Business Applications for the United States (BUSAPPWNSAUS)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAUS", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 120330
787 2021-01-30 125640
788 2021-02-06 122400
789 2021-02-13 118510
790 2021-02-20 101990
791 2021-02-27 115130
792 2021-03-06 119060
793 2021-03-13 120920
794 2021-03-20 123120
795 2021-03-27 125070
796 2021-04-03 121170
797 2021-04-10 116610
798 2021-04-17 129360
799 2021-04-24 129610
800 2021-05-01 134020
801 2021-05-08 126660
802 2021-05-15 115100
803 2021-05-22 122330
804 2021-05-29 117320
805 2021-06-05 95520
806 2021-06-12 108580
807 2021-06-19 87970
808 2021-06-26 122290
809 2021-07-03 100240
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for United States",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for United states _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve.\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for California (BUSAPPWNSACA)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSACA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 11140
787 2021-01-30 12600
788 2021-02-06 11670
789 2021-02-13 11650
790 2021-02-20 10180
791 2021-02-27 11610
792 2021-03-06 11760
793 2021-03-13 12560
794 2021-03-20 12480
795 2021-03-27 11990
796 2021-04-03 10950
797 2021-04-10 10650
798 2021-04-17 12400
799 2021-04-24 11720
800 2021-05-01 11960
801 2021-05-08 11910
802 2021-05-15 10170
803 2021-05-22 12070
804 2021-05-29 11320
805 2021-06-05 9360
806 2021-06-12 10860
807 2021-06-19 8600
808 2021-06-26 12020
809 2021-07-03 9500
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for California",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue1",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for California _ Short Term Trend",
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}")
    ) +
    theme_economist()

Business Applications from Corporations for California (CBUSAPPWNSACA)

symbol <-fredr_series_observations(series_id = "CBUSAPPWNSACA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 2490
787 2021-01-30 3000
788 2021-02-06 2790
789 2021-02-13 2930
790 2021-02-20 2450
791 2021-02-27 2930
792 2021-03-06 3470
793 2021-03-13 3380
794 2021-03-20 3490
795 2021-03-27 3130
796 2021-04-03 2780
797 2021-04-10 2520
798 2021-04-17 2800
799 2021-04-24 2710
800 2021-05-01 2900
801 2021-05-08 2970
802 2021-05-15 2800
803 2021-05-22 3000
804 2021-05-29 2990
805 2021-06-05 2500
806 2021-06-12 2960
807 2021-06-19 2490
808 2021-06-26 3340
809 2021-07-03 2570
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Corporate Business Applications for California",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Corporate Business Applications for California _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for Oregon (BBUSAPPWNSAOR)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOR", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 1190
787 2021-01-30 1250
788 2021-02-06 1200
789 2021-02-13 1080
790 2021-02-20 880
791 2021-02-27 1100
792 2021-03-06 1080
793 2021-03-13 1080
794 2021-03-20 1190
795 2021-03-27 1130
796 2021-04-03 1140
797 2021-04-10 1130
798 2021-04-17 1070
799 2021-04-24 1060
800 2021-05-01 1130
801 2021-05-08 1140
802 2021-05-15 1110
803 2021-05-22 1000
804 2021-05-29 1040
805 2021-06-05 810
806 2021-06-12 930
807 2021-06-19 760
808 2021-06-26 1090
809 2021-07-03 850
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for OREGON",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
       caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for OREGON _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for New York (BUSAPPWNSANY)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSANY", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 6760
787 2021-01-30 7130
788 2021-02-06 6460
789 2021-02-13 6550
790 2021-02-20 5650
791 2021-02-27 6250
792 2021-03-06 6860
793 2021-03-13 6910
794 2021-03-20 6880
795 2021-03-27 7020
796 2021-04-03 6790
797 2021-04-10 6860
798 2021-04-17 7140
799 2021-04-24 7050
800 2021-05-01 7200
801 2021-05-08 6810
802 2021-05-15 6390
803 2021-05-22 6100
804 2021-05-29 6510
805 2021-06-05 5070
806 2021-06-12 6030
807 2021-06-19 5170
808 2021-06-26 6150
809 2021-07-03 5330
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for New York State",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for New York State _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for Arizona (BUSAPPWNSAAZ)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAAZ", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
804 2021-05-29 2370
805 2021-06-05 1990
806 2021-06-12 2080
807 2021-06-19 1810
808 2021-06-26 2510
809 2021-07-03 2070
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for ARIZONA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for ARIZONA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for TEXAS (BUSAPPWNSATX)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSATX", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 10990
787 2021-01-30 11460
788 2021-02-06 12190
789 2021-02-13 10890
790 2021-02-20 5760
791 2021-02-27 8980
792 2021-03-06 9890
793 2021-03-13 10670
794 2021-03-20 10550
795 2021-03-27 11300
796 2021-04-03 11180
797 2021-04-10 10020
798 2021-04-17 12640
799 2021-04-24 10810
800 2021-05-01 12830
801 2021-05-08 11560
802 2021-05-15 10610
803 2021-05-22 10320
804 2021-05-29 10830
805 2021-06-05 8640
806 2021-06-12 9440
807 2021-06-19 8910
808 2021-06-26 12030
809 2021-07-03 9580
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for TEXAS",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator2 <- filter(indicator,date >= "2019-01-01")


