6IHVuZSBpbnRlcnZhbGxlIGRlIGNvbmZpYW5jZSBwb3VyIGxhIG1veWVubmUgJFxtdSQuCgoqb24gYSBMb2kgZGUgU3RkZW50ICRcVD1mcmFjKHhiYXIgLSBcbXUpIChTL3NxcnQgbikKCmBgYHtyfQpxdCgwLjAyNSwxOSxsb3dlci50YWlsID0gRkFMU0UpCjQuNi0yLjA5KjIuMS9zcXJ0KDIwKSAjIyBTJ2FwcGVsbGUgTENMX0xvd2VyIENvbmZpZGVuY2UgTGltaXQKNC42KzIuMDkqMi4xL3NxcnQoMjApICAjIyBTJ2FwcGVsbGUgVUNMX1VwcGVyIENvbmZpZGVuY2UgTGltaXQKYGBgCiMjIEVYQU1QTEUgMTIuMiBUYXggQ29sbGVjdGVkIGZyb20gQXVkaXRlZCBSZXR1cm5zIChJbXBvcnQgRGF0YSBYbSAxMi0wMikKKkluIDIwMDcgKHRoZSBsYXRlc3QgeWVhciByZXBvcnRlZCksIDEzNCw1NDMsMDAwIHRheCByZXR1cm5zIHdlcmUgZmlsZWQgaW4gdGhlIFVuaXRlZCBTdGF0ZXMKKFNvdXJjZTogU3RhdGlzdGljYWwgQWJzdHJhY3Qgb2YgdGhlIFVuaXRlZCBTdGF0ZXMsIDIwMDksIFRhYmxlIDQ2MykuIFRoZSBJbnRlcm5hbCBSZXZlbnVlClNlcnZpY2UgKElSUykgZXhhbWluZWQgMS4wMyUgb3IgMSwzODUsMDAwIG9mIHRoZW0gdG8gZGV0ZXJtaW5lIGlmIHRoZXkgd2VyZSBjb3JyZWN0bHkKZG9uZS4gVG8gZGV0ZXJtaW5lIGhvdyB3ZWxsIHRoZSBhdWRpdG9ycyBhcmUgcGVyZm9ybWluZywgYSByYW5kb20gc2FtcGxlIG9mIHRoZXNlCnJldHVybnMgd2FzIGRyYXduIGFuZCB0aGUgYWRkaXRpb25hbCB0YXggd2FzIHJlcG9ydGVkLCB3aGljaCBpcyBsaXN0ZWQgbmV4dC4gRXN0aW1hdGUgd2l0aAo5NSUgY29uZmlkZW5jZSB0aGUgbWVhbiBhZGRpdGlvbmFsIGluY29tZSB0YXggY29sbGVjdGVkIGZyb20gdGhlIDEsMzg1LDAwMCBmaWxlcyBhdWRpdGVkLgooQWRhcHRlZCBmcm9tIFUuUy4gSW50ZXJuYWwgUmV2ZW51ZSBTZXJ2aWNlLCBJUlMgRGF0YSBCb29rLCBhbm51YWwsIFB1YmxpY2F0aW9uIDU1Qi4pCgpgYGB7cn0KaGlzdChYbTEyXzAyJFRheGVzKQpuID0gbGVuZ3RoKFhtMTJfMDIkVGF4ZXMpCnhiYXIgPSBtZWFuKFhtMTJfMDIkVGF4ZXMpCnMgPSBzZChYbTEyXzAyJFRheGVzKQoKeGJhci1xdCgwLjAyNSxuLTEsIGxvd2VyLnRhaWwgPSBGQUxTRSkqcy9zcXJ0KG4pICMjIFMnYXBwZWxsZSBMQ0xfTG93ZXIgQ29uZmlkZW5jZSBMaW1pdAp4YmFyK3F0KDAuMDI1LG4tMSwgbG93ZXIudGFpbCA9IEZBTFNFKSpzL3NxcnQobikgIyMgUydhcHBlbGxlIFVDTF9VcHBlciBDb25maWRlbmNlIExpbWl0CgpgYGAKCg==