library(readxl)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.1.0 ✓ dplyr 1.0.5
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
# Le o banco .sav exportado pelo SurveyMonkey
data <- haven::read_sav("~/Dropbox/Laboratorio/Pedro Brandao/Covid/covid_mov_disorders.sav")
#data <- haven::read_sav("C:/Dropbox/Laboratorio/Pedro Brandao/Covid/covid_mov_disorders.sav")
#colnames(data)
# Limpa os nomes das variaveis
data <- tibble::as_tibble(data, .name_repair = janitor::make_clean_names)
colnames(data)
## [1] "authors" "ref_number"
## [3] "continent" "country"
## [5] "year" "number_of_cases"
## [7] "myoclonus_prop" "myoclonus"
## [9] "dystonia_prop" "dystonia"
## [11] "catatonia_prop" "catatonia"
## [13] "tardive_prop" "tardive_syndromes"
## [15] "diplopia_prop" "diplopia"
## [17] "chorea_prop" "chorea"
## [19] "oculomotor_dysf_prop" "oculomotor_disturbances"
## [21] "functional_prop" "functional_mov_disorder"
## [23] "parkinsonism_prop" "parkinsonism"
## [25] "tremor_prop" "action_postural_tremor"
## [27] "ataxia_prop" "ataxia"
## [29] "encephalopathy_prop" "encephalopathy_confusion"
## [31] "stroke_prop" "stroke"
## [33] "pet_reported_prop" "pet_reported"
## [35] "mri_ct_reported_prop" "mri_ct_reported"
## [37] "pet_fdg_result" "pet_cerebellar_hypermetabolism"
## [39] "pet_cortical_hypomet" "pet_basal_ganglia_hypermetabolism"
## [41] "pet_fdg_normal" "mri_focal_edema_prop"
## [43] "mri_focal_edema_or_enhancement" "mri_unesp_hyperintensity_prop"
## [45] "mri_unespecific_hyperintensities" "mri_ct_stroke_prop"
## [47] "mri_ct_stroke" "mri_ct_microbleeds_prop"
## [49] "mri_ct_microbleeds" "normal_imaging_prop"
## [51] "mri_ct_normal" "mri_or_ct"
## [53] "spinal_tap_prop" "spinal_tap_reported"
## [55] "csf_normal_cells" "csf_pleocytosis"
## [57] "csf_cell_count" "csf_normal_protein"
## [59] "csf_protein" "enmg_reported"
## [61] "enmg" "eeg_backgroung_slowing"
## [63] "eeg_normal" "eeg_reported"
## [65] "eeg" "presynaptic_dopa_imaging"
## [67] "da_t_spect_or_f_dopa" "levetiracetam"
## [69] "cyproheptadine" "clonazepam"
## [71] "valproic_acid" "steroids_iv_or_oral"
## [73] "plasma_exchange" "ivig"
## [75] "pramipexol" "ketamine"
## [77] "primidone" "lorazepam"
## [79] "dexmedetomedine" "midazolam"
## [81] "convalescent_plasma" "tocilizumab"
## [83] "ect"
# Exporta para o formato .csv
#readr::write_csv(data, file ="~/Dropbox/Laboratorio/Pedro Brandao/Covid/covid_mov_disorders.csv")
#mov <- readr::read_csv("~/Dropbox/Laboratorio/Pedro Brandao/Covid/covid_mov_disorders.csv")
#mov %>% glimpse
options(max.print=1000000)
#psych::describe(data)
dataset <- data %>% select(-c(pet_cerebellar_hypermetabolism, pet_cortical_hypomet, pet_basal_ganglia_hypermetabolism, pet_fdg_normal))
psych::describe(data, skew = F)
## vars n mean sd min max range se
## authors* 1 44 22.23 12.50 1 43 42 1.88
## ref_number* 2 44 22.50 12.85 1 44 43 1.94
## continent* 3 44 2.27 0.92 1 4 3 0.14
## country* 4 44 9.45 4.77 1 15 14 0.72
## year* 5 44 1.14 0.35 1 2 1 0.05
## number_of_cases 6 44 2.11 2.05 1 8 7 0.31
## myoclonus_prop* 7 44 1.00 0.00 1 1 0 0.00
## myoclonus 8 44 1.34 2.18 0 8 8 0.33
## dystonia_prop* 9 44 1.00 0.00 1 1 0 0.00
## dystonia 10 44 0.02 0.15 0 1 1 0.02
## catatonia_prop* 11 44 1.00 0.00 1 1 0 0.00
## catatonia 12 44 0.05 0.21 0 1 1 0.03
## tardive_prop* 13 44 1.00 0.00 1 1 0 0.00
## tardive_syndromes 14 44 0.07 0.45 0 3 3 0.07
## diplopia_prop* 15 44 1.00 0.00 1 1 0 0.00
## diplopia 16 44 0.16 0.43 0 2 2 0.06
## chorea_prop* 17 44 1.00 0.00 1 1 0 0.00
## chorea 18 44 0.02 0.15 0 1 1 0.02
## oculomotor_dysf_prop* 19 44 1.00 0.00 1 1 0 0.00
## oculomotor_disturbances 20 44 0.43 0.85 0 4 4 0.13
## functional_prop* 21 44 1.00 0.00 1 1 0 0.00
## functional_mov_disorder 22 44 0.07 0.33 0 2 2 0.05
## parkinsonism_prop* 23 44 1.00 0.00 1 1 0 0.00
## parkinsonism 24 44 0.11 0.32 0 1 1 0.05
## tremor_prop* 25 44 1.00 0.00 1 1 0 0.00
## action_postural_tremor 26 44 0.23 0.80 0 5 5 0.12
## ataxia_prop* 27 44 1.00 0.00 1 1 0 0.00
## ataxia 28 44 0.82 1.33 0 7 7 0.20
## encephalopathy_prop* 29 44 1.95 0.21 1 2 1 0.03
## encephalopathy_confusion 30 44 0.84 1.31 0 5 5 0.20
## stroke_prop* 31 44 1.00 0.00 1 1 0 0.00
## stroke 32 44 0.11 0.32 0 1 1 0.05
## pet_reported_prop* 33 44 1.00 0.00 1 1 0 0.00
## pet_reported 34 44 0.11 0.39 0 2 2 0.06
## mri_ct_reported_prop* 35 44 1.00 0.00 1 1 0 0.00
## mri_ct_reported 36 44 1.75 1.82 0 7 7 0.27
## pet_fdg_result* 37 44 3.89 0.58 1 5 4 0.09
## pet_cerebellar_hypermetabolism 38 4 0.75 0.50 0 1 1 0.25
## pet_cortical_hypomet 39 4 0.50 0.58 0 1 1 0.29
## pet_basal_ganglia_hypermetabolism 40 4 0.50 0.58 0 1 1 0.29
## pet_fdg_normal 41 4 0.25 0.50 0 1 1 0.25
## mri_focal_edema_prop* 42 44 1.00 0.00 1 1 0 0.00
## mri_focal_edema_or_enhancement 43 44 0.23 0.68 0 4 4 0.10
## mri_unesp_hyperintensity_prop* 44 44 1.91 0.29 1 2 1 0.04
## mri_unespecific_hyperintensities 45 44 0.11 0.32 0 1 1 0.05
## mri_ct_stroke_prop* 46 44 1.00 0.00 1 1 0 0.00
## mri_ct_stroke 47 44 0.09 0.29 0 1 1 0.04
## mri_ct_microbleeds_prop* 48 44 1.00 0.00 1 1 0 0.00
## mri_ct_microbleeds 49 44 0.11 0.62 0 4 4 0.09
## normal_imaging_prop* 50 44 1.00 0.00 1 1 0 0.00
## mri_ct_normal 51 44 1.16 1.33 0 6 6 0.20
## mri_or_ct* 52 44 9.75 4.53 1 21 20 0.68
## spinal_tap_prop* 53 44 1.00 0.00 1 1 0 0.00
## spinal_tap_reported 54 44 1.02 1.49 0 8 8 0.22
## csf_normal_cells 55 44 0.75 1.22 0 5 5 0.18
## csf_pleocytosis 56 44 0.27 0.62 0 3 3 0.09
## csf_cell_count* 57 44 5.41 2.51 1 11 10 0.38
## csf_normal_protein 58 44 0.52 0.90 0 4 4 0.14
## csf_protein* 59 44 6.59 2.43 1 11 10 0.37
## enmg_reported 60 43 0.21 0.71 0 4 4 0.11
## enmg* 61 44 3.86 1.03 1 7 6 0.15
## eeg_backgroung_slowing 62 44 0.36 0.81 0 3 3 0.12
## eeg_normal 63 44 0.20 0.46 0 2 2 0.07
## eeg_reported 64 44 0.61 0.97 0 3 3 0.15
## eeg* 65 44 5.91 1.84 1 11 10 0.28
## presynaptic_dopa_imaging 66 44 0.16 0.64 0 4 4 0.10
## da_t_spect_or_f_dopa* 67 44 2.14 0.55 1 4 3 0.08
## levetiracetam 68 44 0.32 0.74 0 3 3 0.11
## cyproheptadine 69 43 0.02 0.15 0 1 1 0.02
## clonazepam 70 44 0.39 0.99 0 6 6 0.15
## valproic_acid 71 44 0.23 0.89 0 5 5 0.13
## steroids_iv_or_oral 72 44 0.48 0.82 0 3 3 0.12
## plasma_exchange 73 44 0.02 0.15 0 1 1 0.02
## ivig 74 44 0.41 1.00 0 5 5 0.15
## pramipexol 75 44 0.05 0.21 0 1 1 0.03
## ketamine 76 44 0.02 0.15 0 1 1 0.02
## primidone 77 44 0.02 0.15 0 1 1 0.02
## lorazepam 78 44 0.11 0.49 0 3 3 0.07
## dexmedetomedine 79 44 0.11 0.75 0 5 5 0.11
## midazolam 80 44 0.02 0.15 0 1 1 0.02
## convalescent_plasma 81 44 0.02 0.15 0 1 1 0.02
## tocilizumab 82 44 0.02 0.15 0 1 1 0.02
## ect 83 44 0.02 0.15 0 1 1 0.02
library(DataExplorer)
#plot_missing(dataset)
#plot_bar(dataset)
plot_histogram(dataset, ggtheme = theme_classic())