indicator2   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for TEXAS _ Short Term Trend",
      subtitle = str_glue("From {min(indicator2$date)} through {max(indicator2$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for FLORIDA (BUSAPPWNSAFL)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAFL", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 10980
787 2021-01-30 12740
788 2021-02-06 13320
789 2021-02-13 15320
790 2021-02-20 14630
791 2021-02-27 14960
792 2021-03-06 13980
793 2021-03-13 13820
794 2021-03-20 13290
795 2021-03-27 13890
796 2021-04-03 14020
797 2021-04-10 14660
798 2021-04-17 15050
799 2021-04-24 14380
800 2021-05-01 15700
801 2021-05-08 14670
802 2021-05-15 13570
803 2021-05-22 18900
804 2021-05-29 15940
805 2021-06-05 12690
806 2021-06-12 14570
807 2021-06-19 11170
808 2021-06-26 15530
809 2021-07-03 12380
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for FLORIDA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for FLORIDA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for OKLAHOMA (BUSAPPWNSAOK)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAOK", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 1250
787 2021-01-30 1500
788 2021-02-06 1440
789 2021-02-13 1190
790 2021-02-20 830
791 2021-02-27 1150
792 2021-03-06 1220
793 2021-03-13 1280
794 2021-03-20 1310
795 2021-03-27 1460
796 2021-04-03 1310
797 2021-04-10 1290
798 2021-04-17 1330
799 2021-04-24 1420
800 2021-05-01 1360
801 2021-05-08 1280
802 2021-05-15 1190
803 2021-05-22 1370
804 2021-05-29 1280
805 2021-06-05 1010
806 2021-06-12 1160
807 2021-06-19 810
808 2021-06-26 1290
809 2021-07-03 1070
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for OKLAHOMA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for OKLAHOMA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for COLORADO (BUSAPPWNSACO)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSACO", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 2700
787 2021-01-30 2640
788 2021-02-06 2460
789 2021-02-13 2450
790 2021-02-20 2160
791 2021-02-27 2350
792 2021-03-06 2390
793 2021-03-13 2470
794 2021-03-20 2370
795 2021-03-27 2430
796 2021-04-03 2420
797 2021-04-10 2230
798 2021-04-17 2560
799 2021-04-24 2490
800 2021-05-01 2310
801 2021-05-08 2260
802 2021-05-15 2300
803 2021-05-22 2180
804 2021-05-29 2190
805 2021-06-05 1860
806 2021-06-12 2060
807 2021-06-19 1600
808 2021-06-26 2420
809 2021-07-03 2040
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for COLORADO",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for COLORADO _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for GEORGIA (BUSAPPWNSAGA)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAGA", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 7990
787 2021-01-30 8040
788 2021-02-06 7940
789 2021-02-13 7110
790 2021-02-20 7220
791 2021-02-27 7630
792 2021-03-06 7750
793 2021-03-13 7340
794 2021-03-20 7750
795 2021-03-27 7940
796 2021-04-03 7820
797 2021-04-10 7000
798 2021-04-17 8120
799 2021-04-24 8640
800 2021-05-01 8930
801 2021-05-08 8300
802 2021-05-15 7490
803 2021-05-22 7550
804 2021-05-29 7130
805 2021-06-05 5730
806 2021-06-12 6850
807 2021-06-19 5390
808 2021-06-26 7720
809 2021-07-03 6390
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for GEORGIA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for GEORGIA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for ILLINOIS (BUSAPPWNSAIL)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAIL", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 5140
787 2021-01-30 4790
788 2021-02-06 4860
789 2021-02-13 4500
790 2021-02-20 3860
791 2021-02-27 4570
792 2021-03-06 4840
793 2021-03-13 4730
794 2021-03-20 5130
795 2021-03-27 4910
796 2021-04-03 5110
797 2021-04-10 4870
798 2021-04-17 5470
799 2021-04-24 5760
800 2021-05-01 5800
801 2021-05-08 5080
802 2021-05-15 4220
803 2021-05-22 4460
804 2021-05-29 4060
805 2021-06-05 3420
806 2021-06-12 3670
807 2021-06-19 3070
808 2021-06-26 4210
809 2021-07-03 3630
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for ILLINOIS",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for ILLINOIS _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

Business Applications for Alabama (BUSAPPWNSAAL)

symbol <-fredr_series_observations(series_id = "BUSAPPWNSAAL", 
      observation_start = as.Date("2000-01-01"))
      
indicator <-as.data.frame(symbol)[,c(1,3)]

tail(indicator,24) %>% kable() %>%
  kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
   column_spec(2:3, T, color = "blue" ) 
date value
786 2021-01-23 1830
787 2021-01-30 1880
788 2021-02-06 1800
789 2021-02-13 1680
790 2021-02-20 1460
791 2021-02-27 1600
792 2021-03-06 1790
793 2021-03-13 1730
794 2021-03-20 1740
795 2021-03-27 1850
796 2021-04-03 1750
797 2021-04-10 1770
798 2021-04-17 1940
799 2021-04-24 2230
800 2021-05-01 2190
801 2021-05-08 1950
802 2021-05-15 1630
803 2021-05-22 1740
804 2021-05-29 1630
805 2021-06-05 1300
806 2021-06-12 1600
807 2021-06-19 1260
808 2021-06-26 1780
809 2021-07-03 1360
indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "Weekly",
      y = "Count",
      title = "Business Applications for ALABAMA",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"),
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego") +
    theme_economist()

indicator <- filter(indicator,date >= "2019-01-01")


indicator   %>% 
    ggplot(aes(x = date, y = value)) +
    geom_line(color = "dodgerblue4",size=.8) + 
    labs(
      x = "",
      y = "Count",
      title = "Business Applications for ALABAMA _ Short Term Trend",
      subtitle = str_glue("From {min(indicator$date)} through {max(indicator$date)}"), 
      caption = "Data source: FRED Federal Reserve\nIllustration by @JoeLongSanDiego\nhttps://rpubs.com/Data_Panoramic/") +
    theme_economist()