LOADING DATA INTO R ENVIRONMENT

TRAINING THE BOOSTING MODEL

Running the Training Model

## eXtreme Gradient Boosting 
## 
## 8001 samples
##    3 predictor
##    2 classes: 'No', 'Yes' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 7200, 7200, 7201, 7202, 7201, 7202, ... 
## Resampling results across tuning parameters:
## 
##   eta  max_depth  colsample_bytree  subsample  nrounds  Accuracy   Kappa    
##   0.3  1          0.6               0.50        50      0.9713793  0.3913068
##   0.3  1          0.6               0.50       100      0.9720040  0.4006042
##   0.3  1          0.6               0.50       150      0.9723789  0.4099108
##   0.3  1          0.6               0.75        50      0.9716292  0.3799901
##   0.3  1          0.6               0.75       100      0.9717542  0.3997378
##   0.3  1          0.6               0.75       150      0.9718792  0.4046255
##   0.3  1          0.6               1.00        50      0.9706295  0.3649273
##   0.3  1          0.6               1.00       100      0.9716292  0.3959953
##   0.3  1          0.6               1.00       150      0.9712540  0.3877077
##   0.3  1          0.8               0.50        50      0.9730036  0.4199934
##   0.3  1          0.8               0.50       100      0.9718790  0.3952624
##   0.3  1          0.8               0.50       150      0.9718789  0.3909090
##   0.3  1          0.8               0.75        50      0.9706301  0.3858335
##   0.3  1          0.8               0.75       100      0.9713798  0.3931568
##   0.3  1          0.8               0.75       150      0.9717542  0.4010233
##   0.3  1          0.8               1.00        50      0.9715047  0.3899435
##   0.3  1          0.8               1.00       100      0.9715047  0.3957805
##   0.3  1          0.8               1.00       150      0.9715047  0.4009329
##   0.3  2          0.6               0.50        50      0.9721276  0.4004037
##   0.3  2          0.6               0.50       100      0.9715031  0.4083184
##   0.3  2          0.6               0.50       150      0.9716281  0.4086541
##   0.3  2          0.6               0.75        50      0.9717542  0.3873674
##   0.3  2          0.6               0.75       100      0.9722548  0.4178143
##   0.3  2          0.6               0.75       150      0.9710039  0.3875485
##   0.3  2          0.6               1.00        50      0.9717539  0.3828775
##   0.3  2          0.6               1.00       100      0.9712543  0.3897696
##   0.3  2          0.6               1.00       150      0.9708792  0.3925408
##   0.3  2          0.8               0.50        50      0.9715033  0.4004922
##   0.3  2          0.8               0.50       100      0.9707540  0.3936825
##   0.3  2          0.8               0.50       150      0.9710034  0.4032012
##   0.3  2          0.8               0.75        50      0.9710043  0.3873647
##   0.3  2          0.8               0.75       100      0.9708792  0.3928655
##   0.3  2          0.8               0.75       150      0.9702550  0.3798871
##   0.3  2          0.8               1.00        50      0.9716293  0.3961700
##   0.3  2          0.8               1.00       100      0.9710037  0.3857656
##   0.3  2          0.8               1.00       150      0.9707551  0.3977728
##   0.3  3          0.6               0.50        50      0.9708790  0.3822028
##   0.3  3          0.6               0.50       100      0.9702537  0.3818082
##   0.3  3          0.6               0.50       150      0.9696300  0.3881593
##   0.3  3          0.6               0.75        50      0.9718789  0.3949405
##   0.3  3          0.6               0.75       100      0.9705050  0.3804730
##   0.3  3          0.6               0.75       150      0.9697553  0.3861759
##   0.3  3          0.6               1.00        50      0.9715042  0.3776866
##   0.3  3          0.6               1.00       100      0.9697547  0.3776029
##   0.3  3          0.6               1.00       150      0.9696298  0.3835070
##   0.3  3          0.8               0.50        50      0.9710043  0.4112140
##   0.3  3          0.8               0.50       100      0.9688801  0.3702965
##   0.3  3          0.8               0.50       150      0.9702548  0.4017938
##   0.3  3          0.8               0.75        50      0.9706292  0.4016517
##   0.3  3          0.8               0.75       100      0.9702545  0.3924848
##   0.3  3          0.8               0.75       150      0.9692554  0.3890719
##   0.3  3          0.8               1.00        50      0.9708790  0.3791814
##   0.3  3          0.8               1.00       100      0.9703801  0.3849929
##   0.3  3          0.8               1.00       150      0.9701303  0.3949087
##   0.4  1          0.6               0.50        50      0.9702532  0.3676569
##   0.4  1          0.6               0.50       100      0.9720034  0.4070468
##   0.4  1          0.6               0.50       150      0.9716287  0.4048304
##   0.4  1          0.6               0.75        50      0.9721295  0.4240445
##   0.4  1          0.6               0.75       100      0.9720040  0.4044536
##   0.4  1          0.6               0.75       150      0.9717543  0.3995174
##   0.4  1          