# http://htmlpreview.github.io/?https://raw.githubusercontent.com/spgarbet/tangram-vignettes/master/example.html
library(tangram)
## Loading required package: R6
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
## Loading required package: knitr
##
## Attaching package: 'tangram'
## The following object is masked from 'package:dplyr':
##
## add_row
## The following object is masked from 'package:readr':
##
## cols
## The following object is masked from 'package:tibble':
##
## add_row
vars = c("myoclonus", "dystonia", "catatonia", "tardive_syndromes", "diplopia", "chorea", "oculomotor_disturbances", "functional_mov_disorder", "parkinsonism", "action_postural_tremor", "ataxia", "encephalopathy_confusion")
tbl <- tangram(number_of_cases ~ myoclonus + dystonia + catatonia + tardive_syndromes + diplopia + chorea + oculomotor_disturbances + functional_mov_disorder + parkinsonism + action_postural_tremor + ataxia + encephalopathy_confusion, id = "ref_number", dataset)
tbl
tangram("myoclonus ~ dystonia + catatonia + tardive_syndromes + diplopia + chorea + oculomotor_disturbances + functional_mov_disorder + parkinsonism + action_postural_tremor + ataxia + encephalopathy_confusion", id = "ref_number", dataset,
style="nejm", caption = "Table NEJM Style",
relsize=-2,
capture_units=TRUE)
# https://arxiv.org/pdf/1705.11123.pdf
# https://cran.r-project.org/web/packages/brms/vignettes/brms_distreg.html
#https://towardsdatascience.com/an-illustrated-guide-to-the-zero-inflated-poisson-model-b22833343057
library(brms)
## Loading required package: Rcpp
## Loading 'brms' package (version 2.15.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
##
## Attaching package: 'brms'
## The following object is masked from 'package:stats':
##
## ar
library(bayesplot)
## This is bayesplot version 1.8.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
## * Does _not_ affect other ggplot2 plots
## * See ?bayesplot_theme_set for details on theme setting
# Zero inflated Poisson
b11.4 <-
brm(data = dataset, family = zero_inflated_poisson("log"),
myoclonus ~ 1 + eeg_normal + eeg_backgroung_slowing + mri_ct_normal + ataxia + oculomotor_disturbances + encephalopathy_confusion,
prior = c(prior(normal(0, 10), class = Intercept),
prior(beta(2, 2), class = zi)), # the brms default is beta(1, 1)
iter = 20000, warmup = 5000, chains = 4, cores = 4,
seed = 123)
## Compiling Stan program...
## Start sampling
summary(b11.4)
## Family: zero_inflated_poisson
## Links: mu = log; zi = identity
## Formula: myoclonus ~ 1 + eeg_normal + eeg_backgroung_slowing + mri_ct_normal + ataxia + oculomotor_disturbances + encephalopathy_confusion
## Data: dataset (Number of observations: 44)
## Samples: 4 chains, each with iter = 20000; warmup = 5000; thin = 1;
## total post-warmup samples = 60000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept -0.30 0.34 -0.96 0.37 1.00 38194
## eeg_normal -0.20 0.36 -0.95 0.44 1.00 41610
## eeg_backgroung_slowing -0.28 0.25 -0.79 0.19 1.00 28599
## mri_ct_normal 0.52 0.14 0.24 0.79 1.00 31498
## ataxia -0.02 0.09 -0.20 0.16 1.00 44457
## oculomotor_disturbances -0.32 0.22 -0.75 0.10 1.00 27813
## encephalopathy_confusion 0.30 0.11 0.07 0.52 1.00 34919
## Tail_ESS
## Intercept 41682
## eeg_normal 34433
## eeg_backgroung_slowing 35337
## mri_ct_normal 37106
## ataxia 43394
## oculomotor_disturbances 34216
## encephalopathy_confusion 39917
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## zi 0.29 0.11 0.09 0.51 1.00 40890 31349
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Posteriors
post2 <-
posterior_samples(b11.4)
# Correlations
post2 %>%
select(-zi, -lp__) %>%
psych::lowerCor() %>%
corrplot::corrplot()
## b_Int b_g_n b_g__ b_m__ b_atx b_cl_ b_nc_
## b_Intercept 1.00
## b_eeg_normal -0.41 1.00
## b_eeg_backgroung_slowing -0.15 0.34 1.00
## b_mri_ct_normal -0.35 -0.04 -0.66 1.00
## b_ataxia 0.12 -0.41 -0.17 -0.29 1.00
## b_oculomotor_disturbances 0.03 0.10 0.81 -0.72 -0.10 1.00
## b_encephalopathy_confusion -0.39 0.10 -0.50 0.40 0.18 -0.67 1.00

