Libraries

Load objects

Are the genes de in rodents expressed in the HCA dataset

This first chunck of code aims to check if the genes already highlited as potential “old” markers from the rodents data are present in the human dataset from the HCA

## [1] 49
## [1] "Ube2c" "Gp1bb"

49 genes are present, Ube2c, Gp1bb are the two absent.

Young adult/ old DE

The differential expression was performed with MAST as it outperforms the default Seurat differential expression (Soneson and Robinson 2018)

## [1] TRUE
## [1] FALSE

To visualize the top genes violin plots are done comparing the old and young groups. Here the top 4 DE are displayed

Then this list is compares the DE list against the genes already highlighted in the rodents analyisis. The values displayed correspond to the human values in the first table and to the rodent (rat) values in the second table.

##               p_val avg_log2FC pct.old pct.young    p_val_adj direction
## CLASP2 5.621458e-43  0.5339917   0.847     0.727 1.390130e-38        UP
## FYN    9.696419e-26  0.4049654   0.793     0.669 2.397827e-21        UP
## GAP43  5.674658e-10 -0.4317121   0.235     0.208 1.403286e-05      DOWN
##             mean detected      sum baseMean_rdt log2FoldChange_rdt   pvalue_rdt
## CLASP2 1.7206655 78.54046 7144.203    9199.8710          0.4073614 5.268327e-03
## FYN    1.4543121 72.88054 6038.304    1627.0252         -1.2328815 1.352147e-06
## GAP43  0.2732644 22.10983 1134.594     238.7151         -1.1389178 1.825574e-03
##            padj_rdt direction_rdt
## CLASP2 2.420023e-02            UP
## FYN    3.019676e-05          DOWN
## GAP43  1.076863e-02          DOWN

VennDiagrams with the common genes between rodents and humans are plotted

## (polygon[GRID.polygon.189], polygon[GRID.polygon.190], polygon[GRID.polygon.191], polygon[GRID.polygon.192], text[GRID.text.193], text[GRID.text.194], text[GRID.text.195], text[GRID.text.196], text[GRID.text.197])

## (polygon[GRID.polygon.198], polygon[GRID.polygon.199], polygon[GRID.polygon.200], polygon[GRID.polygon.201], text[GRID.text.202], text[GRID.text.203], text[GRID.text.204], text[GRID.text.205], text[GRID.text.206])

Violin plots of the common genes are used again with the HCA data.