0.6               1.00        50      0.9718795  0.4012599
##   0.4  1          0.6               1.00       100      0.9718793  0.3962749
##   0.4  1          0.6               1.00       150      0.9718790  0.4028057
##   0.4  1          0.8               0.50        50      0.9716292  0.4018029
##   0.4  1          0.8               0.50       100      0.9721289  0.4130694
##   0.4  1          0.8               0.50       150      0.9716287  0.4040398
##   0.4  1          0.8               0.75        50      0.9713792  0.4078365
##   0.4  1          0.8               0.75       100      0.9717543  0.4053278
##   0.4  1          0.8               0.75       150      0.9708790  0.3920528
##   0.4  1          0.8               1.00        50      0.9720043  0.4005942
##   0.4  1          0.8               1.00       100      0.9716298  0.3986964
##   0.4  1          0.8               1.00       150      0.9713800  0.3939931
##   0.4  2          0.6               0.50        50      0.9708793  0.3829116
##   0.4  2          0.6               0.50       100      0.9698795  0.3746342
##   0.4  2          0.6               0.50       150      0.9698792  0.3828474
##   0.4  2          0.6               0.75        50      0.9716289  0.3966735
##   0.4  2          0.6               0.75       100      0.9712539  0.3965996
##   0.4  2          0.6               0.75       150      0.9698798  0.3784100
##   0.4  2          0.6               1.00        50      0.9715036  0.3914698
##   0.4  2          0.6               1.00       100      0.9712540  0.3930020
##   0.4  2          0.6               1.00       150      0.9701292  0.3722026
##   0.4  2          0.8               0.50        50      0.9715043  0.3943484
##   0.4  2          0.8               0.50       100      0.9703789  0.3852922
##   0.4  2          0.8               0.50       150      0.9701287  0.3859388
##   0.4  2          0.8               0.75        50      0.9717531  0.4160240
##   0.4  2          0.8               0.75       100      0.9700037  0.3844063
##   0.4  2          0.8               0.75       150      0.9706292  0.4108813
##   0.4  2          0.8               1.00        50      0.9710039  0.3841293
##   0.4  2          0.8               1.00       100      0.9706298  0.3913856
##   0.4  2          0.8               1.00       150      0.9695057  0.3726841
##   0.4  3          0.6               0.50        50      0.9705042  0.3840673
##   0.4  3          0.6               0.50       100      0.9711306  0.4101082
##   0.4  3          0.6               0.50       150      0.9697542  0.3876548
##   0.4  3          0.6               0.75        50      0.9707542  0.3911122
##   0.4  3          0.6               0.75       100      0.9701297  0.3912948
##   0.4  3          0.6               0.75       150      0.9693790  0.3812046
##   0.4  3          0.6               1.00        50      0.9707550  0.3823064
##   0.4  3          0.6               1.00       100      0.9706300  0.3997119
##   0.4  3          0.6               1.00       150      0.9698807  0.3948422
##   0.4  3          0.8               0.50        50      0.9700059  0.3893254
##   0.4  3          0.8               0.50       100      0.9688807  0.3805709
##   0.4  3          0.8               0.50       150      0.9677554  0.3705645
##   0.4  3          0.8               0.75        50      0.9698803  0.3799118
##   0.4  3          0.8               0.75       100      0.9705061  0.3998332
##   0.4  3          0.8               0.75       150      0.9692554  0.3803766
##   0.4  3          0.8               1.00        50      0.9705050  0.3947427
##   0.4  3          0.8               1.00       100      0.9692561  0.3767798
##   0.4  3          0.8               1.00       150      0.9691307  0.3784295
## 
## Tuning parameter 'gamma' was held constant at a value of 0
## Tuning
##  parameter 'min_child_weight' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 50, max_depth = 1, eta
##  = 0.3, gamma = 0, colsample_bytree = 0.8, min_child_weight = 1 and subsample
##  = 0.5.

Variable Importance in Boosting Model

TESTING THE BOOSTING MODEL

Confusion Matrix at 50% Cut-Off Probability

## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  Yes   No
##        Yes   28    9
##        No    38 1924
##                                           
##                Accuracy : 0.9765          
##                  95% CI : (0.9689, 0.9827)
##     No Information Rate : 0.967           
##     P-Value [Acc > NIR] : 0.007885        
##                                           
##                   Kappa : 0.5326          
##                                           
##  Mcnemar's Test P-Value : 4.423e-05       
##                                           
##             Sensitivity : 0.42424         
##             Specificity : 0.99534         
##          Pos Pred Value : 0.75676         
##          Neg Pred Value : 0.98063         
##              Prevalence : 0.03302         
##          Detection Rate : 0.01401         
##    Detection Prevalence : 0.01851         
##       Balanced Accuracy : 0.70979         
##                                           
##        'Positive' Class : Yes             
##