#psych::cor.plot()
# Plot
post2 %>%
select(-zi, -lp__) %>%
mcmc_intervals(prob = .5, prob_outer = .95) +
theme(axis.ticks.y = element_blank(),
axis.text.y = element_text(hjust = 0))

# Compute a Bayesian version of R-squared for regression models
bayes_R2(b11.4)
## Estimate Est.Error Q2.5 Q97.5
## R2 0.3817289 0.1333514 0.1257179 0.6218341
# Plot densities
plot(b11.4, N = 2, ask = FALSE)




# Plot conditionals
#plot(conditional_effects(b11.4), points = TRUE, ask = FALSE)
plot(conditional_effects(b11.4), points = FALSE, ask = FALSE)






library(bayestestR)
#https://easystats.github.io/bayestestR/articles/example1.html
# Posteriors
posteriors <- insight::get_parameters(b11.4)
head(posteriors) # Show the first 6 rows
## b_Intercept b_eeg_normal b_eeg_backgroung_slowing b_mri_ct_normal b_ataxia
## 1 -0.5669891 -0.0617629 -0.5678852 0.7598823 -0.03471616
## 2 -0.6650704 -0.2100586 -0.3349172 0.6513143 -0.04608057
## 3 -0.3718611 -0.3868625 -0.5018273 0.6837904 -0.04801854
## 4 -0.4463948 -0.4926240 -0.3026802 0.6163537 -0.05939852
## 5 -0.3883172 -0.1839353 -0.5217115 0.7285788 -0.03204576
## 6 -0.0668791 -0.4858783 -0.1465746 0.5510676 -0.07741510
## b_oculomotor_disturbances b_encephalopathy_confusion
## 1 -0.6902995 0.4709696
## 2 -0.4391715 0.2824489
## 3 -0.4099570 0.2043963
## 4 -0.3631250 0.3606093
## 5 -0.5680346 0.2597345
## 6 -0.2170041 0.1622791
nrow(posteriors) # Size (number of rows)
## [1] 60000
ggplot(posteriors, aes(x = b_encephalopathy_confusion)) +
geom_density(fill = "skyblue")

mean(posteriors$b_encephalopathy_confusion)
## [1] 0.2993514
median(posteriors$b_encephalopathy_confusion)
## [1] 0.2993325
# Maximum a posteriori
map_estimate(posteriors$b_encephalopathy_confusion)
## MAP Estimate: 0.29
ggplot(posteriors, aes(x = b_encephalopathy_confusion)) +
geom_density(fill = "skyblue") +
# The mean in blue
geom_vline(xintercept = mean(posteriors$b_encephalopathy_confusion), color = "blue", size = 1) +
# The median in red
geom_vline(xintercept = median(posteriors$b_encephalopathy_confusion), color = "red", size = 1) +
# The MAP in purple
geom_vline(xintercept = map_estimate(posteriors$b_encephalopathy_confusion), color = "purple", size = 1)

# Uncertanty
range(posteriors$b_encephalopathy_confusion)
## [1] -0.1532022 0.8157571
hdi(posteriors$b_encephalopathy_confusion, ci = 0.89)
## 89% HDI: [0.12, 0.48]
# The proportion of HDI lying within this “null” region can be used as an decision criterion for “null-hypothesis” testing. Such a Test for Practical Equivalence, implemented via equivalence_test(), is based on the “HDI+ROPE decision rule” (Kruschke, 2018) to check whether parameter values should be accepted or rejected against an explicitly formulated “null hypothesis” (i.e., a ROPE). If the HDI is completely outside the ROPE, the “null hypothesis” for this parameter is “rejected”. If the ROPE completely covers the HDI, i.e., all most credible values of a parameter are inside the ROPE, the null hypothesis is accepted. Otherwise, whether to accept or reject the null hypothesis is undecided.
library(see)
equivalence_test(b11.4)
## Warning: Could not estimate a good default ROPE range. Using 'c(-0.1, 0.1)'.
## Possible multicollinearity between b_oculomotor_disturbances and b_eeg_backgroung_slowing (r = 0.81), b_oculomotor_disturbances and b_mri_ct_normal (r = 0.72). This might lead to inappropriate results. See 'Details' in '?equivalence_test'.
## # Test for Practical Equivalence
##
## ROPE: [-0.10 0.10]
##
## Parameter | H0 | inside ROPE | 95% HDI
## -----------------------------------------------------------------
## Intercept | Undecided | 16.67 % | [-0.95 0.38]
## eeg_normal | Undecided | 21.57 % | [-0.92 0.47]
## eeg_backgroung_slowing | Undecided | 18.59 % | [-0.77 0.20]
## mri_ct_normal | Rejected | 0.00 % | [ 0.25 0.79]
## ataxia | Undecided | 75.94 % | [-0.20 0.16]
## oculomotor_disturbances | Undecided | 13.15 % | [-0.75 0.10]
## encephalopathy_confusion | Undecided | 1.82 % | [ 0.07 0.52]
library(bayestestR)
# b_encephalopathy_confusion, the effect is positive with a probability of 99.53%. We call this index the Probability of Direction (pd).
describe_posterior(
post2,
effects = "all",
component = "all",
test = c("p_direction", "p_significance"),
centrality = "all"
)
## Summary of Posterior Distribution
##
## Parameter | Median | Mean | MAP | 95% CI | pd | ps
## -------------------------------------------------------------------------------------------
## b_Intercept | -0.30 | -0.30 | -0.26 | [ -0.95, 0.38] | 81.25% | 0.72
## b_eeg_normal | -0.19 | -0.20 | -0.14 | [ -0.92, 0.47] | 70.36% | 0.60
## b_eeg_backgroung_slowing | -0.28 | -0.28 | -0.26 | [ -0.77, 0.20] | 87.39% | 0.77
## b_mri_ct_normal | 0.52 | 0.52 | 0.52 | [ 0.25, 0.79] | 99.98% | 1.00
## b_ataxia | -0.01 | -0.02 | -6.22e-03 | [ -0.20, 0.16] | 56.28% | 0.18
## b_oculomotor_disturbances | -0.33 | -0.32 | -0.32 | [ -0.75, 0.10] | 93.12% | 0.85
## b_encephalopathy_confusion | 0.30 | 0.30 | 0.29 | [ 0.07, 0.52] | 99.53% | 0.96
## zi | 0.29 | 0.29 | 0.30 | [ 0.08, 0.50] | 100% | 0.97
## lp__ | -69.79 | -70.13 | -69.18 | [-74.15, -66.75] | 100% | 1.00
describe_posterior(post2, test = c("p_direction", "rope", "bayesfactor"))
## Warning in bayesfactor_parameters.data.frame(x, prior = bf_prior, ...): Prior
## not specified! Please specify priors (with column order matching 'posterior') to
## get meaningful results.
## Loading required namespace: logspline
## Summary of Posterior Distribution
##
## Parameter | Median | 95% CI | pd | ROPE | % in ROPE | BF
## --------------------------------------------------------------------------------------------------
## b_Intercept | -0.30 | [ -0.95, 0.38] | 81.25% | [-0.10, 0.10] | 16.67% | 1.00
## b_eeg_normal | -0.19 | [ -0.92, 0.47] | 70.36% | [-0.10, 0.10] | 21.57% | 1.00
## b_eeg_backgroung_slowing | -0.28 | [ -0.77, 0.20] | 87.39% | [-0.10, 0.10] | 18.59% | 1.00
## b_mri_ct_normal | 0.52 | [ 0.25, 0.79] | 99.98% | [-0.10, 0.10] | 0% | 1.00
## b_ataxia | -0.01 | [ -0.20, 0.16] | 56.28% | [-0.10, 0.10] | 75.94% | 1.00
## b_oculomotor_disturbances | -0.33 | [ -0.75, 0.10] | 93.12% | [-0.10, 0.10] | 13.15% | 1.00
## b_encephalopathy_confusion | 0.30 | [ 0.07, 0.52] | 99.53% | [-0.10, 0.10] | 1.82% | 1.00
## zi | 0.29 | [ 0.08, 0.50] | 100% | [-0.10, 0.10] | 1.64% | 1.00
## lp__ | -69.79 | [-74.15, -66.75] | 100% | [-0.10, 0.10] | 0% | 1.00
# Interestingly, it so happens that this index is usually highly correlated with the frequentist p-value. We could almost roughly infer the corresponding p-value with a simple transformation:
pd <- 99.53
onesided_p <- 1 - pd / 100
twosided_p <- onesided_p * 2
twosided_p
## [1] 0.0094
# Although we arrived to a similar conclusion, the Bayesian framework allowed us to develop a more profound and intuitive understanding of our effect, and of the uncertainty of its estimation.
# ROPE Percentage
#T esting whether this distribution is different from 0 doesn’t make sense, as 0 is a single value (and the probability that any distribution is different from a single value is infinite).
# However, one way to assess significance could be to define an area around 0, which will consider as practically equivalent to zero (i.e., absence of, or a negligible, effect). This is called the Region of Practical Equivalence (ROPE), and is one way of testing the significance of parameters.
rope(posteriors$b_oculomotor_disturbances, range = c(-0.1, 0.1), ci = 0.9)
## # Proportion of samples inside the ROPE [-0.10, 0.10]:
##
## inside ROPE
## -----------
## 11.29 %
#rope_value <- rope_range(b11.4)
#rope_value
#rope(posteriors$b_encephalopathy_confusion, range = rope_range, ci = 0.89)
library(BayesFactor)
## Loading required package: coda
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
##
## Type BFManual() to open the manual.
## ************
result <- correlationBF(dataset$myoclonus, dataset$oculomotor_disturbances)
describe_posterior(result)
## Summary of Posterior Distribution
##
## Parameter | Median | 95% CI | pd | ROPE | % in ROPE | BF | Prior
## ----------------------------------------------------------------------------------------------
## rho | 0.36 | [0.12, 0.60] | 99.65% | [-0.05, 0.05] | 0% | 10.16 | Beta (3 +- 3)
bayesfactor(result)
## Bayes Factors for Model Comparison
##
## Model BF
## [2] (rho != 0) 10.16
##
## * Against Denominator: [1] (rho = 0)
## * Bayes Factor Type: JZS (BayesFactor)
#We got a BF of 10.16. What does it mean? Bayes factors are continuous measures of relative evidence, with a Bayes factor greater than 1 giving evidence in favour of one of the models (often referred to as the numerator), and a Bayes factor smaller than 1 giving evidence in favour of the other model (the denominator).
# https://easystats.github.io/bayestestR/articles/example2.html
# Visualise the Bayes factor
library(see)
plot(bayesfactor(result)) +
scale_fill_pizza()

