Loading Packages
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tmap)
library(tmaptools)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.6 v dplyr 1.0.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(raster)
## Loading required package: sp
##
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
## select
## The following object is masked from 'package:tidyr':
##
## extract
library(fs)
library(rmapshaper)
## Registered S3 method overwritten by 'geojsonlint':
## method from
## print.location dplyr
Data Setup
JPNoutline <- st_read("C:/Users/Braden/Documents/CSC495/week10files/gadm36_JPN.gpkg", layer = 'gadm36_JPN_0')
## Reading layer `gadm36_JPN_0' from data source `C:\Users\Braden\Documents\CSC495\week10files\gadm36_JPN.gpkg' using driver `GPKG'
## Simple feature collection with 1 feature and 2 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: 122.9332 ymin: 24.04542 xmax: 153.9869 ymax: 45.52279
## geographic CRS: WGS 84
JPNoutlinePROJECTED <- JPNoutline %>%
st_transform(3112)
listfiles<-dir_info("C:/Users/Braden/Documents/CSC495/week10files/tif/") %>%
filter(str_detect(path, ".tif")) %>%
dplyr::select(path)%>%
pull()
worldclimtemp <- listfiles %>%
stack()
month <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
names(worldclimtemp) <- month
Gather Sample Sites
site2 <- c("Kyoto", "Osaka",
"Odawara", "Tokyo",
"Naha", "Akita"
)
lon2 <- c(135.768, 135.497,
139.166, 139.8394,
127.679, 140.1025
)
lat2 <- c(35.01, 34.669,
35.271, 35.6528,
26.2123, 39.7200
)
samples2 <- data.frame(site2, lon2, lat2, row.names="site2")
JPNcitytemp <- raster::extract(worldclimtemp, samples2)
JPNcitytemp
## Jan Feb Mar Apr May Jun Jul Aug
## [1,] 7.220000 7.553000 11.24900 17.69800 22.34400 25.44800 29.50300 30.91300
## [2,] 9.479382 9.867010 13.36598 19.77732 24.28247 27.23093 31.18351 32.78969
## [3,] 10.247000 10.410000 12.97300 18.22100 22.21800 24.47300 27.93800 29.73800
## [4,] 9.428947 9.668421 12.47105 18.13158 22.28158 24.56053 28.01842 30.01053
## [5,] 19.213402 19.347422 21.36701 24.09072 26.64845 29.26289 31.35979 31.07835
## [6,] 2.575000 3.093000 6.84700 13.96200 18.96700 22.90200 26.50600 28.64400
## Sep Oct Nov Dec
## [1,] 26.44500 20.75900 15.33800 9.97800
## [2,] 28.53815 22.88660 17.44124 12.18351
## [3,] 26.09800 21.20200 16.81500 12.61500
## [4,] 26.33947 21.22368 16.50789 12.02895
## [5,] 30.12887 27.68866 24.35258 21.06804
## [6,] 24.21200 18.29800 11.75300 5.69600
JPNcitytemp2 <- JPNcitytemp %>%
as_tibble()%>%
add_column(Site = site2, .before = "Jan")
JPNoutSIMPLE<-JPNoutline %>%
ms_simplify(keep=0.05)
Map
JPNtemp <- JPNoutSIMPLE %>%
crop(worldclimtemp,.)
plot(JPNtemp)