TODO

Session information

Click to expand
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.1252 
## [2] LC_CTYPE=English_United Kingdom.1252   
## [3] LC_MONETARY=English_United Kingdom.1252
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.1252    
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] scales_1.1.1                gridExtra_2.3              
##  [3] dplyr_1.0.5                 scater_1.18.6              
##  [5] ggplot2_3.3.3               SingleCellExperiment_1.12.0
##  [7] SummarizedExperiment_1.20.0 Biobase_2.50.0             
##  [9] GenomicRanges_1.42.0        GenomeInfoDb_1.26.4        
## [11] IRanges_2.24.1              S4Vectors_0.28.1           
## [13] BiocGenerics_0.36.0         MatrixGenerics_1.2.1       
## [15] matrixStats_0.58.0          SeuratObject_4.0.0         
## [17] Seurat_4.0.0                here_1.0.1                 
## 
## loaded via a namespace (and not attached):
##   [1] plyr_1.8.6                igraph_1.2.6             
##   [3] lazyeval_0.2.2            splines_4.0.4            
##   [5] BiocParallel_1.24.1       listenv_0.8.0            
##   [7] scattermore_0.7           digest_0.6.27            
##   [9] htmltools_0.5.1.1         viridis_0.5.1            
##  [11] fansi_0.4.2               magrittr_2.0.1           
##  [13] tensor_1.5                cluster_2.1.1            
##  [15] ROCR_1.0-11               globals_0.14.0           
##  [17] colorspace_2.0-0          ggrepel_0.9.1            
##  [19] xfun_0.21                 crayon_1.4.1             
##  [21] RCurl_1.98-1.2            jsonlite_1.7.2           
##  [23] spatstat_1.64-1           spatstat.data_2.0-0      
##  [25] survival_3.2-10           zoo_1.8-9                
##  [27] glue_1.4.2                polyclip_1.10-0          
##  [29] gtable_0.3.0              zlibbioc_1.36.0          
##  [31] XVector_0.30.0            leiden_0.3.7             
##  [33] DelayedArray_0.16.2       BiocSingular_1.6.0       
##  [35] future.apply_1.7.0        abind_1.4-5              
##  [37] futile.options_1.0.1      DBI_1.1.1                
##  [39] miniUI_0.1.1.1            Rcpp_1.0.6               
##  [41] viridisLite_0.3.0         xtable_1.8-4             
##  [43] reticulate_1.18           rsvd_1.0.3               
##  [45] htmlwidgets_1.5.3         httr_1.4.2               
##  [47] RColorBrewer_1.1-2        ellipsis_0.3.1           
##  [49] ica_1.0-2                 farver_2.1.0             
##  [51] pkgconfig_2.0.3           scuttle_1.0.4            
##  [53] sass_0.3.1                uwot_0.1.10              
##  [55] deldir_0.2-10             utf8_1.2.1               
##  [57] labeling_0.4.2            tidyselect_1.1.0         
##  [59] rlang_0.4.10              reshape2_1.4.4           
##  [61] later_1.1.0.1             munsell_0.5.0            
##  [63] tools_4.0.4               generics_0.1.0           
##  [65] ggridges_0.5.3            evaluate_0.14            
##  [67] stringr_1.4.0             fastmap_1.1.0            
##  [69] yaml_2.2.1                goftest_1.2-2            
##  [71] knitr_1.31                fitdistrplus_1.1-3       
##  [73] purrr_0.3.4               RANN_2.6.1               
##  [75] pbapply_1.4-3             future_1.21.0            
##  [77] nlme_3.1-152              sparseMatrixStats_1.2.1  
##  [79] mime_0.10                 formatR_1.8              
##  [81] compiler_4.0.4            beeswarm_0.3.1           
##  [83] plotly_4.9.3              png_0.1-7                
##  [85] spatstat.utils_2.1-0      tibble_3.1.0             
##  [87] bslib_0.2.4               stringi_1.5.3            
##  [89] futile.logger_1.4.3       highr_0.8                
##  [91] lattice_0.20-41           Matrix_1.3-2             
##  [93] vctrs_0.3.6               pillar_1.5.1             
##  [95] lifecycle_1.0.0           lmtest_0.9-38            
##  [97] jquerylib_0.1.3           RcppAnnoy_0.0.18         
##  [99] BiocNeighbors_1.8.2       data.table_1.14.0        
## [101] cowplot_1.1.1             bitops_1.0-6             
## [103] irlba_2.3.3               httpuv_1.5.5             
## [105] patchwork_1.1.1           R6_2.5.0                 
## [107] promises_1.2.0.1          KernSmooth_2.23-18       
## [109] vipor_0.4.5               parallelly_1.24.0        
## [111] codetools_0.2-18          lambda.r_1.2.4           
## [113] MASS_7.3-53.1             assertthat_0.2.1         
## [115] rprojroot_2.0.2           withr_2.4.1              
## [117] sctransform_0.3.2         GenomeInfoDbData_1.2.4   
## [119] mgcv_1.8-34               VennDiagram_1.6.20       
## [121] grid_4.0.4                rpart_4.1-15             
## [123] beachmat_2.6.4            tidyr_1.1.3              
## [125] rmarkdown_2.7             DelayedMatrixStats_1.12.3
## [127] Rtsne_0.15                shiny_1.6.0              
## [129] ggbeeswarm_0.6.0

Reference

Soneson, Charlotte, and Mark D. Robinson. 2018. Bias, robustness and scalability in single-cell differential expression analysis.” Nature Methods 15 (4): 255–61. https://doi.org/10.1038/nmeth.4612.