# Store results
result_pd <- p_direction(b11.4) # Print and plot results
print(result_pd)
## Probability of Direction
##
## Parameter | pd
## ---------------------------------
## (Intercept) | 81.25%
## eeg_normal | 70.36%
## eeg_backgroung_slowing | 87.39%
## mri_ct_normal | 99.98%
## ataxia | 56.28%
## oculomotor_disturbances | 93.12%
## encephalopathy_confusion | 99.53%
# Plot results
p = plot(result_pd)
library(ggthemes)
p + (ggtheme = theme_bw())

como mioclonia e ataxia sao os principais disturbios do movimento, poderíamos fazer uma outra regressao em que ataxia é a variavel dependente e aquelas mesmas outras são as variáveis preditoras.. mioclonia, encefalopatia, resultados do EEG, resultados da MRI, resultados do LCR
# Zero inflated Poisson
b11.4 <-
brm(data = dataset, family = zero_inflated_poisson("log"),
ataxia ~ 1 + eeg_normal + eeg_backgroung_slowing + mri_ct_normal + myoclonus + oculomotor_disturbances + encephalopathy_confusion,
prior = c(prior(normal(0, 10), class = Intercept),
prior(beta(2, 2), class = zi)), # the brms default is beta(1, 1)
iter = 20000, warmup = 5000, chains = 4, cores = 4,
seed = 123)
## Compiling Stan program...
## Start sampling
summary(b11.4)
## Family: zero_inflated_poisson
## Links: mu = log; zi = identity
## Formula: ataxia ~ 1 + eeg_normal + eeg_backgroung_slowing + mri_ct_normal + myoclonus + oculomotor_disturbances + encephalopathy_confusion
## Data: dataset (Number of observations: 44)
## Samples: 4 chains, each with iter = 20000; warmup = 5000; thin = 1;
## total post-warmup samples = 60000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## Intercept -1.21 0.36 -1.95 -0.54 1.00 42503
## eeg_normal 0.08 0.54 -0.99 1.10 1.00 25545
## eeg_backgroung_slowing 0.37 0.66 -0.81 1.73 1.00 22011
## mri_ct_normal 0.55 0.38 -0.18 1.30 1.00 25118
## myoclonus -0.27 0.20 -0.66 0.11 1.00 26775
## oculomotor_disturbances 0.49 0.41 -0.31 1.31 1.00 30455
## encephalopathy_confusion 0.11 0.35 -0.58 0.76 1.00 21986
## Tail_ESS
## Intercept 40256
## eeg_normal 35066
## eeg_backgroung_slowing 29122
## mri_ct_normal 30280
## myoclonus 33592
## oculomotor_disturbances 34021
## encephalopathy_confusion 34217
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## zi 0.20 0.09 0.05 0.39 1.00 36184 26159
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# Posteriors
post2 <-
posterior_samples(b11.4)
# Correlations
post2 %>%
select(-zi, -lp__) %>%
psych::lowerCor() %>%
corrplot::corrplot()
## b_Int b_g_n b_g__ b_m__ b_myc b_cl_ b_nc_
## b_Intercept 1.00
## b_eeg_normal 0.09 1.00
## b_eeg_backgroung_slowing 0.04 0.71 1.00
## b_mri_ct_normal -0.34 -0.25 -0.31 1.00
## b_myoclonus 0.26 -0.12 -0.24 -0.77 1.00
## b_oculomotor_disturbances -0.07 0.12 0.47 -0.73 0.31 1.00
## b_encephalopathy_confusion -0.17 -0.76 -0.88 0.02 0.42 -0.10 1.00

#psych::cor.plot()
# Plot
post2 %>%
select(-zi, -lp__) %>%
mcmc_intervals(prob = .5, prob_outer = .95) +
theme(axis.ticks.y = element_blank(),
axis.text.y = element_text(hjust = 0))

# Compute a Bayesian version of R-squared for regression models
bayes_R2(b11.4)
## Estimate Est.Error Q2.5 Q97.5
## R2 0.4858474 0.08400813 0.272014 0.6730633
# Plot densities
plot(b11.4, N = 2, ask = FALSE)




# Plot conditionals
#plot(conditional_effects(b11.4), points = TRUE, ask = FALSE)
plot(conditional_effects(b11.4), points = FALSE, ask = FALSE)






library(bayestestR)
#https://easystats.github.io/bayestestR/articles/example1.html
# Posteriors
posteriors <- insight::get_parameters(b11.4)
head(posteriors) # Show the first 6 rows
## b_Intercept b_eeg_normal b_eeg_backgroung_slowing b_mri_ct_normal
## 1 -0.9032087 0.3069660279 0.05031461 -0.06752816
## 2 -1.2422134 -0.4155413347 -0.12017383 1.28458144
## 3 -1.6352534 -0.6303895632 0.11232942 1.38009344
## 4 -1.3340756 -0.4587305862 -0.27784983 0.93202772
## 5 -1.2148672 -0.1439042332 0.42607820 0.82392736
## 6 -1.3570124 -0.0005213227 0.63386933 0.47929947
## b_myoclonus b_oculomotor_disturbances b_encephalopathy_confusion
## 1 -0.1024413 0.9005320 0.341230878
## 2 -0.5451952 -0.3097661 0.003682511
## 3 -0.4990940 -0.1812204 0.133504186
## 4 -0.4705083 0.5279498 0.490109258
## 5 -0.3761630 0.1663300 -0.067389899
## 6 -0.3929597 0.9894662 0.020853779
nrow(posteriors) # Size (number of rows)
## [1] 60000
ggplot(posteriors, aes(x = b_myoclonus)) +
geom_density(fill = "orange")

mean(posteriors$b_myoclonus)
## [1] -0.271551
median(posteriors$b_myoclonus)
## [1] -0.2672608
# Maximum a posteriori
map_estimate(posteriors$b_myoclonus)
## MAP Estimate: -0.25
ggplot(posteriors, aes(x = b_myoclonus)) +
geom_density(fill = "orange") +
# The mean in blue
geom_vline(xintercept = mean(posteriors$b_myoclonus), color = "blue", size = 1) +
# The median in red
geom_vline(xintercept = median(posteriors$b_myoclonus), color = "red", size = 1) +
# The MAP in purple
geom_vline(xintercept = map_estimate(posteriors$b_myoclonus), color = "purple", size = 1)

# Uncertanty
range(posteriors$b_myoclonus)
## [1] -1.1044467 0.6991193
hdi(posteriors$b_myoclonus, ci = 0.89)
## 89% HDI: [-0.59, 0.03]
# The proportion of HDI lying within this “null” region can be used as an decision criterion for “null-hypothesis” testing. Such a Test for Practical Equivalence, implemented via equivalence_test(), is based on the “HDI+ROPE decision rule” (Kruschke, 2018) to check whether parameter values should be accepted or rejected against an explicitly formulated “null hypothesis” (i.e., a ROPE). If the HDI is completely outside the ROPE, the “null hypothesis” for this parameter is “rejected”. If the ROPE completely covers the HDI, i.e., all most credible values of a parameter are inside the ROPE, the null hypothesis is accepted. Otherwise, whether to accept or reject the null hypothesis is undecided.
library(see)
equivalence_test(b11.4)
## Warning: Could not estimate a good default ROPE range. Using 'c(-0.1, 0.1)'.
## Possible multicollinearity between b_eeg_backgroung_slowing and b_eeg_normal (r = 0.71), b_encephalopathy_confusion and b_eeg_normal (r = 0.76), b_encephalopathy_confusion and b_eeg_backgroung_slowing (r = 0.88), b_myoclonus and b_mri_ct_normal (r = 0.77), b_oculomotor_disturbances and b_mri_ct_normal (r = 0.73). This might lead to inappropriate results. See 'Details' in '?equivalence_test'.
## # Test for Practical Equivalence
##
## ROPE: [-0.10 0.10]
##
## Parameter | H0 | inside ROPE | 95% HDI
## ------------------------------------------------------------------
## Intercept | Rejected | 0.00 % | [-1.93 -0.52]
## eeg_normal | Undecided | 14.99 % | [-0.95 1.13]
## eeg_backgroung_slowing | Undecided | 12.43 % | [-0.85 1.68]
## mri_ct_normal | Undecided | 7.71 % | [-0.18 1.30]
## myoclonus | Undecided | 16.73 % | [-0.66 0.11]
## oculomotor_disturbances | Undecided | 10.28 % | [-0.31 1.31]
## encephalopathy_confusion | Undecided | 19.35 % | [-0.58 0.76]
Bayesian binomial test
library(BayesianFirstAid)
## Loading required package: rjags
## Linked to JAGS 4.3.0
## Loaded modules: basemod,bugs
# Myoclonus
sum(dataset$number_of_cases)
## [1] 93
sum(dataset$myoclonus)
## [1] 59
# N total = 93
# Myoclonus = 59
# Non-myoclonus = N total - Myoclonus = 34
#fit <- bayes.binom.test(c(59, 34))
fit <- bayes.binom.test(c(sum(dataset$myoclonus), (sum(dataset$number_of_cases) - sum(dataset$myoclonus))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$myoclonus), (sum(dataset$number_of_cases) - sum(dataset$myoclonus)))
## number of successes = 59, number of trials = 93
## Estimated relative frequency of success:
## 0.63
## 95% credible interval:
## 0.53 0.72
## The relative frequency of success is more than 0.5 by a probability of 0.995
## and less than 0.5 by a probability of 0.005
summary(fit)
## Data
## number of successes = 59, number of trials = 93
##
## Model parameters and generated quantities
## theta: the relative frequency of success
## x_pred: predicted number of successes in a replication
##
## Measures
## mean sd HDIlo HDIup %<comp %>comp
## theta 0.631 0.049 0.532 0.724 0.005 0.995
## x_pred 58.742 6.509 45.000 70.000 0.000 1.000
##
## 'HDIlo' and 'HDIup' are the limits of a 95% HDI credible interval.
## '%<comp' and '%>comp' are the probabilities of the respective parameter being
## smaller or larger than 0.5.
##
## Quantiles
## q2.5% q25% median q75% q97.5%
## theta 0.532 0.598 0.632 0.665 0.725
## x_pred 46.000 54.000 59.000 63.000 71.000
plot(fit)

diagnostics(fit)
##
## Iterations = 2:5001
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 5000
##
## Diagnostic measures
## mean sd mcmc_se n_eff Rhat
## theta 0.631 0.049 0.000 15405 1
## x_pred 58.742 6.509 0.054 14740 1
##
## mcmc_se: the estimated standard error of the MCMC approximation of the mean.
## n_eff: a crude measure of effective MCMC sample size.
## Rhat: the potential scale reduction factor (at convergence, Rhat=1).
##
## Model parameters and generated quantities
## theta: The relative frequency of success
## x_pred: Predicted number of successes in a replication

model.code(fit)
## ### Model code for the Bayesian First Aid alternative to the binomial test ###
## require(rjags)
##
## # Setting up the data
## x <- 59
## n <- 93
##
## # The model string written in the JAGS language
## model_string <- "model {
## x ~ dbinom(theta, n)
## theta ~ dbeta(1, 1)
## x_pred ~ dbinom(theta, n)
## }"
##
## # Running the model
## model <- jags.model(textConnection(model_string), data = list(x = x, n = n),
## n.chains = 3, n.adapt=1000)
## samples <- coda.samples(model, c("theta", "x_pred"), n.iter=5000)
##
## # Inspecting the posterior
## plot(samples)
## summary(samples)
# In order to change the flat prior on θ into Jeffrey’s prior we simply change dbeta(1, 1) into dbeta(0.5, 0.5) and rerun the code:
x <- 34
n <- 59
# dbeta(0.5, 0.5)
model_string <-"model {
x ~ dbinom(theta, n)
theta ~ dbeta(0.5, 0.5)
x_pred ~ dbinom(theta, n)
}"
model <- jags.model(textConnection(model_string), data = list(x = x, n = n),
n.chains = 4, n.adapt=2000)
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1
## Unobserved stochastic nodes: 2
## Total graph size: 5
##
## Initializing model
samples <- coda.samples(model, c("theta", "x_pred"), n.iter=5000)
summary(samples)
##
## Iterations = 2001:7000
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 5000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## theta 0.5742 0.06366 0.0004502 0.000575
## x_pred 33.8830 5.32671 0.0376656 0.043467
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## theta 0.4486 0.5307 0.5745 0.6177 0.6979
## x_pred 23.0000 30.0000 34.0000 38.0000 44.0000
# dbeta(2, 2)
model_string <-"model {
x ~ dbinom(theta, n)
theta ~ dbeta(2, 2)
x_pred ~ dbinom(theta, n)
}"
model <- jags.model(textConnection(model_string), data = list(x = x, n = n),
n.chains = 4, n.adapt=2000)
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1
## Unobserved stochastic nodes: 2
## Total graph size: 5
##
## Initializing model
samples <- coda.samples(model, c("theta", "x_pred"), n.iter=5000)
summary(samples)
##
## Iterations = 2001:7000
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 5000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## theta 0.5726 0.0617 0.0004363 0.0005454
## x_pred 33.7707 5.2084 0.0368288 0.0422599
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## theta 0.4492 0.5311 0.5735 0.6152 0.6909
## x_pred 23.0000 30.0000 34.0000 37.0000 44.0000
# Ataxia
fit <- bayes.binom.test(c(sum(dataset$ataxia), (sum(dataset$number_of_cases) - sum(dataset$ataxia))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$ataxia), (sum(dataset$number_of_cases) - sum(dataset$ataxia)))
## number of successes = 36, number of trials = 93
## Estimated relative frequency of success:
## 0.39
## 95% credible interval:
## 0.29 0.49
## The relative frequency of success is more than 0.5 by a probability of 0.015
## and less than 0.5 by a probability of 0.985
#summary(fit)
plot(fit)

# oculomotor_disturbances
fit <- bayes.binom.test(c(sum(dataset$oculomotor_disturbances), (sum(dataset$number_of_cases) - sum(dataset$oculomotor_disturbances))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$oculomotor_disturbances), (sum(dataset$number_of_cases) - sum(dataset$oculomotor_disturbances)))
## number of successes = 19, number of trials = 93
## Estimated relative frequency of success:
## 0.21
## 95% credible interval:
## 0.13 0.29
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# action_postural_tremor
fit <- bayes.binom.test(c(sum(dataset$action_postural_tremor), (sum(dataset$number_of_cases) - sum(dataset$action_postural_tremor))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$action_postural_tremor), (sum(dataset$number_of_cases) - sum(dataset$action_postural_tremor)))
## number of successes = 10, number of trials = 93
## Estimated relative frequency of success:
## 0.11
## 95% credible interval:
## 0.055 0.18
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# parkinsonism
fit <- bayes.binom.test(c(sum(dataset$parkinsonism), (sum(dataset$number_of_cases) - sum(dataset$parkinsonism))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$parkinsonism), (sum(dataset$number_of_cases) - sum(dataset$parkinsonism)))
## number of successes = 5, number of trials = 93
## Estimated relative frequency of success:
## 0.060
## 95% credible interval:
## 0.019 0.11
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# catatonia
fit <- bayes.binom.test(c(sum(dataset$catatonia), (sum(dataset$number_of_cases) - sum(dataset$catatonia))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$catatonia), (sum(dataset$number_of_cases) - sum(dataset$catatonia)))
## number of successes = 2, number of trials = 93
## Estimated relative frequency of success:
## 0.028
## 95% credible interval:
## 0.0032 0.066
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# chorea
fit <- bayes.binom.test(c(sum(dataset$chorea), (sum(dataset$number_of_cases) - sum(dataset$chorea))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$chorea), (sum(dataset$number_of_cases) - sum(dataset$chorea)))
## number of successes = 1, number of trials = 93
## Estimated relative frequency of success:
## 0.018
## 95% credible interval:
## 0.00044 0.050
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# dystonia
fit <- bayes.binom.test(c(sum(dataset$dystonia), (sum(dataset$number_of_cases) - sum(dataset$dystonia))))
print(fit)
##
## Bayesian First Aid binomial test
##
## data: c(sum(dataset$dystonia), (sum(dataset$number_of_cases) - sum(dataset$dystonia)))
## number of successes = 1, number of trials = 93
## Estimated relative frequency of success:
## 0.018
## 95% credible interval:
## 0.00032 0.050
## The relative frequency of success is more than 0.5 by a probability of <0.001
## and less than 0.5 by a probability of >0.999
#summary(fit)
plot(fit)

# https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/counting-and-classification.html
# https://bookdown.org/ajkurz/Statistical_Rethinking_recoded/small-worlds-and-large-worlds.html#from-counts-to-probability.
tibble(prob = seq(from = 0, to = 1, by = .01)) %>%
ggplot(aes(x = prob,
y = dbinom(x = 59, size = 93, prob = prob))) +
geom_line() +
labs(x = "probability",
y = "binomial likelihood") +
theme(panel.grid = element_blank())

library(brms)
# Myoclonus (n=59)
fit.flat <-
brm(data = list(w = 59),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(1, 1), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## Start sampling
##
## SAMPLING FOR MODEL 'a641937b9a3642a732150451298fd74d' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.020138 seconds (Warm-up)
## Chain 1: 0.04982 seconds (Sampling)
## Chain 1: 0.069958 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL 'a641937b9a3642a732150451298fd74d' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e99a448d84_a641937b9a3642a732150451298fd74d' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e99a448d84_a641937b9a3642a732150451298fd74d' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 6e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.018856 seconds (Warm-up)
## Chain 2: 0.047937 seconds (Sampling)
## Chain 2: 0.066793 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL 'a641937b9a3642a732150451298fd74d' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e99a448d84_a641937b9a3642a732150451298fd74d' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e99a448d84_a641937b9a3642a732150451298fd74d' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e99a448d84_a641937b9a3642a732150451298fd74d' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 6e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.017942 seconds (Warm-up)
## Chain 3: 0.049081 seconds (Sampling)
## Chain 3: 0.067023 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL 'a641937b9a3642a732150451298fd74d' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 9e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.019742 seconds (Warm-up)
## Chain 4: 0.060727 seconds (Sampling)
## Chain 4: 0.080469 seconds (Total)
## Chain 4:
print(summary(fit.flat), digits = 4) # prop=0.6314
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 59) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.6314 0.0489 0.5335 0.7244 1.0012 4501 4774
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
plot(fit.flat)

posterior_samples(fit.flat) %>%
mutate(n = "n = 59") %>%
ggplot(aes(x = b_Intercept)) +
geom_density(fill = "skyblue") +
labs(x = "proportion myoclonus") +
xlim(0, 1) +
theme(panel.grid = element_blank()) +
facet_wrap(~n)

# https://stats.stackexchange.com/questions/70661/how-does-the-beta-prior-affect-the-posterior-under-a-binomial-likelihood
fit.beta <-
brm(data = list(w = 59),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.5e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.019736 seconds (Warm-up)
## Chain 1: 0.057342 seconds (Sampling)
## Chain 1: 0.077078 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e997931d68f_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e997931d68f_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 7e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.018304 seconds (Warm-up)
## Chain 2: 0.046537 seconds (Sampling)
## Chain 2: 0.064841 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e997931d68f_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e997931d68f_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e997931d68f_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 6e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.018401 seconds (Warm-up)
## Chain 3: 0.046729 seconds (Sampling)
## Chain 3: 0.06513 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 4e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.018099 seconds (Warm-up)
## Chain 4: 0.057987 seconds (Sampling)
## Chain 4: 0.076086 seconds (Total)
## Chain 4:
print(summary(fit.beta), digits = 4) # prop = 0.6282
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 59) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.6282 0.0488 0.5296 0.7193 1.0001 4641 4894
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
fit.Jeffrey <-
brm(data = list(w = 59),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(0.5, 0.5), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## Start sampling
##
## SAMPLING FOR MODEL '566279bad7a4a079288994bb4fd4e297' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.019642 seconds (Warm-up)
## Chain 1: 0.055033 seconds (Sampling)
## Chain 1: 0.074675 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '566279bad7a4a079288994bb4fd4e297' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e99648025f2_566279bad7a4a079288994bb4fd4e297' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e99648025f2_566279bad7a4a079288994bb4fd4e297' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 1.5e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.02013 seconds (Warm-up)
## Chain 2: 0.060688 seconds (Sampling)
## Chain 2: 0.080818 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '566279bad7a4a079288994bb4fd4e297' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e99648025f2_566279bad7a4a079288994bb4fd4e297' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e99648025f2_566279bad7a4a079288994bb4fd4e297' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e99648025f2_566279bad7a4a079288994bb4fd4e297' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 7e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.017884 seconds (Warm-up)
## Chain 3: 0.057027 seconds (Sampling)
## Chain 3: 0.074911 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '566279bad7a4a079288994bb4fd4e297' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.019674 seconds (Warm-up)
## Chain 4: 0.047792 seconds (Sampling)
## Chain 4: 0.067466 seconds (Total)
## Chain 4:
print(summary(fit.Jeffrey), digits = 4) # prop = 0.6331
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 59) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.6331 0.0508 0.5326 0.7306 1.0004 3595 4127
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# https://jrnold.github.io/bayesian_notes/priors.html
# https://cran.r-project.org/web/packages/rstanarm/vignettes/priors.html
# https://www.nist.gov/system/files/documents/2017/05/09/bayesclassday2-1.pdf
# ataxia (n=36)
fit.beta <-
brm(data = list(w = 36),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 3.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.31 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.018741 seconds (Warm-up)
## Chain 1: 0.053537 seconds (Sampling)
## Chain 1: 0.072278 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e99661b1ca2_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e99661b1ca2_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 5e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.018673 seconds (Warm-up)
## Chain 2: 0.057467 seconds (Sampling)
## Chain 2: 0.07614 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e99661b1ca2_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e99661b1ca2_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e99661b1ca2_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 4e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.017548 seconds (Warm-up)
## Chain 3: 0.047965 seconds (Sampling)
## Chain 3: 0.065513 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 9e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.018194 seconds (Warm-up)
## Chain 4: 0.050648 seconds (Sampling)
## Chain 4: 0.068842 seconds (Total)
## Chain 4:
print(summary(fit.beta), digits = 4)
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 36) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.3915 0.0496 0.2971 0.4908 1.0007 4108 4007
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# oculomotor_disturbances (n=19)
fit.beta <-
brm(data = list(w = 19),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.7e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.17 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.019617 seconds (Warm-up)
## Chain 1: 0.058584 seconds (Sampling)
## Chain 1: 0.078201 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e99127c70cf_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e99127c70cf_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 1.2e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.020115 seconds (Warm-up)
## Chain 2: 0.059231 seconds (Sampling)
## Chain 2: 0.079346 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e99127c70cf_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e99127c70cf_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e99127c70cf_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 1.4e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.019356 seconds (Warm-up)
## Chain 3: 0.055438 seconds (Sampling)
## Chain 3: 0.074794 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.019171 seconds (Warm-up)
## Chain 4: 0.060229 seconds (Sampling)
## Chain 4: 0.0794 seconds (Total)
## Chain 4:
print(summary(fit.beta), digits = 4)
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 19) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.2157 0.0415 0.1413 0.3028 1.0009 3890 3689
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# action_postural_tremor (n=10)
fit.beta <-
brm(data = list(w = 10),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept), #Jeffrey
iter = 4000, warmup = 1000,
control = list(adapt_delta = .9),
seed = 4)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.1e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 1: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 1: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 1: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 1: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 1: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 1: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 1: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 1: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 1: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 1: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 1: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.021518 seconds (Warm-up)
## Chain 1: 0.048697 seconds (Sampling)
## Chain 1: 0.070215 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.16817, but must be in the interval [0, 1] (in 'model8e995a534209_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is 1.21464, but must be in the interval [0, 1] (in 'model8e995a534209_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 5e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 2: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 2: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 2: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 2: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 2: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 2: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 2: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 2: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 2: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 2: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 2: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.021296 seconds (Warm-up)
## Chain 2: 0.06294 seconds (Sampling)
## Chain 2: 0.084236 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.3474, but must be in the interval [0, 1] (in 'model8e995a534209_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is -0.920633, but must be in the interval [0, 1] (in 'model8e995a534209_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3: Rejecting initial value:
## Chain 3: Error evaluating the log probability at the initial value.
## Chain 3: Exception: binomial_lpmf: Probability parameter[1] is 1.24986, but must be in the interval [0, 1] (in 'model8e995a534209_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 3:
## Chain 3: Gradient evaluation took 4e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 3: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 3: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 3: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 3: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 3: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 3: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 3: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 3: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 3: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 3: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 3: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.020807 seconds (Warm-up)
## Chain 3: 0.058221 seconds (Sampling)
## Chain 3: 0.079028 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 1e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 4000 [ 0%] (Warmup)
## Chain 4: Iteration: 400 / 4000 [ 10%] (Warmup)
## Chain 4: Iteration: 800 / 4000 [ 20%] (Warmup)
## Chain 4: Iteration: 1001 / 4000 [ 25%] (Sampling)
## Chain 4: Iteration: 1400 / 4000 [ 35%] (Sampling)
## Chain 4: Iteration: 1800 / 4000 [ 45%] (Sampling)
## Chain 4: Iteration: 2200 / 4000 [ 55%] (Sampling)
## Chain 4: Iteration: 2600 / 4000 [ 65%] (Sampling)
## Chain 4: Iteration: 3000 / 4000 [ 75%] (Sampling)
## Chain 4: Iteration: 3400 / 4000 [ 85%] (Sampling)
## Chain 4: Iteration: 3800 / 4000 [ 95%] (Sampling)
## Chain 4: Iteration: 4000 / 4000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.022023 seconds (Warm-up)
## Chain 4: 0.059189 seconds (Sampling)
## Chain 4: 0.081212 seconds (Total)
## Chain 4:
## Warning: There were 2 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
print(summary(fit.beta), digits = 4)
## Warning: There were 2 divergent transitions after warmup. Increasing adapt_delta
## above 0.9 may help. See http://mc-stan.org/misc/warnings.html#divergent-
## transitions-after-warmup
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 10) (Number of observations: 1)
## Samples: 4 chains, each with iter = 4000; warmup = 1000; thin = 1;
## total post-warmup samples = 12000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.1236 0.0338 0.0657 0.1963 1.0013 3576 3566
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# parkinsonism (n=5)
fit.beta <-
brm(data = list(w = 5),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept),
iter = 10000, warmup = 2000,
control = list(adapt_delta = .9),
seed = 41)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.4e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 1: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 1: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.043259 seconds (Warm-up)
## Chain 1: 0.138681 seconds (Sampling)
## Chain 1: 0.18194 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.47371, but must be in the interval [0, 1] (in 'model8e995ed07b22_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 7e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 2: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 2: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.043396 seconds (Warm-up)
## Chain 2: 0.171546 seconds (Sampling)
## Chain 2: 0.214942 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 7e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 3: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 3: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.043036 seconds (Warm-up)
## Chain 3: 0.159969 seconds (Sampling)
## Chain 3: 0.203005 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is 1.68102, but must be in the interval [0, 1] (in 'model8e995ed07b22_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.98122, but must be in the interval [0, 1] (in 'model8e995ed07b22_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.345877, but must be in the interval [0, 1] (in 'model8e995ed07b22_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4:
## Chain 4: Gradient evaluation took 8e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 4: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 4: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.043233 seconds (Warm-up)
## Chain 4: 0.175159 seconds (Sampling)
## Chain 4: 0.218392 seconds (Total)
## Chain 4:
## Warning: There were 59 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
print(summary(fit.beta), digits = 4)
## Warning: There were 59 divergent transitions after warmup. Increasing
## adapt_delta above 0.9 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 5) (Number of observations: 1)
## Samples: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
## total post-warmup samples = 32000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.0720 0.0263 0.0295 0.1323 1.0004 7466 8053
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# catatonia (n=2)
fit.beta <-
brm(data = list(w = 2),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept),
iter = 10000, warmup = 2000,
control = list(adapt_delta = .9),
seed = 41)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 1.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.19 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 1: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 1: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.054651 seconds (Warm-up)
## Chain 1: 0.231089 seconds (Sampling)
## Chain 1: 0.28574 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.47371, but must be in the interval [0, 1] (in 'model8e9924d9ad6d_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 9e-06 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 2: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 2: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.053055 seconds (Warm-up)
## Chain 2: 0.181814 seconds (Sampling)
## Chain 2: 0.234869 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 3: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 3: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.054103 seconds (Warm-up)
## Chain 3: 0.1864 seconds (Sampling)
## Chain 3: 0.240503 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is 1.68102, but must be in the interval [0, 1] (in 'model8e9924d9ad6d_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.98122, but must be in the interval [0, 1] (in 'model8e9924d9ad6d_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.345877, but must be in the interval [0, 1] (in 'model8e9924d9ad6d_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4:
## Chain 4: Gradient evaluation took 9e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 4: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 4: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.056132 seconds (Warm-up)
## Chain 4: 0.245995 seconds (Sampling)
## Chain 4: 0.302127 seconds (Total)
## Chain 4:
## Warning: There were 542 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
print(summary(fit.beta), digits = 4)
## Warning: There were 542 divergent transitions after warmup. Increasing
## adapt_delta above 0.9 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 2) (Number of observations: 1)
## Samples: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
## total post-warmup samples = 32000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.0412 0.0200 0.0115 0.0884 1.0005 7817 8162
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
# chorea (n=1)
fit.beta <-
brm(data = list(w = 1),
family = binomial(link = "identity"),
w | trials(93) ~ 1,
prior(beta(2, 2), class = Intercept),
iter = 10000, warmup = 2000,
control = list(adapt_delta = .9),
seed = 41)
## Compiling Stan program...
## recompiling to avoid crashing R session
## Start sampling
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 2.6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.26 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 1: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 1: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 1:
## Chain 1: Elapsed Time: 0.064355 seconds (Warm-up)
## Chain 1: 0.207272 seconds (Sampling)
## Chain 1: 0.271627 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 2).
## Chain 2: Rejecting initial value:
## Chain 2: Error evaluating the log probability at the initial value.
## Chain 2: Exception: binomial_lpmf: Probability parameter[1] is -1.47371, but must be in the interval [0, 1] (in 'model8e99714ea9e6_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 2:
## Chain 2: Gradient evaluation took 1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.1 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 2: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 2: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.062339 seconds (Warm-up)
## Chain 2: 0.210359 seconds (Sampling)
## Chain 2: 0.272698 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 9e-06 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 3: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 3: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.060544 seconds (Warm-up)
## Chain 3: 0.224367 seconds (Sampling)
## Chain 3: 0.284911 seconds (Total)
## Chain 3:
##
## SAMPLING FOR MODEL '192e1e70f7a686e058a5db7b2f6bed57' NOW (CHAIN 4).
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is 1.68102, but must be in the interval [0, 1] (in 'model8e99714ea9e6_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.98122, but must be in the interval [0, 1] (in 'model8e99714ea9e6_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4: Rejecting initial value:
## Chain 4: Error evaluating the log probability at the initial value.
## Chain 4: Exception: binomial_lpmf: Probability parameter[1] is -0.345877, but must be in the interval [0, 1] (in 'model8e99714ea9e6_192e1e70f7a686e058a5db7b2f6bed57' at line 22)
##
## Chain 4:
## Chain 4: Gradient evaluation took 6e-06 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration: 1 / 10000 [ 0%] (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%] (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%] (Warmup)
## Chain 4: Iteration: 2001 / 10000 [ 20%] (Sampling)
## Chain 4: Iteration: 3000 / 10000 [ 30%] (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%] (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%] (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%] (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%] (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%] (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%] (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%] (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.06441 seconds (Warm-up)
## Chain 4: 0.242369 seconds (Sampling)
## Chain 4: 0.306779 seconds (Total)
## Chain 4:
## Warning: There were 1071 divergent transitions after warmup. See
## http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
## to find out why this is a problem and how to eliminate them.
## Warning: Examine the pairs() plot to diagnose sampling problems
print(summary(fit.beta), digits = 4)
## Warning: There were 1071 divergent transitions after warmup.
## Increasing adapt_delta above 0.9 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup
## Family: binomial
## Links: mu = identity
## Formula: w | trials(93) ~ 1
## Data: list(w = 1) (Number of observations: 1)
## Samples: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
## total post-warmup samples = 32000
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 0.0309 0.0176 0.0064 0.0729 1.0016 5107 5427
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).